层状复合陶瓷喷嘴的设计制造及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据喷嘴的冲蚀磨损特性,结合层状复合陶瓷材料的优异性能,将层状复合结构的概念引入陶瓷喷嘴的设计及制造中,提出了层状复合陶瓷喷嘴的设计理论和方法,研制开发出层状复合陶瓷喷嘴,系统研究了层状复合陶瓷喷嘴的物理力学性能、微观结构以及冲蚀磨损特性等,探索了其冲蚀磨损机理。
     针对陶瓷喷嘴冲蚀磨损特点和应力状态,提出了层状复合陶瓷喷嘴的设计目标,建立了多种层状复合陶瓷喷嘴物理模型,并确定了其材料体系,即:Al_2O_3/(W,Ti)C+Al_2O_3/TiC(简称AWT+AT)。
     采用有限元法深入分析了层状复合陶瓷喷砂嘴和水煤浆喷嘴制备过程中形成的残余应力及其分布规律,结果表明:层状复合陶瓷喷砂嘴和水煤浆喷嘴在其入口和出口表面层均产生了残余压应力。研究了结构参数对层状复合陶瓷喷嘴内残余应力的影响,通过理论分析初步确定了AWT+AT层状复合陶瓷喷砂嘴的最佳结构参数:最佳层厚比为1~2,最佳层数为3层。
     陶瓷水煤浆喷嘴的冲蚀磨损具有其独特性,由于其工作环境温度较高,使得喷嘴使用过程中内部存在较大的温差和温度梯度并导致其出口端面存在较大的热应力。采用热-应力耦合方法对层状复合陶瓷水煤浆喷嘴使用过程中的温度梯度和热应力及其分布规律进行了分析,结果表明:与均质陶瓷水煤浆喷嘴相比,通过调节结构参数层状复合陶瓷水煤浆喷嘴内部的温度梯度有所降低,其出口端面热应力得到明显的缓解。研究了层状复合陶瓷水煤浆喷嘴的层厚比对其热应力的影响,通过理论分析得出层状复合陶瓷水煤浆喷嘴最佳层厚比应小于等于0.2。
     采用热压烧结工艺成功制备出多种AWT+AT层状复合陶瓷喷嘴材料,并对其性能进行了测试,研究表明:层状复合陶瓷材料比均质陶瓷材料力学性能有显著提高,LN0.1(层厚比为0.1)层状复合陶瓷喷嘴材料表面层的断裂韧性值为10.46MPa·m~(1/2),硬度值为22.184GPa;而均质陶瓷喷嘴材料AWT的断裂韧性值为4.8MPa·m~(1/2),硬度值为19.943GPa。层状复合陶瓷喷嘴材料的层厚比对材料力学性能有重要影响,其变化规律为:在制备工艺允许范围内,层厚比越小,层状复合陶瓷材料表面层的力学性能越好。随着层数的增加,表层材料的力学性能也有提高,但层数对材料力学性能影响较小。
     对AWT+AT层状复合陶瓷喷嘴材料显微结构分析表明,材料层界面清晰可见;各层材料的厚度较为均匀一致,厚度相差不大;层与层间结合情况良好。层状复合陶瓷喷嘴材料表层的残余应力是导致其综合力学性能提高的主要原因。
     对陶瓷喷砂嘴冲蚀后的重量损失、喷嘴内径随时间的变化、喷嘴内孔轮廓变化和体积冲蚀磨损率等进行了系统试验研究。结果表明:层状复合陶瓷喷砂嘴的抗冲蚀磨损性能比均质喷砂嘴有显著提高。LN2(层厚比为2)层状复合陶瓷喷砂嘴的体积冲蚀磨损率比均质陶瓷喷砂嘴AWT的体积冲蚀磨损率降低了27.14%。层状复合陶瓷喷砂嘴的结构参数对其冲蚀磨损率起着重要的作用:随着层厚比的增加,其冲蚀磨损率逐渐减小。随着层数的增加,其冲蚀磨损率逐渐增加。
     对层状复合陶瓷水煤浆喷嘴在水煤浆燃烧锅炉内的使用情况进行了现场冲蚀磨损试验研究,结果表明:层状复合陶瓷水煤浆喷嘴的抗冲蚀磨损性能比均质陶瓷水煤浆喷嘴有显著提高。LN0.1(层厚比为0.1)层状复合陶瓷水煤浆喷嘴的体积冲蚀磨损率比AWT均质陶瓷水煤浆喷嘴的体积冲蚀磨损率降低了69.01%。层状复合陶瓷水煤浆喷嘴出口端面热应力得到明显的缓解,没有出现均质陶瓷水煤浆喷嘴出口那样的热崩裂现象。层厚比对层状复合陶瓷水煤浆喷嘴冲蚀率有重要影响,在制备工艺允许范围内,层厚比越小,其冲蚀磨损率越低。
     与均质陶瓷喷嘴相比,层状复合陶瓷喷嘴的抗冲蚀磨损性能有显著提高,主要是由于层状复合陶瓷喷嘴的采用了层状结构,制备过程中在其表面层形成了有利的残余压应力,从而缓解了喷嘴实际使用过程中的高应力状态。另外,层状复合陶瓷喷嘴表层材料的硬度和断裂韧性比均质陶瓷喷嘴的硬度和断裂韧性显著提高。因此层状复合陶瓷喷嘴应力状态的改善和力学性能的提高是造成其抗冲蚀能力显著高于均质陶瓷喷嘴的主要原因。
According to the wear characteristics of the ceramic nozzles and the outstanding properties of multilayer ceramic composites,idea of layered structures was used to the design and prepare of ceramic nozzles.The design theory and methods of multilayer ceramic nozzles were proposed.The multilayer ceramic nozzles have been developed.The mechanical properties at the surface layer of these layered composites were measured,the microstructure was examined,and the wear behaviors of the multilayered nozzles were investigated.The erosion wear mechanisms of the.multilayer ceramic nozzles were investigated.
     Combination the erosive wear characteristics and stress state of ceramic nozzles,the aim of the design for the multilayer ceramic nozzles was proposed, and the physical models of multilayer ceramic nozzles with different structural parameters were established.The multilayer ceramic nozzles composites systems Al_2O_3/(W,Ti)C+Al_2O_3/TiC(AWT+AT) were determined.
     The value of the residual stress inside the multilayer nozzles during fabricating process was calculated by means of the finite element method(FEM), the results show that avail compressive stress fields are found to exist in the entry and exit region of dry sand blasting nozzles and coal water slurry(CWS) nozzles.The influence of structural parameters of the multilayer ceramic nozzles was studied.The theoretical optimal value of the dry sand blasting nozzles was:the best thickness ratio of 1~2 and optimal layer number of 3.
     The erosive wear characteristics of CWS nozzles were different from that of the dry sand blasting nozzles.The high working conditions temperature of CWS nozzles lead to the high temperature gradient and thermal stress,the thermal stress at the exit surfaces of the ceramic CWS nozzle were higher than that of other part of the nozzle.The temperature gradient and thermal stress and its distribution of the multilayer ceramic CWS nozzles in the process were analyzed. Relationship between stresses distribution and layer thickness ratio were obtained,the theoretical value of optimal layer thickness ratio should be less than or equal to 0.2.
     AWT+AT multilayered ceramic nozzle composites were produced by hot-pressing.The mechanical properties at the surface layer of these layered composites were measured.Results showed that the mechanical properties of the multilayer ceramic nozzle composite were greatly improved in comparison with that of the homologous nozzle composite.The surface fracture toughness of the LN0.1 multilayer nozzle composite is 10.46MPa·m~(1/2),the surface Vickers hardness is 22.184GPa.While the fracture toughness of the AWT homogeneous nozzle composite is 4.8MPa·m~(1/2),the Vickers hardness is 19.943GPa.The thickness ratio has an important influence over the mechanical properties of nozzle composite.In the framework of the preparation of permit,with the smaller thickness ratio,the surface composites have better mechanical properties.With the rise of layer number,the mechanical properties of surface composites have also increased,but the layer number has less effect on the mechanical properties.
     The microstructure analysis of AWT+AT multilayered ceramic nozzle composites showed that the thickness of each layer is uniform distribution,the layer interface is clear,the combination of layers is good.The compressive residual stresses are benefit for the increase of hardness and the fracture toughness at the surface layer of the multilayer ceramic nozzle composites.
     The wear behaviors of the multilayered nozzles were investigated,the cumulative mass loss,the inner diameter variation,the worn inner bore profile and the erosion rates are system studied.The results have shown that the multilayer ceramic nozzles have superior erosion resistance to that of the homogeneous nozzle under same test conditions.The wear rate of LN2 multilayered ceramic nozzles reduced 27.14%than that of the homogeneous. The thickness ratio affects the wear behaviors of the multilayer ceramic nozzles. The erosion wear resistance of the layered nozzles was influenced by the thickness ratio among constituent layers.The layered nozzles with high thickness ratio showed the low erosion wear rate.And the layered nozzles with low layer number showed the low erosion wear rate.
     The wear behaviors of the multilayered nozzles were compared with homogenous nozzle.Results showed that the multilayered nozzles had superior erosion wear resistance to that of the homogenous nozzle.The wear rate of LN0.1 multilayered ceramic nozzles reduced 69.01%than that of the homogeneous.The thermal stress that exist in the exit region of the multilayered ceramic nozzles are significantly relieved,does not appear the hot crack as that of homogeneous ceramic nozzle export situation.In the framework of the preparation of permit,the layered nozzles with low thickness ratio showed the low erosion wear rate.
     The multilayered ceramic nozzles have superior erosion wear resistance to that of the homogenous nozzle.The mechanism responsible was explained as the formation of compressive residual stresses in nozzle entry region in fabrication process of the layered ceramic nozzles,which may partially counteract the tensile stresses resulting from external loadings,and leads to an improvement of erosion wear resistance.Also the surface Vickers hardness of multilayered ceramic nozzle was greatly improved compared with that of the homogenous nozzles.Therefore,it is indicated that multilayered structures in ceramic nozzles is an effective way to improve the erosion wear resistance of the homogenous nozzles.
引文
1.胡传忻.实用表面前处理手册[M].北京:化学工业出版社,2003:70
    2.李国英.表面工程手册[M].北京:机械工业出版社,1998:21-27
    3.DENG Jianxin,LEE Taichiu.Techniques for improved surface integrity and reliability of machined ceramic composites[J].Surface Engineering,2000,16(5):411-414.
    4.RAYKOWSKI A,HADER M,MARAGNO B,et al.Blasting cleaning of gas turbine components:deposit removal and substrate deformation[J].Wear,2001,249:127-132.
    5.DJUROVIC B,JEAN E,PAPINI M,et al.Coating removal from fiber composites and aluminum using starch media blasting[J].Wear,1999,224:22-37
    6.李开选.中国水煤浆产业化的现状及发展[J].上海化工,2002,(12):33-35
    7.孙成功,李保庆.水煤浆技术研究开发现状及面临的问题[J].煤炭转化,1995,18(3):1-6
    8.A.P.Burdukow,V.I.Popov,V.G.Tomilov,et al.The rheodynamics and combustion of coal-water mixtures[J].Fuel,2002,81:927-933
    9.岑可法,姚强,曹欣玉,等.煤浆燃烧、流动、传热和气化的理论与应用技术[M].杭州:浙江大学出版社,1997:1-458
    10.王宝中,贾晓鸣,赵伟.水煤浆用喷嘴磨损机理研究[J].工业炉,2002,24(3):8-10
    11.庄蕾.高压水射流清洗用喷嘴及喷头[J].清洗世界,2003,19(12):28-31
    12.任建新.水煤浆喷嘴技术的研究[D].杭州:浙江大学博士学位论文,1992:
    13.冯益华.新型陶瓷喷砂嘴的研究开发及其冲蚀机理研究[D].济南:山东大学博士学位论文,2003:5-87
    14.丁泽良,李剑峰,邓建新等.水煤浆喷嘴材料的应用研究[J].选煤技术,2002,(6):13-15
    15.丁泽良.新型组合式陶瓷水煤浆喷嘴的设计开发及其损坏机理研究[D].济南:山东大学博士学位论文,2004:33-85
    16.曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1969:152-220
    17.肖诗纲.刀具材料及其合理选择(第二版)[M].北京:机械工业出版社,1990:106-108
    18.宋兵.大型水煤浆喷嘴的失效分析及耐磨材料的应用[J].科技创业月刊,2006,(10): 179-181
    19.严心浩.水煤浆喷嘴运行中出现的问题及治理[J].电站辅机,2007,(1):31-33
    20.Madhusarathi Nanduri.Wear Characterization of abrasive water jet nozzles and nozzle materials[D].Doctor of Philosophy,Island:University of Rhode Island,1997:10-89
    21.Ju Bao.Study of abrasive waterjet nozzle materials and plasma transferred arc welding coatings[D].Doctor of Philosophy,Island:University of Missouri-Rolla,2004:3-4
    22.沈国良.喷丸清理技术[M].北京:化学工业出版社,2004:124
    23.侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2002:124
    24.牧野启二.石炭スラリ燃料の燃烧技术[J],配管技术,1986
    25.S.K.Kand等.在南朝鲜能源研究所改进的快装水管燃油锅炉上的小规模水煤浆燃烧试验研究[C],煤炭加工利用文集之三,1986:369
    26.坂井正泰.碳水.スラリ-の研究开发[J],三菱重工业报,22(5),昭60-69
    27.T.KIGA,H.Saitoh,Combustion technology of CWM[C],7th international symposium on CWM preparation and utilization,1985:112-116
    28.刘莉莉.梯度陶瓷喷嘴的设计理论及其应用研究[D].济南:山东大学博士学位论文,2006:33-45
    29.员冬玲,邓建新,丁泽良.陶瓷水煤浆喷嘴温度场及热应力的有限元分析[J].山东大学学报,2005,35(1):32-36
    30.Casellas D,Nagl M M,Llanes L,et al.Fracture toughness of alumina and ZTA ceramics:microstructural coarsening effects[J].Journal of Materials Processing Technology,2003,143-152
    31.Senthil Kumar A,Raja Dural A,Sornakumar T.Wear behaviour of alumina based ceramic cutting tools on machining steels[J].Tribology International,2006,39:191-197
    32.Chen R Z,Tuan W H.Toughening alumina with silver and zirconia inclusions[J].Journal of the European Ceramic Society,2001,21:2887-2893
    33.扬慧智.工程材料及成型工艺基础[M].北京:机械工业出版社,2000:23-56
    34.李成贤.喷砂在零件表面处理中的应用[J].材料保护,1994,27(8):78-81
    35.卯福生.基于有限元法的陶瓷喷砂嘴冲蚀磨损研究及耐磨结构设计[D].济南:山东轻工业学院,2006:39-51
    36.于海龙,刘建忠,范晓伟,等.喷嘴结构对水煤浆喷嘴雾化性能影响的试验研究[J].中国电机工程学报,2006,26(14):80-85
    37.李清廉,田章福,姚世强,等.结构参数变化对内混式喷嘴雾化性能的影响作用[J].工程热物理学报,2005,26(1):151-154
    38.李钦奉.喷砂技术及其表面清理效率的研究[J].中国修船,2000,(3):13-15
    39.易灿,李根生.喷嘴结构对高压射流特性影响研究[J].石油钻采工艺,2005,27(1):16-19
    40.赵民,郑玉贵,罗继曼.高压磨料水喷嘴磨损实验研究[J].润滑与密封,2004,(1):41-42
    41.张凤莲,朱静.水射流设备中关键部件磨损机理的研究[J].石材,2004,(12):32-35
    42.材料耐磨抗蚀及表面处理丛书编委会主编.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987:1-93
    43.段昌国.水轮机沙粒磨损[M].北京:清华大学出版社,1981:3-45
    44.I.Finnie.Some observations on the erosion of ductile metals[J].Wear,1972,19(1):81-90
    45.I.Finnie,D.H.McFadden.On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J].Wear,1978,48(1):181-190
    46.I.Finnie,G.R.Stevick,J.R Ridgery.The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J].Wear,1992,152(1):91-98
    47.J.G.A.Bitter.A study of erosion phenomena part Ⅰ[J].Wear,1963,6(1):5-21
    48.J.G.A.Bitter.A study of erosion phenomena part Ⅱ[J].Wear,1963,6(3):169-190
    49.牟军,郦剑,郭绍义,等.金属及陶瓷材料冲蚀研究的进展[J].材料科学与工程,1994,12(2):9-15
    50.董刚,张九洲.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312
    51.I.M.Hutchings,R.E.Winter.Particle erosion of ductile metals:A mechanism of material removal[J].Wear,1974,27(1):121-128
    52.S.Jahanmir.The mechanics of subsurface damage in solid particle erosion[J].Wear,1980,61(2):309-324
    53.G.L.Sheldon,Ashok Kanhere.An investigation of impingement erosion using single particles[J].Wear,1972,21(1):195-209
    54.G.P.Tilly.A two stage mechanism of ductile erosion[J].Wear,1973,23(1):87-96
    55.M.Hashish.Observation of wear of abrasive-water jet nozzle materials[J].Journal of Tribology,1994,116(2):439-444
    56.Madhusarathi Nanduri,David G.Taggart,Thomas J.Kim.The effects of system and geometric parameters on abrasive waterjet nozzle wear[J].International Journal of Machine Tools& Manufacture,2002,42(5):615-623
    57.P.H.Shipway,I.M.Hutchings.Influence of nozzle roughness on conditions in a gas-blast erosion rig[J].Wear,1993,162-164(Part 1):148-158
    58.Eric Ness,Ron Zibbell.Abrasion and erosion of hard materials related to wear in the abrasive waterjet[J].Wear,1996,196(1-2):120-125
    59.周军.陶瓷喷嘴的开发与应用[D].济南:山东大学硕士学位论文,2000:1-12
    60.Deng Jianxin,Zheng Zhongcai,Ding Zeliang,et al.Erosion wear of ceramic and cemented carbide nozzles in dry sand blasting process[J].British Ceramic Transactions,2003,102(2):61-65
    61.Deng Jianxin,Feng Yihua,Ding Zeliang et al.Wear behaviors of the ceramic nozzles in sand blasting treatments[J],Journal of the European Ceramic Society,2003,23(2):323-329
    62.冯益华,邓建新.B_4C/(W,Ti)C陶瓷喷砂嘴冲蚀磨损机理研究[J].摩擦学学报,2004,24(4):346-350
    63.DENG Jianxin,LIU Lili,LI Jianfeng,et al.Development of SiC/(W,Ti)C gradient ceramic nozzle materials for sand blasting surface treatments[J].International Journal of Refractory Metals and Hard Materials,2007,25(2):130-137
    64.刘莉莉,邓建新,皇攀凌,等.SiC/(W,Ti)C梯度陶瓷喷嘴的设计与制备[J].中国科学(E辑),2007,37(7):8571-865
    65.孙军龙.新型B_4C基复合陶瓷喷嘴研究开发及其冲蚀机理研究[D].济南:山东大学博士学位论文,2007:50-89
    66.Zeliang Ding,Jianxin Deng,Jianfeng Li.Wear surface studies on coal water slurry nozzles in industrial boilers[J].Materials & Design,2007,28(5):1531-1538
    67.Ding Zeliang,Deng Jianxin,Zen Xiaohong,et al.Thermal erosion of WC-based cemented carbide nozzles by coal water slurry[J].International Journal of Refractory Metals and Hard Materials,2008,26(4):334-339
    68.Liu Lili,Deng Jianxin,Zhou Jun.Erosion wear and design model of functionally gradient ceramic AJM nozzle[J].Key Engineering Materials.2006,315-316:637-640
    69.刘莉莉,邓建新,丁明伟.磨料喷射喷嘴的应力分析及FGM模型设计[J].机械工程学报,2006,42(supp):157-164
    70.刘莉莉,邓建新,丁明伟.SiC/(W,Ti)C梯度陶瓷喷嘴的制备及冲蚀磨损机理研究[J].摩擦学学报,2007,27(1):83-87
    71.卯福生,冯益华,王丽.流场对陶瓷喷嘴的冲蚀磨损影响[J].机械工程师,2005,(7):74-77
    72.卯福生,冯益华,王丽.陶瓷喷砂嘴结构参数对冲蚀磨损的影响[J].机械工程师,2006,(2):73-75
    73.汪日志。珍珠岩及天然骨的仿生制备研究[R],博士后研究工作报告,1995:12-67
    74.李冬云,乔冠军,金志浩.层状复合陶瓷材料的研究进展[J].无机材料学报,2002,17(1):10-16
    75.黄勇,李翠伟,汪长安,等.陶瓷强韧化新纪元—仿生结构设计[J].材料导报,2000,14(8):8-11
    76.成茵,肖汉宁,李玉平.层状复合陶瓷增韧机理和制备工艺的研究[J].陶瓷学报,2003,24(2):111-115
    77.Changan Wang,Yong Huang,Qingfeng zan,et al.Biomimetic structure design—a possible approach to change the brittleness of ceramics in nature[J].Materials Science and Engineering:C,2000,11(1):9-12
    78.Cuiwei Li,Changan Wang,Yong Huang,et al.Effects of sintering aids on the microstructure and mechanical properties of laminated Si_3N_4/BN ceramics[J].Materials Letters,2003,57(22-23):3473-3478
    79.Qingfeng Zan,Chang-an Wang,Yong Huang,et al.Effect of geometrical factors on the mechanical properties of Si_3N_4/BN multilayer ceramics[J].Ceramics International,2004,30(3):441-446
    80.Cuiwei Li,Yong Huang,Chang-an Wang,et al.Mechanical properties and microstructure of laminated Si_3N_4+SiC_w/BN+Al_2O_3 ceramics densified by spark plasma sintering[J].Materials Letters,2002,57(2):336-342
    81.W.J.Clegg,K.Kendall,N.McN.Aiford,et al.A simple way to make tough ceramics [J].Nature,1990,347(4):455-461
    82.仝建峰,陈大明,刘晓光等.Al_2O_3(YAG)/LaPO_4层状陶瓷复合材料研究[J].航空材料学报,2006,26(3):163-167
    83.Chen Z,Mechoisky J J.Control of strength and toughness of ceramic metal laminates using interface design[J].Journal of Mater Research,1993,8(9):2362-2369
    84.M.C.Shaw,T.W.Clyne,A.C.F.Cocks,et al.Cracking patterns in metal-ceramic laminates:Effects of plasticity[J].Journal of the Mechanics and Physics of Solids,1996,44(5):801-811
    85.M.Y.He,F.E.Heredia,D.J.Wissuchek,et al.The mechanics of crack growth in layered materials[J].Acta Metallurgica et Materialia,1993,41(4):1223-1228
    86.罗永明,潘伟,陈健,等.弱层成分对SiC/W层状复合材料力学性能与显微结构的研究[J].材料导报,2000,14(5):49-51
    87.Y.El-Shaer,B.Derby.Modelling of R-curve behaviour in ceramic-metal laminates[J].Materials Science and Engineering A,2004,365(1-2):196-201
    88.袁广江,罗永明,陈大明,等.SiC基层状复合材料界面层的选择[J].硅酸盐学报,2001,29(3):226-231
    89.苏盛彪,包亦望,杨建军.强界面陶瓷层状复合材料优化设计的最佳层厚比探讨[J].硅酸盐学报,2003,31(8):743-747
    90.陈蓓,丁培道.强界面结合层状陶瓷研究现状及增韧机制[J].材料导报,2001,15(6):28-29
    91.包亦望,苏盛彪,黄肇瑞.对称型陶瓷层状复合材料中的残余应力分析[J].材料研究学报.2002.16(5):449-457
    92.R.F.Cook,B.R.Lawn,A modified indentation toughness technique[J].Journal of American Ceramic Society,1983,66(11):200-201.
    93.Cu Shengbiao,Bao Yiwang,Yang Jianjun.Optimal layer thickness ratio for optimization of ceramic laminates[J].Journal of the Chinese Ceramic Society(in Chinese),2003,31(3):51-56.
    94.A.Atkinson,A.Selcuk.Residual stress and fracture of laminated ceramic membranes [J].Acta Materialia,1999,47(3):867-874
    95.Bei Chen,Chuan Cheng,Lan Xiong,et al.Transformation toughening of Al_2O_3/ZrO_2laminated ceramics with residual compressive stress[J].Journal of University of Science and Technology Beijing,Mineral,Metallurgy,2007,14(5):449-453
    96.Nicola Scuor,Elio Lucchini,Stefano Maschio,et al.Wear mechanisms and residual stresses in alumina-based laminated cutting tools[J].Wear,2005,258(9):1372-1378.
    97.T.Chartier,D.Merle,J.L.Besson.Laminar ceramic composites[J]:Journal of the European Ceramic Society,1995,15(2):101-107
    98.Aaron J.Blattner,R.Lakshminarayanan,Dinesh K.Shetty.Toughening of layered ceramic composites with residual surface compression:effects of layer thickness[J].Engineering Fracture Mechanics,2001,68(1):1-7
    99.Cai P Z,Green D J,Messing GL.Mechanical characterization of Al_2O_3/ZrO_2 hybrid laminates[J].Journal of the European Ceramic Society 1998,5:2025-2034.
    100.Tarlazzi A,Roncari E,Pinasco P,Guicciardi S,et al.Tribologieal behaviour of Al_2O_3/ZrO_2-ZrO_2 laminated composites[J].Wear 2000,244:29-40.
    101.Toschi F,Melandri C,Pinaseo P,et al.Influence of residual stress on the wear behaviour of alumina/alumina-zireonia laminated composites[J].Journal of American Ceramic Society 2003,86(9):1547-1553.
    102.郭香华,胡宁,蔡乾煌,等.陶瓷叠层结构增韧设计的数据模拟及实验研究[J].硅酸盐学报,2000,28(6):234-239
    103.丁新更,葛曼珍,杨辉.氧化铝/ZTA强夹层层状复合陶瓷的制备和性能[J].硅酸盐通报,2000,(1):50-52
    104.陈蓓,丁培道,程川.Al_2O_3/ZrO_2层状复合陶瓷的显微结构特征与强韧化的关系[J].材料导报,2004,18(9):92-98
    105.陈蓓,丁培道,周泽华.Al_2O_3/ZrO_2层状复合陶瓷的结构设计与性能[J].硅酸盐学报,2001,29(4):386-388
    106.W.J.Clegg.The fabrication and failure of laminar ceramic composites[J].Acta metall,1992,40(11):3085-3093
    107.黄勇,汪长安,昝青峰.高韧性复相陶瓷材料的仿生结构设计、制备与力学性能[J].成都大学学报(自然科学版,2002,21(3):1-7
    108.赵军.新型梯度功能陶瓷刀具材料的设计制造及其切削性能研究[D].济南:山东大学博士学位论文,1998:1-133
    109.Ai Xing,Zhao Jun,Huang Chuanzhen,et al.Development of an advanced ceramic tool material—functionally gradient cutting ceramics[J].Materials Science and Engineering A,1998,248(1-2):125-131
    110.Zhao Jun,Ai Xing,Deng Jianxin,et al.Thermal shock behaviors of functionally graded ceramic tool materials[J].Journal of the European Ceramic Society,2004,24(5):847-854
    111.Jun Zhao,Xing Ai,Jianxin Deng,et al.A model of the thermal shock resistance parameter for functionally gradient ceramics[J].Materials Science and Engineering A,2004,382(1-2):23-29G.de Portu,L.Micele,D.Prandstraller,et al.Laminated ceramic structures from oxide systems[J].Wear,2006,260(9-10):1104-1111.
    113.Shuyi Qin,Dongliang Jiang,Jingxian Zhang,et al.Design,fabrication and properties of layered SiC/TiC ceramic with graded thermal residual stress[J].Journal of the European Ceramic,2003,23(9):1491-1497.
    114.K.Lambrinou,T.Lauwagie,F.Chalvet,et al.Elastic properties and damping behaviour of alumina-alumina/zirconia laminates[J].Journal of the European Ceramic Society,2007,27(2-3):1307-1311
    115.周建强,艾兴,李兆前.陶瓷/硬质合金复合片残余应力分析[J].应用力学学报,1999,16(3):134-140
    116.Vincenzo M.Sglavo,Massimo Bertoldi.Design and production of ceramic laminates with high mechanical resistance and reliability[J].Acta Materialia,2006,54(18):4929-4937.
    117.J.G.A.Biter.A study of erosion phenomena Part 1[J].Wear,1963,(6):5-21
    118.D.W.Wheeler,R.J.K.Wood.Solid particle erosion of CVD diamond coatings[J].Wear,1999,233-235(6):306-318
    119.郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7-12
    120.邓建新,李兆前,艾兴.晶须增韧陶瓷复合材料的界面行为研究[J].材料导报,1995,9(4):67-69
    121.南策文.非均质材料显微结构的物理模型[D].武汉:武汉工业大学博士学位论文, 1992:1-69
    122.Nan C W.Physics of inhomogeneous inorganic materials[J].Progress in Materials Science,1993,37(1):1-116
    123.Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problems[J].Proceedings of the Royal Society of London,1957,241(A):376-379
    124.Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Matall,1973,21:571-576
    125.Kingery W D.The thermal conductivity of ceramic dielectrics[M].In:Burke J E eds,Progress in Ceramic Science.New York:Pergamon Press,1962,2:152-235
    126.Kerner E H.The elastic and thermal-elastic properties of composite media[J].Proc.Phys.sot.,1956,B69:808-813
    127.Julfikar Haider,Mahfujur Rahman,Brian Corcoran,et al.Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis[J].Journal of Materials Processing Technology,2005,168(1):36-41
    128.杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998:425-430
    129.范治新.工程传热原理[M].北京:化学工业出版社,1982:90-331
    130.杨世铭.传热学基础(机制热加工类专业适用)[M].北京:高等教育出版社,1991:180-190
    131.孟令杰,孔珑,章名耀.水煤浆管内流动的相似准数及其阻力特性[J].化工学报.1995,46(3):298-303
    132.王凯.非牛顿流体的流动、混合和传热[M].杭州:浙江大学出版社.1988,3:107-145
    133.Wan Zhaohui,Song Tiancheng.Effect of fine particles on the vertical concentration distribution and transport rate of coarse particles.International Journal of Sediment Research.1994,9(1):13-30
    134.Lingjie Meng,Mingyao Zhang,Laihong Shen.Study on the resistance properties of pumping coal-water paste in pipes.Chemical Engineering Science.2000,55:3053-3056
    135.于同芹.煤浆粘度的实验研究.江苏煤炭.1998,(1):12-13
    136.#12
    137.米谷茂著.朱荆璞.残余应力的产生和对策[M].邵会孟译.北京:机械工业出版社,1983:273-277
    138.员冬玲,邓建新,段振兴.Al_2O_3+(W,Ti)C/Al_2O_3+TiC对称型叠层陶瓷的结构设计和力学性能[J],硅酸盐学报,2008,36(8):106-109
    139.曹文斌,葛昌纯,李江涛,等.TiC基对称成分功能梯度材料残余热应力分析[J].粉末冶金工业,2002,12(2):13-15
    140.#12
    141.穆柏春 等.陶瓷材料的强韧化[M],北京:冶金工业出版社,2002,7:25-27
    142.Parakash O.,Sarkar P.,Nicholson P.S.Crack deflection in ceramic\ceramic laminates with strong interfaces[J].Journal of American Ceramic Society,1995,78(4):1125
    143.周建强.陶瓷硬质合金复合刀片的研制及其损坏机理研究:[博士学位论文].济南:山东工业大学,1998:13-55
    144.I.E.Reimanis.A review of issues in the fracture of interfacial ceramics and ceramic composites[J].Material Science and Engineering.1997,237(2):159-167
    145.U.Wiklund,J.Gunnars,S.Hogmark.Influence of residual stresses on fracture and delamination of thin hard coatings[J].Wear,1999,232(2):262-269
    146.Z.Feng,A.Ball.The erosion of four materials using seven erodents-towards an understanding[J].Wear,1999,233-235:674-684
    147.M.Wakuda,Y.Yamauchi,S.Kanzaki.Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials[J].Precision Engineering,2002,26(2):193-198
    148.Byeong-Eun Lee,C.A.J.Fletcher,M.Behnia.Computational study of solid particle erosion for a single tube in cross flow[J].Wear,2000,240(1-2):95-99
    149.R.J.K.Wood.The sand erosion performance of coatings[J].Materials &Design,1999,20(4):179-191
    150.Irina Hussainova,Jakob Kubarsepp,Juri Pirso.Mechanical properties and features of erosion of cermets[J].Wear,2001,250(1-12):818-825
    151.J.Gunnars,A.Alahelisten.Thermal stresses in diamond coatings and their influence on coating wear and failure[J].Surface and Coatings Technology,1996,80(3):303-312
    152.D.B.Marshall,B.R.Lawn,A.G.Evans.Elastic/plastic indentation damage in ceramics:the lateral crack system[J].Journal of American Ceramic Society.1982,65(11):561-566
    153.L.Prchlik,S.Sampath,J.Gutleber,et all.Friction and wear properties of WC-Co and Mo-Mo_2C based functionally graded materials[J].Wear,2001,249(12):1103-1115
    154.赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003:88-130
    155.米谷茂 著.残余应力的产生和对策[M].朱荆璞等译.北京:机械工业出版社,1983:261-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700