铝热还原氧化镁制备金属镁的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及其合金具有密度低、比强度和比刚度高、阻尼减震性和电磁屏蔽效果好等优点,是目前最轻的金属结构材料。开发金属镁冶炼新工艺,实现原镁的清洁生产和节约发展是我国金属镁工业亟待解决的问题。本论文是白云岩清洁生产金属镁的一部分,探讨在真空条件下,以金属铝为还原剂还原氧化镁制备金属镁,同时副产镁铝尖晶石和氧化铝的可行性。
     本论文首先对氧化镁铝热还原制备金属镁过程进行了热力学分析,计算了反应温度和压力对氧化镁铝热还原过程可能发生的化学反应的Gibbs自由能的影响,并据此设计了反应温度和物料配比。在此基础上,研究了物料配比、反应温度、反应时间、成型压力对氧化镁铝热还原过程的影响,用等离子体质谱分析、X射线衍射、扫描电镜、透射电镜等手段对结晶镁和固相还原产物的成分、物相、形貌进行了分析。
     X射线能谱表明:氧化镁铝热还原过程是一个涉及气相-液相-固相的多相化学反应过程,物料配比、反应温度、反应时间和成型压力对氧化镁的还原率和固相还原产物的物相和形貌均产生重要的影响。增加物料配比中金属铝粉的用量,提高反应温度,延长反应时间,增大成型压力,均有助与提高氧化镁的还原率。当氧化镁和金属铝的摩尔比3:2,压片的成型压力200MPa,1200℃反应5h后,氧化镁的还原率达96%。
     氧化镁真空铝热还原过程分两步进行,第一步是氧化镁和金属铝反应生成镁铝尖晶石;第二步镁铝尖晶石和金属铝进一步反应生成α-氧化铝。在反应温度为1200°C的部分样品中,检测到少量的θ-氧化铝,其形成原因有待进一步的研究。
     采用氧化镁真空铝热还原法制得的结晶镁纯度高,满足国标GB/T3499-2003中Mg9990的要求。
Magnesium and its alloys offer advantages of low density, high specific strengthand toughness, shielding against electromagnetic radiation and high dampingcharacteristrics. Magnesium and its alloys are considered the lowest constructionmetals. To meet the resources concerns as well as environmental considerations in thecurrent China, it is important to develop a new method to produce primarymagnesium. Recently, a new process was developed to produce primary magnesiumusing dolomite ores as the raw materials. The magnesia and calcia are firstly seperatedfrom the calcined dolomite. Then the magnesia is used to produce primary magnesiumby thermal reduction method and calcia was used to make light weight calciumcarbonate as a coproduct. This work is focused on the production of magnesium bythermal reduction of magnesia using aluminium as a reducing agent.
     In this dissertation, the thermodynamic analysis for the aluminothermic reductionof magnesia was carried out. The Gibbs free energy change for the possible chemicalreactions was calculated and plotted as a function of temperature and pressure. Basedon the thermodynamic analysis, the reduction temperature and magnesia to Al molarratio for the aluminothermic reduction experiments was designed. The effects of MgOto Al molar ratio, reduction temperature, reduction time and the briquettes preparationpressure on the aluminothermic reduction of magnesia were studied experimentally.The chemical composition, phase constitution and morphology of the condensedmagnesium and the briquettes after thermal reduction were investigated byinductively coupled plasma mass spectroscopy, x-ray diffraction, scanning electronmicroscopy equipped with energy dispersive spectrometry and transmission electronmicroscopy.
     The aluminothermic reduction of magnesia is a heterogeneous chemical reactioninvolving gas species. The magnesia to Al molar ratio, reduction temperature,reduction time as well as briquettes preparation pressure play important roles in thealuminothermic reduction of magnesia. The reduction ratio of magnesia increaseswith the decrease in MgO to Al molar ratio, the increase in reduction temperature, the prolongation of reaction time and the increase in the briquettes preparation pressure.When the magnesia to Al molar ratio is3:2and the briquettes preparation pressure is200MPa, after5hrs aluminothermic reduction at1200°C, the reduction ratio ofmagnesia reaches up to96%.
     The reduction of magnesia by aluminum is probably taken place in two stages.At the first stage, the MgO react with aluminium to form magnesium vapor and spinelMgAl2O4. At the second stage, the spinel MgAl2O4reacts with aluminium to formmagnesium vapor and Al2O3. Trace amount of θ-Al2O3was detected in samplesreacted at1200°C and the mechanism for the formation of θ-Al2O3is still underinvestigation.
     The obtained condensed magnesium is well crystallized and its purity meets therequirement of the China national standard GB/T3499-2003Mg9990.
引文
[1]曹大力,邱竹贤,徐长伟.金属镁制备中存在的问题及对策.矿冶工程,2006,26(3):53-56.
    [2]陈荣,田忆凯.高纯度无水氯化镁生产工艺评述.江苏化工,2001,29(6):30-32.
    [3]陈远望.国外镁金属研究现状.世界有色金属,2003(2):46-49.
    [4]戴永年编著,《有色金属材料的真空冶炼》(第1版).冶金工业出版社,2003:59-61.
    [5]董民杰.我国皮江法镁厂提高经济效益的基本途径.轻金属,1997(7):36-39.
    [6]冯乃祥,彭建平,吴秀铭.提高我国镁冶金技术增强镁工业的竞争力.轻金属,2002(9):51-54.
    [7]冯乃祥.我国镁冶金技术落后,要尽早使我国成为技术先进的产强国.中国镁业发展高层论坛,2004:11-15.
    [8]郭以骏.我国皮江法炼镁技术的改造途径.轻金属,1992(2):23-24.
    [9]韩继龙,孙庆国.金属镁生产工艺进展.盐湖研究,2008,16(4):59-66.
    [10]柯淑琴,我国镁工业的回顾与展望.轻金属,1996(1):37-41.
    [11]科技部高新技术发展及产业公司.国家“十·五”科技攻关项目《冶金开发应用及产业化可行性研究报告》.招标指南,2001:25-36.
    [12]冷举顺,李相增.皮江法炼镁技术发展现状.轻金属,1995(11):34-38.
    [13]李大庆,黄宪章.硅热法炼镁原理及工艺研究.化学世界,1997,38(7):372-374.
    [14]李晓波,殷建华.利用碳还原法生产镁与氧化铝的新工艺研究.世界有色金属,2007(1):53-55.
    [15]李晓波.中国镁业工艺发展趋势.《中国金属通报》,2005:320-344.
    [16]李一夫,戴永年.关于中国镁工业的思考.山西冶金,2006(2):11-14.
    [17]李志华,戴永年,薛怀生.真空碳热还原氧化镁的热力学分析和实验验证.有色金属,2005,57(1):56-59.
    [18]刘兵.镁行业的发展趋势.有色金属工业,2002(9):10-12.
    [19]刘闯,江丽炜.镁合金在汽车上的应用现状和前景分析.黑龙江科技信息,2007(3):2-3.
    [20]刘红湘,戴永年,马文会等.中国镁工业研究方向探讨.轻金属,2007(1):46-49.
    [21]刘金平,杨雪春,谢水生等.皮江法炼镁技术的缺陷及改进途径.冶金能源,2005,24(5):21-23.
    [22]刘金平.皮江法炼镁技术的缺陷与改进途径.冶金能源,2005(5):31-23.
    [23]刘绍禄.我国镁工业的发展趋势.世界有色金属,1996(4):11-16.
    [24]刘云来,罗黎.有色金属工业概览·镁,国家有色金属工业局行业管理司,1999(3):44-46.
    [25]娄光伟.硅热法炼镁的节能和清洁能源解决方案.有色金属,2005(3):16-19.
    [26]罗黎.国内外镁生产状况分析及对我国镁工业生产的看法.有色冶炼,1998(10):109-112.
    [27]马鸿文,曹瑛.中国金属镁工业的环境效应和可持续发展,现代地质.2008(10):829-837.
    [28]孟奇.电解镁生产中的氯气处理.轻金属,1998(6):38-40.
    [29]裴红彬,徐宝强,李一夫等.真空碳热还原提取金属镁过程中菱镁矿热分解行为的实验研究.轻金属,2010(1):46-51.
    [30]任虎奎,任建勋.我国金属镁冶炼技术现状与发展趋势.陕西炭,2011(1):36-39.
    [31]沙录昌,蔡安洪.氧化镁直接电解制取金属镁的槽型和工艺研究.轻金属,1994(8):41-45.
    [32]屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保,2003(3):35-38.
    [33]王洪福,王鹏.提高皮江法炼镁还原反应速度的机理与生产.中国镁业发展高层论坛,2004(6):55-58.
    [34]王兆敏.中国菱镁矿现状与发展趋势.中国非金属矿工业导刊,2006(54):17-21.
    [35]吴秀铭,中国镁工业五十年.《世界有色金属》,1999(246):165-172.
    [36]夏德宏.金属镁皮江法还原工艺中的热过程模拟.热科学与技术,2005(9):257-261.
    [37]熊呈辉,周天瑞,徐河,谢水生.我国硅热法炼镁现状及发展趋势.有色矿冶,2005(4):25-28.
    [38]熊呈辉.我国硅热法炼镁现状及发展趋势.轻金属,2005(11):48-50.
    [39]徐劲之,万方,徐日瑶.影响硅热法炼镁过程效率及产品质量的因素分析试验.轻金属,95(6):35-41.
    [40]徐日瑶,金属镁生产工艺学,中南大学出版社,2002:1-3.
    [41]许并社.镁冶炼与镁合金熔炼工艺,化学工业出版社.2005(9):123-129.
    [42]阎守义,我国皮江法炼镁的现状与分析.轻金属,2005(6):37-40.
    [43]杨重愚.轻金属冶金学.冶金工业出版社.2002:223-224.
    [44]姚文贵,马鸿文,姜晓谦.白云岩酸解法制备轻质氧化镁和碳酸钙实验研究.现代地质,2011,25(1):151-157.
    [45]殷建华.世界镁工业的发展与前景.金属,2005(7):58-67.
    [46]尤文格.白云石碳化法生产优质碳酸镁.福建化工,2000(4):43-44.
    [47]有色金属冶金编辑委员会编,《中国冶金百科全书》第1版.冶金工业出版社.1999:252-237.
    [48]张永健.镁电解生产工艺学,中南大学出版社.2006:375-377.
    [49]张治民.镁及镁合金产业的现状及发展趋势.太原科技,2005(1):8-10.
    [50]赵武壮.限制皮江法金属镁生产发展将是国家基本政策取向.世界有色金属,2007(5):10-11.
    [51]中国有色金属工业协会镁业分会,2003年镁工业发展报告,2003(12):1-5.
    [52]中国有色金属工业协会镁业分会,2004年镁工业发展分析告,2004(12):29-30.
    [53]中国有色金属工业协会镁业分会,2007年镁工业发展报告,2008(7):25-28.
    [54]中国有色金属工业协会镁业分会第八届年会报告,2004:45-46.
    [55]钟皓,刘培英,周铁涛.镁合金在航空航天中的应用及前景.航空工程与维修,2002(4):41-42.
    [56]周涛,2004年镁市场评述及2005年展望,中国金属通报.2005(9):14-22.
    [57]周涛.2005年镁市场评述及2006年展望,中国金属通报.2006(9):8-12.
    [58]朱祖武,曹黎华.国内皮江法炼镁技术的缺陷及改进途径.南昌高专学报,2007,22(2):92-94.
    [59]左永斌.国外铝冶炼现状及时展.有色矿冶,1991(5):35-38.
    [60]Aghion E, Bronfin B. Magnesium alloys development towards the21st century.Proceedings of the1st Nagaoka International Workshop on MagnesiumPlatform.Science and Technology2000, Nagaoka, Japan, Jul27-Jul292000.Switzerland: Trans Tech Publications Ltd,2000:19-28.
    [61]Aghion E,Golub G. Production Technologies of Magnesium. Berlin: SpringerBerlin Heidelberg,2006:29-62.
    [62]Ando T,Shiohara Y. Metastable alumina structures in meltextractedalumina–25wt.%zirconia and alumina–42wt.%zirconia ceramics. J. Am. Ceram.Soc,1991(74):410-417.
    [63]Benedyk, Joseph C. Magnesium advances in automotive applications. FellomPublishing Company, South San Francisco, United States. May/June2005:36-38.
    [64]Cathro K J, Deutscher R L, Sharma R A. Electrowinning magnesium from itsoxide in amelt containing neodymium chloride. Journal of appliedelectrochemistry,1997,27(4):404-413.
    [65]Duan Yali, Zhang Zhimin, Xue Yong. The Application of Magnesium Alloy andIts Plastic Forming Technology. Hunan Nonferrous Metals,2007(1):38-41.
    [66]Fischer G. R, Manfredo L. J, McNally R.N. The eutectic and liquidus in theAl2O3/ZrO2system. J. Mater. Sci,1981(16):3447-3451.
    [67]Floz D C,Clark D.E. Microwave synthesis of alumina powder. The AmericanCeramic Society Bulletin,2000(3):63-67.
    [68]Guo Y, Zheng M, Chen J. Chemical synthesis, characterization and thermalanalysis of polyanilin e/copper composite powder. Journal of CompositeMaterials,2008,42(14):1431-1438.
    [69]Jindan Du, Weijian Han, Yinghong Peng. Life cycle greenhouse gases, energyand cost assessment of automobiles using magnesium from Chinese Pidgeonprocess. Journal of Cleaner Production18(2010):112-119.
    [70]Kroeze C, Vlasblom J. The power sector in China and India: greenhouse gasemissions reduction potential and scenarios for1990–2020. Energy Policy2004(32):55-76.
    [71]Lee J. H, Yoshikawa A, Durbin S. D. Microstructure of Al2O3/ZrO2eutectic fibersgrown by the micro-pulling-down method. J. Cryst. Growth,2001(222):791-796.
    [72]Lee, J. H, Yoshikawa. A, Kaiden. H. Microstructure of Y2O3doped Al2O3/ZrO2eutectic fibers by the micro-pulling-down method. J. Cryst. Growth,2001(231):179-185.
    [73]Long L, Okumura K, Sano M. Nonisothermal gravimetric investigation onkinetics of reduction of magensia by aluminium. Metall Trans (1999):1003-1008.
    [74]Mayer A. Plant for production of magnesium by ferrosilicon process. New YorkMeeting: reduction and refining of nonferrous metals. Trans Am Inst MiningMater Eng1944(159):363-76.
    [75]Mimani T, Patil KC. Solution combustion synthesis of oxides and theircomposites, Mater Phys Mech,2001(4):134-137.
    [76]Mordike BL, Ebert T. Magnesium properties application potential. Mater Sci EngA,2001(302):37-45.
    [77]Mordike BL, Ebert T. Magnesium: properties-application-potential. MaterialsScience Engineering A,2001,302(1):37-45.
    [78]Pidgeon LM, AlexanderWA. Thermal production of magnesium—pilot plantstudies produced by electrolytic and Pidgeon processes. Wanendale, PA:Magnesium production and fabrication of light metals and metal matrixcomposites,1992:656-660.
    [79]Ramakrishnan S, Koltun P.Global warming impact of the magnesium produced inChina using the Pidgeon process. Resources, Conservation and Recycling2004(42):49-64.
    [80]Robert.E. Australian Magnesium projects-update. Light metal Age,2000:56-60.
    [81]Schmid F,Viechnicki D. Oriented eutectic microstructuresin the systemAl2O3/ZrO2. J. Mater. Sci,1970(5):470-473.
    [82]Sharma R A, Method for producing magnesium metal from magnesium oxide.United states Patent,1994:52-56.
    [83]Singh N B. Preparation of metal oxides and chemistry of oxides ions in nitrate.Prog Cryst Growth Charact Mater,2002,44(3):183-188.
    [84]Stanley RW, Berube M, Celik C. The Magnola process for magnesiumproduction. Proceedings of the International Magnesium Association54:Magnesium Trends, Toronto Canada,1997(p)58-65.
    [85]Toguri JM, Pidgeon LM. High-temperature studies of metallurgical processes.The thermal reduction of magnesium oxide with silicon. Can J Chem1961(39):540-547.
    [86]Waku Y, Nakagawa N, Wakamoto T. A ductile ceramic eutectic composite withhigh strength at1873K. Nature,1997(389):49-52.
    [87]Waku Y, Nakagawa N,Ohtsubo H. High-temperature strength and stability of aunidirectionally solidified Al2O3/YAG eutectic composite. J. Mater. Sci,1998(33):1217-1225.
    [88]Winand R. Production of Magnesium by Vacuum Carbothermic Reduction ofCalcined Dolomite. Trans Instn Min Metall (Sec-tion C),1990:99-100.
    [89]Yoon K H, Cho Y S, Kang D H. Review molten salt synthesis of lead-basedrelaxors. J Mater Sci,1998(33):2977-2984.
    [90]Yun g K C, Liem H. Enhanced thermal conductivity of boron nitride epoxym-atrix composite through multi modal particle size mixing. Journal of Appliedpolymer Science,2007,106(6):3587-3591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700