电化学改性纳米石墨制备及其聚合物基纳米复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要基于电化学氧化法制备改性纳米石墨及其聚合物基纳米复合材料,电化学氧化法是一种具有操作简便、产品后处理工序简单、能耗低以及环保性好的新型制备方法。这种电化学氧化作用能够在不同的电解条件下形成多种类型的功能化修饰纳米粒子,包括氧化程度的可控变化,而且各种不同氧化程度的改性微粒都能均匀稳定分散在水性介质中。一方面,高氧化程度的电化学改性纳米石墨粒子(EM-GNPs)能够用化学还原试剂处理,部分修复被破坏的石墨晶体结构,进而恢复部分导电性,导电率从还原前的(1.38±0.05)×10~(-6) S/cm提升至还原后的(1.02±0.05)×10~(-3) S/cm。而且还原后,石墨晶体002面的XRD特征衍射峰重新呈现出来。另一方面,EM-GNPs极性表面的亲水性还能通过有机阳离子表面活性剂进行改性处理,使其转变成亲油性。
     轻度电化学氧化改性的纳米石墨微片(EM-GNs)是在电解过程中产生的另一种纳米结构物质,具有极高的径厚比和良好的水分散性。它能够均匀分散在水溶性聚合物如聚乙烯醇(PVA)基体中,形成剥离型纳米复合膜。这种纳米复合膜较纯PVA在电、热和机械性能上都得到了改善。导电率从聚乙烯醇的绝缘体范围转变成复合材料的半导体范围,而导电渗滤阀值仅为6 wt.%左右。5 wt.% EM-GNs填充PVA复合材料的耐高温降解性提高了近45℃,玻璃化转变温度提高了近14℃。此外,机械拉伸强度和韧性也得到了协同增强。
     适度电化学氧化处理EM-GNPs能保留石墨晶体结构,同时引入含氧极性官能团和微量类氧化石墨晶体结构,从而EM-GNPs兼具了石墨极佳的面内性质和类氧化石墨特殊的表面性质,这将有利于制备出高性能环氧/EM-GNPs纳米复合材料。这种低氧化程度的EM-GNPs能够通过超声波辐射作用剥离分散到环氧基体中,平均粒子相对于分散前增大了1倍左右,这可能是因为组成EM-GNPs的微片层之间发生了移动,而又没有完全分离开。EM-GNPs在环氧基体中的这种特殊结构,决定了它能协同增强和增韧环氧基体。5 wt.% EM-GNPs填充环氧纳米复合材料的拉伸强度和断裂韧性分别提高了17 MPa和6 %。同时,耐高温降解性也有19℃的提升。
In this thesis, the electrochemical oxidation method was mainly employed to produce electrochemically modified nano-graphite which was then compounded with polymer matrix to synthesize polymer based nanocomposites. This electrochemical oxidation method is facile, environmentally friendly, together with simple post-treatment of crude products and low energy cost. The electrochemical oxidation reaction will induce the formation of diverse functionalized nanoparticles, e.g., with variable extents of oxidation, under different electrolysis conditions. In addition, all of the electrochemically modified nano-graphite was well-dispersed in water medium. On one hand, the electrochemically modified nanoparticles (EM-GNPs) with high extent of oxidation were treated by a chemical reducer such as hydrazine and then reduced back to a certain amount of the starting graphitic crystalline structure, resulting in the partial restoration of the electrical conductivity, from (1.38±0.05)×10~(-6) (before reduction) to (1.02±0.05)×10~(-3) S/cm (after reduction). Moreover, the characteristic X-ray diffraction peak of the 002 plane in graphitic crystal reoccurred after the reduction treatment of EM-GNPs. On the other hand, the hydrophilicity of EM-GNPs with polar surfaces was changed to lipophilicity by organic modification with a cationic surfactant such as dodecylamine.
     The electrochemically modified graphite nanosheet (EM-GN) with low oxidation extent was another type of nano-structure which possessed high aspect ratio and could be well-dispersed in water medium. EM-GNs were homogeneously and stably dispersed in a water-soluble macromolecule matrix such as poly(vinyl alcohol) (PVA) and formed an exfoliation type nanocomposite film. The properties of EM-GNs filled PVA nanocomposite films such as electrical, thermal, and mechanical properties were improved. The electrical conductivity was changed from an insulator to a semiconductor with a percolation threshold only about 6 wt.%; After compounding 5 wt.% loading of EM-GNs with PVA, the high temperature degradation resistance was improved by 45℃and glass transition temperature enhanced by 14℃, along with the improvement of the mechanical tensile properties including tensile strength and elongation toughness.
     Properly treating EM-GNPs by using electrochemical oxidation method retained graphitic crystal structure. Meanwhile, a certain amount of oxygen containing functional groups and a graphite oxide-like structure were generated in the EM-GNPs, leading to the excellent graphitic in-plane properties combined with the peculiar graphite oxide-like surface properties. This special structure of EM-GNPs was favorable to be used as a filler to produce high-performance epoxy nanocomposites. The EM-GNPs with low oxidation extent were well-dispersed into epoxy matrix under intense ultrasonic irradiation. The average diameter of the particles dispersed in the matrix doubled compared with the starting EM-GNPs, which was possibly due to the sliding effects between the ultra-thin sheets consisting of EM-GNPs, but without complete separation from each other. Due to the special structure of EM-GNPs dispersed in epoxy matrix, the synergistic reinforcing and toughening effects of GNPs on the epoxy were obtained. The tensile strength and toughness of the 5 wt.% EM-GNPs filled epoxy nanocomposites were improved by about 17 MPa and 6 %, respectively, along with ca. 19℃improvement of the high temperature degradation resistance.
引文
[1] Bunnell Sr. L. R., Enhancement of mechanical properties of polymers by thin flake addition and apparatus for producing such thin flakes [P]. US Patent 5,019,446, May 28, 1991.
    [2] Bunnell Sr. L. R., Enhancement of the mechanical properties by graphite flake addition [P]. US Patent4,987,175, Jan. 22, 1991.
    [3] Bunnell Sr. L. R., Apparatus for producing thin flakes [P]. US Patent 5,065,948, Nov. 19, 1991.
    [4] Zaleski P. L., Derwin D. J., Girkant R. J., Method for expanding lamellar forms of graphite and resultant product [P]. US Patent 6,287,694 B1, Sep. 11, 2001.
    [5] Mazurkiewicz M., Graphite platelet nanostructures [P]. US Patent US 2002/0054995, May 9, 2002.
    [6] Shioyama H., Cleavage of graphite to grapheme [J]. J. Mater. Sci. Lett., 2001, 20(6): 499-500.
    [7] Jang B. Z., Huang W. C., Nano-scaled graphene plates [P]. US Patent 7,071,258, Jul. 4, 2006.
    [8] Jang B. Z., Process for nano-scaled grapheme plates [P]. US Patent 11/442,903, Jun. 20, 2006.
    [9] Hummers W. S., Preparation of graphitic acid [P]. US Patent 2,798,878, Jul. 9, 1957.
    [10] Hummers W. S., Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339.
    [11] Horiuchi S., Gotou T., Fujiwara M., Asaka T., Yokosawa T., Matsui Y., Single graphene sheet detected in a carbon nanofilm [J]. Appl. Phys. Lett., 2004, 84: 2403-2405.
    [12] Liu P., Gong K., Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction [J]. Carbon, 1999, 37(4): 706-707.
    [13] Dekany I., Kruger-Grasser R., Weiaa A., Selective liquid sorption properties of hydrophobized graphite oxide nanostructures [J]. Colloid Polym. Sci., 1998, 276(7): 570-576.
    [14] Roy H. V., Kallinger C., Marsen B., Sattler K., Manipulation of graphitic sheets using a tunneling microscope [J]. J. Appl. Phys., 1998, 83: 4695-4699.
    [15] Lu X. K., Yu M. F., Huang H., Ruoff R. S., Tailoring Graphite with the Goal of Achieving Single Sheets [J]. Nanotechnology, 1999, 10(3): 269-272.
    [16] Land T. A., Michely T., Behm R. J., Hemminger J. C., Comsa G., STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition [J]. Surf. Sci., 1992, 264(3): 261-270.
    [17] Nagashima A., Nuka K., Itoh H., Ichinokawa T., Oshima C., Otani S., Electronic states of monolayer graphite formed on TiC (111) surface [J]. Surf. Sci., 1993, 291(1-2): 93-98.
    [18] van Bommel A. J., Crombeen J. E., van Tooren A., LEED and Auger electron observations of the SiC (0001) surface [J]. Surf. Sci., 1975, 48(2) : 463-472.
    [19] Forbeaux I., Themlin J-M., Debever J. M., Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure [J]. Phys. Rev. B, 1998, 58(24): 16396-16406.
    [20] Oshima C., Nagashima A., Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces [J]. J. phys-condens. Mat., 1997, 9(1): 1.
    [21] Wu Y., Chong C., Two-dimensional nano-sized structures and apparatus and methods for their preparation [P]. US Patent 2003/0129305, July 10, 2003.
    [22] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films [J]. Science, 2004, 306: 666-669.
    [23] Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Two-dimensional atomic crystals [J]. Proc. Natl Acad. Sci. USA, 2005, 102(30): 10451-10453.
    [24] Berger C., Song Z., Li T., Li X., Ogbazghi A. Y., Feng R., Dai Z., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J]. J. Phys. Chem. B, 2004, 108(52): 19912-19916.
    [25] Udy J. D., Methods to continuous, monoatomic thick structures [P]. US Patent 2006/0269740, Nov. 30, 2006.
    [26] Chen G. H., Weng W. G., Wu D. J., Wu C. L., Lu J. R., Wang P. P., Chen X. F., Preparation and Characterization of Graphite Nanosheets from Ultrasonic Powdering Technique [J]. Carbon, 2004, 42(4), 753-759.
    [27] Li X., Wang X., Zhang L., Lee S., Dai H., Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science, 2008, 319(5867): 1229-1232.
    [28] Jang B. Z., Wong S. C., Bai Y., Process for producing nano-scaled graphene plates [P]. US Patent 2005/0271574, Dec. 8, 2005.
    [29] Petrik V. I., Mass production of carbon nanostructures [P]. US Patent 2006/0121279, June 8, 2006.
    [30] Drzal L. T., Fukushima H., Continuous process for producing exfoliated nano-graphite platelets [P]. US Patent 2006/0241237 A1, Oct. 26, 2006.
    [31] Li J. L., Kudin K. N., McAllister M. J., Prud’homme R. K., Aksay I. A., Car R., Oxygen-driven unzipping of graphitic materials [J]. Phys. Rev. Lett., 2006, 96(17): 176101-176104.
    [32] Schniepp H. C., Li J. L., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud'homme R. K., Car R., Saville D. A., Aksay I. A., Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B, 2006, 110(17): 8535-8539.
    [33] McAllister M. J., Li J. L., Adamson D. H., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Herrera-Alonso M., Milius D. L., Car R., Prud'homme R. K., Aksay I. A., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite [J]. Chem. Mater., 2007, 19(18): 4396-4404.
    [34] Mack J. J., Viculis L. M., Kaner R. B., Chemical manufacture of nanostructured materials [P]. US Patent 2003/0224168 A1, Dec. 4, 2003.
    [35] Viculis L. M., Mack J. J., Kaner R. B., A chemical route to carbon nanoscrolls [J]. Science, 2003, 299(5611): 1361.
    [36] Mack J. J., Viculis L. M., Ali A., Luoh R., Yang G., Hahn H. T., Ko F. K., Kaner R. B., Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers [J]. Adv. Mater., (2005) 17(1): 77-80.
    [37] Stankovich S., Pinera R. D., Chena X., Wub N., Nguyen S. B. T., Ruoff R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate) [J]. J. Mater. Chem., 2006, 16: 155-158.
    [38] Someya M., Fujii T., Hirata M., Horiuchi S., Process for producing aligned carbon nanotube films [P]. US Patent 2003/0147801 A1, Aug. 7, 2003.
    [39] Hirata M., Gotou T., Ohba M., Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits [J]. Carbon, 2005, 43(3): 503-510.
    [40] Hirata M., Gotou T., Horiuchi S., Fujiwara M., Ohba M., Thin-film particles of graphite oxide 1::: High-yield synthesis and flexibility of the particles [J]. Carbon, 2004, 42(14): 2929-2937.
    [41] Stankovich S., Piner R. D., Nguyen S.T., Ruoff R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44(15): 3342-3347.
    [42] Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G. G., Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101-105.
    [43] Geim A. K., Novoselov K. S., The rise of grapheme [J]. Nat. Mater., 2007, 6: 183-191.
    [44] Chen G. H., Wu C. L., Weng W. G., Wu D. J., Yan W. L., Preparation of Polystyrene/graphite Nanosheet Composite [J]. Polymer, 2003, 44(6): 1781-1784.
    [45] Chen G. H., Wu D. J., Weng W. G., Wu C. L., Exfoliation of Graphite Flake and Its Nanocomposites [J]. Carbon, 2003, 41(3): 619-621.
    [46] Arimitsu U., Naoki H., Makoto K., Shiro K. Polymer-Clay Nanocomposites [J]. Adv. Polym. Sci., 2005, 179: 1-24.
    [47] Chen G. H., Weng W. G., Wu D. J., Wu C. L., PMMA/graphite Nanosheets Composite and ItsConducting Properties [J]. Eur. Polym. J., 2003, 39(12), 2329-2335.
    [48] Chen G. H., Wu D. J., Weng W. G., Yan W. L., Preparation of Polymer Graphite Conducting Nanocomposite by Intercalation Polymerization [J]. J. Appl. Polym. Sci., 2001, 82(10): 2506-2513.
    [49] Alexandre M., Dubois P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J]. Mater. Sci. Eng., 2000, 28(1-2): 1- 63.
    [50] Chen G. H., Wu D. J., Weng W. G., He B., Yan W. I., Preparation of Polystyrene-graphite Conducting Nanocomposite via Intercalation Polymerization [J]. Polym. Int., 2001, 50(9), 980-985.
    [51] "Nanocomposites New Low-Cost, High-Strength Materials for Automotive Parts", National Insititutes of Technology, ATP Project, 97-02-0047, 1997.
    [52] Mayer A. B. R., Formation of noble metal nanoparticles within a polymeric matrix: nanoparticle features and overall morphologies [J]. Mater. Sci. Eng., C, 1998, 6(2-3): 155-166.
    [53] Caseri W., Nanocomposites of polymers and metals or semiconductors: historical background and optical properties [J]. Macromol. Rapid Commun., 2000, 21(11): 705-722.
    [54] Moser W. R., Advanced Catalysts and Nanostructured Materials: Modern Synthetic Methods, Chapman & Hall, New York [M], 1996.
    [55] Ashoori R. C., Electrons in artificial atoms [J]. Nature, 1996, 379: 413-419.
    [56] Carotenuto G., Polymer-based nanocomposites: New potentialities for polymers [J]. Polym. News, 2000, 25(6): 191-193.
    [57] Carotenuto G., Preparation of ethyl-cinnamate by microwave irradiation [J]. Polym. News, 2000, 25: 260-262.
    [58] Carotenuto G., Nanocomposites [J]. Polym. News, 2000, 25(11): 377-382.
    [59] Carotenuto G., Polym. News, Polymer-Based Nanocomposites [J]. 2001, 26: 48-50.
    [60] Carotenuto G., The uses of metal microclusters in the modification of plastics [J]. Polym. News, 2002, 26(5): 155-163.
    [61] Carotenuto G., Nanostructures in Polymer Matrices: A Morphological Classification [J]. Polym. News, 2003, 28(7): 213-215.
    [62] Carotenuto G., Nicolais L., Metal/polymer nanocomposites [J]. Polym. News, 2003, 28(6): 174-182.
    [63] Carotenuto G., Column: Nanostructured Materials [J]. Polym. News, 2005, 26: 234-237.
    [64] Rosen A., A periodic table in three dimensions: A sightseeing tour in the nanometer world [J]. Adv. Quantum Chem., 1998, 30: 235-272.
    [65] Klabunde K. J., ed., Nanoscale Materials in Chemistry [M], Wiley-Interscience, New York, 2001.
    [66] M. Wautelet, Size effect on the melting (or disordering) temperature of small particles [J]. Solid State Commun., 1990, 74(11), 1237-1239.
    [67] Buffat Ph., Borel J. P., Size effect on the melting temperature of gold particles [J]. Phys. Rev. A, 1976, 13(6): 2287-2298.
    [68] Jiang Q., Zhang Z., Hsu D. T., Tong H. Y., Iskandar M., Two limits of melting temperatures of nanocrystals [J]. J. Mater. Sci., 1999, 34(23): 5919-5922.
    [69] Allen G. L., Bayles R. A., Gile W. W., Jesser W. A., Small particle melting of pure metals [J]. Thin Solid Films, 1986, 144(2): 297-308.
    [70] Wronski C. R. M., The size dependence of the melting point of small particles of tin [J]. Br. J. Appl. Phys., 1967, 18(12): 1731.
    [71] Song Q., Ding Y., Wang Z. L., Zhang Z. J., Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies [J]. J. Phys. Chem. B, 2006, 110(50): 25547-25550.
    [72] Zhang Y., Liao S., Fan Y., Xu J., Wang F., Chemical reactivities of magnesium nanopowders [J]. J.Nanoparticle Res., 2001, 3(1): 23-26.
    [73] Rieke R. D., Bales S. E., Activated metals. IV. Preparation and reactions of highly reactive magnesium metal [J]. J. Am. Chem. Soc., 1974, 96(6): 1775-1781.
    [74] Kreibig U., Vollmer M., in Toennies J. P., ed., Optical Properties of Metal Cluster [M], Springer-Verlag, Berlin, 1993.
    [75] Miller J. S., Drillon M., eds., Magnetism: Molecules to Materials III, Nanosized Magnetic Materials [M], Wiley-VCH, Weinheim, Germany, 2002.
    [76] Watkins J. J., McCarthy T. J., Polymer/metal nanocomposite synthesis in supercritical CO2 [J]. Chem. Mater., 1995, 7(11): 1991-1994.
    [77] Bronstein M., Mirzoeva E. Sh., Seregina M. V., Valetsky P. M., Solodovnikov S. P., Register R. A., Nanodispersed Metal Particles in Polymeric Matrices [C]. ACS Symp. Ser., 1996, 622: 102-115.
    [78] Zhu Y., Qian Y., Li X., Zhang M.,γ-Radiation synthesis and characterization of polyacrylamide–silver nanocomposites [J]. Chem. Commun., 1997, (12): 1081-1802.
    [79] Zheng M., Gu M., Jin Y., Jin G., Optical properties of silver-dispersed PVP thin film [J]. Mater. Res. Bull., 2001, 36(5-6): 853-859.
    [80] Wizel S., Margel S., Gedanken A., The preparation of a polystyrene-iron composite by using ultrasound radiation [J]. Polym. Int., 2000, 49(5): 445-448.
    [81] Kruus P., O’Neill M., Robertson D., Ultrasonic initiation of polymerization [J]. Ultrasonics, 1990, 28(5): 304-309.
    [82] Gonsalves K. E., Carlson G., Chen X., Gayen S. K., Perez R., Jose-Yacaman M., Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions [J]. Nanostruct. Mater., 1996, 7(3): 293-303.
    [83] Carotenuto G., Nicolais L., Size-controlled synthesis of thiol-derivatized gold clusters [J]. J. Mater. Chem., 2003, 13: 1038-1041.
    [84] Sugimoto T., ed., Fine Particles Synthesis, Characterization, and Mechanism of Growth [M], Marcel Dekker, Inc., New York, 2000, p.460-496.
    [85] Dirix Y., Bastiaansen C., Caseri W., Smith P., Preparation, structure and properties of uniaxially oriented polyethylene-silver nanocomposites [J]. J. Mater. Sci., 1999, 34(16): 3859-3866.
    [86] Dirix Y., Bastiaansen C., Caseri W., Smith P., Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters [J]. Adv. Mater., 1999, 11(3): 223-227.
    [87] Whetten R. L., Khoury J. T., Alvarez M. M., Murty S., Vezmar I., Wang Z. L., P. W., Stephens Cleveland C. L., Luedtke W. D., Landman U., Nanocrystal gold molecules [J]. Adv. Mater., 1996, 8(5): 428-433.
    [88] Whetten R. L., Shafigullin M. N., Koury J. T., Scaaff T. G., Vezmar I., Alvarez M. M., Wilkinson A., Crystal structures of molecular gold nanocrystal arrays [J]. Acc. Chem. Res., 1999, 32(5): 397-406.
    [89] Luedtke W. D., Landman U., Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies [J]. J. Phys. Chem., 1996, 100(32): 13324-13329.
    [90] Ohara P. C., Leff D. V., Heath J. R., Gelbart W. M., Crystallization of opals from polydisperse nanoparticles [J]. Phys. Rev. Lett., 1995, 75(19): 3466-3469.
    [91] Whetten R. L., Shafigullin M. N., Khoury J. T., Schaaff T. G., Vezmar I., Alvarez M. M., Wilkinson A., Crystal structures of molecular gold nanocrystal arrays [J]. Acc. Chem. Res., 1999, 32(5): 397-406.
    [92] Wang Z. L., Harfenist S. A., Whetten R. L., Bentley J., Evans N. D., Bundling and interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices [J]. J. Phys. Chem., B, 1998, 102(17): 3068-3072.
    [93] Alvarez M. M., Khoury J. T., Scheeff T. G., Shafigullin M., Vezmar I., Whetten R. L., Critical sizes in the growth of Au clusters [J]. Chem. Phys. Lett., 1997, 266(1-2): 91-98.
    [94] Badia A., Gao W., Singh S., Demers L., Cuccia L., Reven L., Structure and chain dynamics of alkanethiol-capped gold colloids [J]. Langmuir, 1996, 12(5): 1262-1269.
    [95] Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., Kagan C. R., Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM J. Res. Dev., 2001, 45(1): 47-56.
    [96] Katabi G., Koltypin Y., Cao X., Gedanken A., Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives [J]. J. Cryst. Growth, 1996, 166(1-4): 760-762.
    [97] Wang Z. L., Harfenist S. A., Vezmar I., Whetten R. L., Bentley J., Evans N. D., Alexander K. B., Superlattices of self-assembled tetrahedral Ag nanocrystals [J]. Adv. Mater., 1998, 10(10): 808-812.
    [98] Carotenuto G., Pepe G. P., Nicolais L., Preparation and characterization of nano-sized Ag/PVP composites for optical applications [J]. Eur. Phys. J. B, 2000, 16(1): 11-17.
    [99] Carotenuto G., Pepe G. P., Parlato L., Nicolais L., Study of Nano-Sized Metallic Clusters Dispersed into a Polymeric Matrix [J]. Mater. Eng., 2000, 11: 261-264.
    [100] Carotenuto G., Synthesis and characterization of poly (N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size [J]. Appl. Organomet. Chem., 2001, 15(5): 344-351.
    [101] Fischer H., Polymer nanocomposites: from fundamental research to specific applications [J]. Mater. Sci. Eng. C, 2003, 23: 763-772.
    [102] LeBaron P. C., Wang Z., Pinnavaia T. J., Polymer–layered silicate nanocomposites: an overview [J]. Appl. Clay Sci., 1999, 15: 11-29.
    [103] Vaia R. A., Wagner H. D., Framework for nanocomposites [J]. Mater. Today, 2004, 7: 32-37.
    [104] Alexandre M., Dubois P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J]. Mater. Sci. Eng. R, 2000, 28: 1-63.
    [105] Giannelis E. P., Polymer layered silicate nanocomposites [J]. Adv. Mater., 1996, 8: 29-35.
    [106] Ginzburg V. V., Singh C., Balazs A. C., Theoretical phase diagrams of polymer/clay composites: the role of grafted organic modifiers [J]. Macromolecules, 2000, 33: 1089-1099.
    [107] Osman M. A., Mittal V., Lusti H. R., The aspect ratio and gas permeation in polymer–layered silicate nanocomposites [J]. Macromol. Rapid Commun., 2004, 25: 1145-1149.
    [108] Balazs A. C., Singh C., Zhulina E., Lyatskaya Y., Modeling the phase behavior of polymer/clay nanocomposites [J]. Acc. Chem. Res., 1999, 32: 651-657.
    [109] Lincoln D. M., Vaia R. A., Wang Z-G., Hsiao B. S., Secondary structure and elevated temperature crystallite morphology of nylon 6/layered silicate nanocomposites [J]. Polymer, 2001, 42: 1621-1631.
    [110] Vaia R. A., Giannelis EP., Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates [J]. Polymer, 2001, 42: 1281-1285.
    [111] Fornes T. D., Yoon P. J., Keskkula H., Paul D. R., Nylon 6 nanocomposites: the effect of matrix molecular weight [J]. Polymer, 2001, 42: 9929-9940.
    [112] Miranda-Trevino J. C., Coles C. A., Kaolinite properties, structure and in?uence of metal retention on Ph [J]. Appl. Clay Sci., 2003, 23: 133-139.
    [113] Beyer G., Nanocomposites: a new class of ?ame retardants for polymers [J]. Plast. Addit. Compound, 2002, 4(10): 22-27.
    [114] McNally T., Murphy W. R., Lew C. Y., Turner R. J., Brennan G. P., Polyamide-12 layered silicate nanocomposites by melt compounding [J]. Polymer, 2003, 44: 2761-2772.
    [115] Solomon M. J., Almusallam A. S., Seefeldt K. F., Somwangthanaroj A., Varadan P., Rheology of polypropylene/clay hybrid materials [J]. Macromolecules, 2001, 34: 1864-1872.
    [116] Dixon J. B., Roles of clays in soils [J]. Appl. Clay Sci., 1991, 5: 489-503.
    [117] Manias E., Touny A., Wu L., Strawhecker K., Lu B., Chung T. C., Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties [J]. Chem. Mater., 2001, 13: 3516-3523.
    [118] Chin I-J., Thurn-Albrecht T., Kim H-C., Russell T. P., Wang J., On exfoliation of montmorillonite in epoxy [J]. Polymer, 2001, 42: 5947-5952.
    [119] Cho J. W., Paul D. R., Nylon 6 nanocomposites by melt compounding [J]. Polymer, 2001, 42: 1083-1094.
    [120] Ishida H., Campbell S., Blackwell J., General approach to nanocomposite preparation [J]. Chem. Mater., 2000, 12: 1260-1267.
    [121] Zanetti M., Lomakin S., Camino G., Polymer layered silicate nanocomposites [J]. Macromol. Mater. Eng., 2000, 279: 1-9.
    [122] Kornmann X., Lindberg H., Berglund L. A., Synthesis of epoxy-clay nanocomposites: in?uence of the nature of the clay on structure [J]. Polymer, 2001, 42: 1303-1310.
    [123] Xie W., Gao Z., Liu K., Pan W-P., Vaia R., Hunter D., et al. Thermal characterization of organically modified montmorillonite [J]. Thermochim. Acta, 2001, 367/368: 339-350.
    [124] Kim C-M., Lee D-H., Hoffmann B., Kressler J., Stoppelmann G., In?uence of nanofillers on the deformation process in layered silicate/polyamide 12 nanocomposites [J]. Polymer, 2001, 42: 1095-1100.
    [125] Huang J-C., Zhu Z-K., Yin J., Qian X-F., Sun Y-Y., Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology, solvent resistance properties and thermal properties [J]. Polymer, 2001, 42: 873-877.
    [126] Zerda A. S., Lesser A. J., Intercalated clay nanocomposites: morphology, mechanics and fracture behavior [J]. J. Polym. Sci. Polym. Phys., 2001, 39: 1137-1146.
    [127] Vaia R. A., Giannelis E. P., Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment [J]. Macromolecules, 1997, 30: 8000-8009.
    [128] Yu Z. Z., Yang M., Zhang Q., Zhao C., Mai Y. W., Dispersion and distribution of organically modified montmorillonite in nylon-66 matrix [J]. J. Polym. Sci. Polym. Phys., 2003, 41: 1234-1243.
    [129] Wang K. H., Choi M. H., Koo C. M., Choi C. M., Chung I. J., Synthesis and characterization of maleated polyethylene/clay nanocomposites [J]. Polymer, 2001, 42: 9819-9826.
    [130] Ray S. S., Bousima M., Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world [J]. Prog. Mater. Sci., 2005, 50: 962-1079.
    [131] Dennis H. R., Hunter D. L., Chang D., Kim S., White J. L., Cho J. W., Paul D. R., Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites [J]. Polymer, 2001, 42(23): 9513-9522.
    [132] Kim S. W., Jo W. H., Lee M. S., Ko M. B., Jho J. Y., Preparation of clay-dispersed poly(styrene-co-acrylonitrile) nanocomposites using poly(ε-caprolactone) as a compatibilizer [J]. Polymer, 2001, 42: 9837-9842.
    [133] Lagaly G., Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites [J]. Appl. Clay Sci., 1999, 15: 1-9.
    [134] Iijima S., Helical microtubules of graphitic carbon [J]. Nature (London), 1991, 354: 56-58.
    [135] Ajayan P. M., Stephan O., Colliex C., Trauth D., Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite [J]. Science, 1994, 265(5176): 1212-1214.
    [136] Cooper C. A., Young R. J., Halsall M., Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J]. Composites, Part A, 2001, 32(3-4): 401-411.
    [137] Gao G., Cagin T., Goddard W. A., III., Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes [J]. Nanotechnology, 1998, 9(3): 184-191.
    [138] Uchida T., Kumar S., Single wall carbon nanotube dispersion and exfoliation in polymers [J]. J. Appl. Polym. Sci., 2005, 98(3): 985-989.
    [139] De Heer Walt A., Nanotubes and the pursuit of applications [J]. MRS Bull., 2004, 29: 281-285.
    [140] McEuen P. L., Bockrath M., Cobden D. H., Yoon, Y.-G., Louie S. G., Disorder, pseudospins, and backscattering in carbon nanotubes [J]. Phys. ReV. Lett., 1999, 83: 5098-5101.
    [141] Berber S., Kwon Y.-K., Tomanek D., Unusually high thermal conductivity of carbon nanotubes [J]. Phys. ReV. Lett., 2000, 84(20): 4613-4616.
    [142] Awasthi K., Srivastava A., Srivastava O. N., Synthesis and Characterization of Lanthanum Carbide Nanotubes [J]. J. Nanosci. Nanotechnol., 2002, 5: 1616-1636.
    [143] Monthioux M., Carbon, Filling single-wall carbon nanotubes [J]. Carbon, 2002, 40(10): 1809-1823.
    [144] Thostenson E. T., Zhifeng R., Chou T.-W., Advances in the science and technology of carbon nanotubes and their composites: a review [J]. Compos. Sci. Technol., 2001, 61(13): 1899-1912.
    [145] Wang N., Li G. D., Tang Z. K., Mono-sized and single-walled 4 ? carbon nanotubes [J]. Chem. Phys. Lett., 2001, 339(1-2): 47-52.
    [146] Zheng L. X., O’Connell M. J., Doorn S. K., Liao X. Z., Zhao Y. H., Akhadov E. A., Hoffbauer M. A., Roop B. J., Jia Q. X., Dye R. C., Peterson D. E., Huang S. M., Liu J., Zhu Y. T., Ultralong single-wall carbon nanotubes [J]. Nat. Mater., 2004, 3: 673-676.
    [147] Niyogi S., Hamon M. A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M. E., Haddon R. C., Chemistry of single-walled carbon nanotubes [J]. Acc. Chem. Res., 2002, 35(12): 1105-1113.
    [148] Georgakilas V., Kordatos K., Prato M., Guldi D. M., Holzinger M., Hirsch A., Organic functionalization of carbon nanotubes [J]. J. Am. Chem. Soc., 2002, 124(5): 760-761.
    [149] Sun Y.-P., Fu K., Lin Y., Huang W., Functionalized carbon nanotubes: properties and applications [J]. Acc. Chem. Res., 2002, 35(12): 1096-1104.
    [150] Dyke C. A., Tour J. M., Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization [J]. Chem.-Eur. J., 2004, 10(4): 812-817.
    [151] Star A., Stoddart J. F., Steuerman D., Diehl M., Boukai A., Wong E. W., Yang X., Chung S.-W., Choi H., Heath J. R., Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes [J]. Angew. Chem., Int. Ed., 2001, 40(9): 1721-1725.
    [152] Star A., Liu Y., Grant K., Ridvan L., Stoddart J. F., Steuerman D. W., Diehl M. R., Boukai A., Heath J. R., Noncovalent side-wall functionalization of single-walled carbon nanotubes [J]. Macromolecules, 2003, 36(3): 553-560.
    [153] Du F., Scogna R. C., Zhou W., Brand, S., Fischer J. E., Winey K. I., Nanotube networks in polymer nanocomposites: rheology and electrical conductivity [J]. Macromolecules, 2004, 37(24): 9048-9055.
    [154] Bellayer S., Gilman J. W., Eidelman N., Bourbigot S., Flambard X., Fox D. M., De Long H. C., Trulove P. C., Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer [J]. AdV. Funct. Mater., 2005, 15(6): 910-916.
    [155] Chatterjee T., Yurekli K., Hadjiev V. G., Krishnamoorti R., Single-Walled Carbon Nanotube Dispersions in Poly (ethylene oxide) [J]. AdV. Funct. Mater., 2005, 15(11): 1832-1838.
    [156] Badaire S., Poulin P., Maugey M., Zakri C., In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering [J]. Langmuir, 2004, 20(24): 10367-10370.
    [157] Islam M. F., Rojas E., Bergey D. M., Johnson A. T., Yodh A. G., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water [J]. Nano Lett., 2003, 3(2): 269-273.
    [158] Barrau S., Demont P., Perez E., Peigney A., Laurent C., Lacabanne C., Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes-Epoxy Resin Composites [J]. Macromolecules, 2003, 36(26): 9678-9680.
    [159] Bryning M. B., Milkie D. E., Islam M. F., Kikkawa J. M., Yodh A. G., Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites [J]. Appl. Phys. Lett., 2005, 87(16): 161909/1-161909/3.
    [160] Sundararajan P. R., Singh S., Moniruzzaman M., Surfactant-induced crystallization of polycarbonate [J]. Macromolecules, 2004, 37(26): 10208-10211.
    [161] De la Chapelle M. L., Stephan C., Nguyen T. P., Lefrant S., Journet C., Bernier P., Munoz E., Benito A., Maser W. K., Martinez M. T., De la Fuente G. F., Guillard T., Flamant G., Alvarez L., Laplaze D., Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites [J]. Synth. Met., 1999, 103(1-3): 2510-2512.
    [162] Benoit J. M., Corraze B., Lefrant S., Blau W. J., Bernier P., Chauvet O., Transport properties of PMMA-Carbon Nanotubes composites [J]. Synth. Met., 2001, 121(1-3): 1215-1216.
    [163] Du F., Fischer J. E., Winey K. I., Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability [J]. J. Polym. Sci., Part B: Polym. Phys., 2003, 41(24): 3333-3338.
    [164] Haggenmueller R., Fischer J. E., Winey K. I., Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites [J]. Macromolecules, 2006, 39(8): 2964-2971.
    [165] Poetschke P., Bhattacharyya A. R., Janke A., Goering H., Melt mixing of polycarbonate/multi-wall carbon nanotube composites [J]. Compos. Interfaces, 2003, 10: 389-404.
    [166] Liu T., Phang I. Y., Shen L., Chow S. Y., Zhang W.-D., Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites [J]. Macromolecules, 2004, 37(19): 7214-7222.
    [167] Zhang W. D., Shen L., Phang I. Y., Liu T., Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding [J]. Macromolecules, 2004, 37(2): 256-259.
    [168] Bhattacharyya A. R., Sreekumar T. V., Liu T., Kumar S., Ericson L. M., Hauge R. H., Smalley R. E., Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J]. Polymer, 2003, 44(8): 2373-2377.
    [169] Siochi E. J., Working D. C., Park C., Lillehei P. T., Rouse J. H., Topping C. C., Bhattacharyya A. R., Kumar S., Melt processing of SWCNT-polyimide nanocomposite fibers [J]. Composites, Part B, 2004, 35(5): 439-446.
    [170] Haggenmueller R., Gommans H. H., Rinzler A. G., Fischer J. E., Winey, K. I., Aligned single-wall carbon nanotubes in composites by melt processing methods [J]. Chem. Phys. Lett., 2000, 330(3-4): 219-225.
    [171] Jin Z., Pramoda K. P., Goh S. H., Xu G., Poly (vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly (methyl methacrylate) composites [J]. Mater. Res. Bull., 2002, 37(2): 271-278.
    [172] Schadler L. S., Giannaris S. C., Ajayan P. M., Load transfer in carbon nanotube epoxy composites [J]. Appl. Phys. Lett., 1998, 73(26): 3842-3844.
    [173] Zhu J., Kim J., Peng H., Margrave J. L., Khabashesku V. N., Barrera E. V., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization [J]. Nano Lett., 2003, 3(8): 1107-1113.
    [174] Zhu J., Peng H., Rodriguez-Macias F., Margrave J. L., Khabashesku V. N., Imam A. M., Lozano K.,Barrera E. V., Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes [J]. AdV. Funct. Mater., 2004, 14(7): 643-648.
    [175] Gong X., Liu J., Baskaran S., Voise R. D., Young J. S., Surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chem. Mater., 2000, 12(4): 1049-1052.
    [176] Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A., Single-walled carbon nanotube-polymer composites: strength and weakness [J]. AdV. Mater., 2000, 12(10): 750-753.
    [177] Moniruzzaman, M.; Du, F.; Romero, N.; Winey, K. I., Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method [J]. Polymer, 2006, 47(1): 293-298.
    [178] Raravikar N. R., Schadler L. S., Vijayaraghavan A., Zhao Y., Wei B., Ajayan P. M., Synthesis and Characterization of Thickness-Aligned Carbon Nanotube-Polymer Composite Films [J]. Chem. Mater., 2005, 17(5): 974-983.
    [179] Feng W., Bai X. D., Lian Y. Q., Liang J., Wang X. G., Yoshino K., Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization [J]. Carbon, 2003, 41(8): 1551-1557.
    [180] Du F., Guthy C., Kashiwagi T., Fischer J. E., Winey K. I., J. Polym. Sci., An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity [J]. J. Polym. Sci., Part B: Polym. Phys., 2006, 44(10): 1513-1519.
    [181] Huang H., Liu C., Wu Y., Fan S., Aligned carbon nanotube composite films for thermal management [J]. AdV. Mater., 2005, 17(13): 1652-1656.
    [182] Xia H., Wang Q., Li K., Hu G.-H., Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process [J]. J. Appl. Polym. Sci., 2004, 93(1): 378-386.
    [183] Kasimatis K. G., Nowell J. A., Dykes L. M., Burghardt W. R., Ramanathan T., Brinson L. C., Torkelson J. M., Polymer Nanocomposites by Pulverization: Enhanced Properties and Dispersion [C]. SPE ANTEC, 2005, 63: 1965-1969.
    [184] Regev O., ElKati P. N. B, Loos J, Koning C. E., Preparation of conductive nanotube-polymer composites using latex technology [J]. AdV. Mater., 2004, 16(3): 248-251.
    [185] Dufresne A., Paillet M., Putaux J. L., Canet R., Carmona F., Delhaes P., Cui S., Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites [J]. J. Mater. Sci., 2002, 37(18): 3915-3923.
    [186] Vigolo B., Penicaud A., Coulon C., Sauder C., Pailler R., Journet C., Bernier P., Poulin P., Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334.
    [187] Mamedov A. A., Kotov N. A., Prato M., Guldi D. M., Wicksted J. P., Hirsch A., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J]. Nat. Mater., 2002, 1: 190-194.
    [188] Ohe K., Naito Y., A new resistor having an anomalously large positive temperature coefficient [J]. Jpn. J. Appl. Phys., 1971, 10: 99-108.
    [189] Delvigs P., Graphite/polyimide composites with improved toughness [J]. Polym. Compos., 1989, 10(2): 134-139.
    [190] Busick D. N., Spontak R. J., Balik C. M., Effects of graphite content on the morphology and barrier properties of poly(vinylidene fluoride) composites [J]. Polymer, 1999, 40(22): 6023-6029.
    [191] Zheng Q., Song Y., Wu G., Yi X., Reversible nonlinear conduction behavior for high-density polyethylene/graphite powder composites near the percolation threshold [J]. J. Polym. Sci. Part B, 2001, 39(22): 2833-2842.
    [192] Zheng W., Wong S. C., Sue H. J., Transport behavior of PMMA/expanded graphite nanocomposites [J].Polymer, 2002, 43(25): 6767-6773.
    [193] Krupa I., Novak I., Chodak I., Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties [J]. Synth. Met., 2004, 145(2-3): 245-252.
    [194] Li J. Kim J. K., Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets [J]. Compos. Sci. Technol., 2007, 67(10): 2114-2120.
    [195] Du X. S., Yu Z. Z., Dasari A., Ma J., Mo M. S., Meng Y. Z., Mai Y. W., New method to prepare graphite nanocomposites [J]. Chem. Mater., 2008, 20(6): 2066-2068.
    [196] Bourdo S. E., Viswanathan T., Graphite/Polyaniline (GP) composites: Synthesis and characterization [J]. Carbon, 2005, 43(14): 2983-2988.
    [197] Bourdo S., Li Z. R., Biris A. S., Watanabe F., Viswanathan T., Pavel I., Structural, Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with Increased Crystallinity [J]. Adv. Funct. Mater., 2008, 18(3): 432-440.
    [198] Li W., Johnson C. L., Wang H. L., Preparation and characterization of monolithic polyaniline-graphite composite actuators [J]. Polymer, 2004, 45(14): 4769-4775.
    [199] Heo S. I., Yun J. C., Oh K. S., Han K. S., Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells [J]. Adv. Compos. Mater. Off. J. Jpn. Soc. Compos. Mater., 2006, 15(1): 115-126.
    [200] Nagata K., Iwabuki H., Nigo H., Effect of particle size of graphites on electrical conductivity of graphite/polymer composite [J]. Compos. Interf., 1999, 6(5): 483-495.
    [201] Shiro N., Katsuzo O., Toshio K., Wet friction characteristics of new resilient graphitic friction material [J]. Trans. Jpn. Soc. Mech. Eng. Part C, 1994, 60(572): 1376-1381.
    [202] Yang J., Tian M., Jia Q. X, Zhang L. Q., Li X. L., Influence of graphite particle size and shape on the properties of NBR [J]. J. Appl. Polym. Sci., 2006, 102(4): 4007-4015.
    [203] Stair W. K., Handbook of Lubrication (Tribology), Vol. II: Dynamic Seals, Booser E.R., Ed., CRC Press: Boca Raton, FL, 1983, pp.581-622.
    [204] Schweitz J. A., Ahman L., Friction and Wear of Polymer Composites, Fredrich K., Ed., Elsevier: Amsterdam, 1986, Chapter 9.
    [205] Zhang W., Dehghani-Sanij A. A., Blackburn R. S., Carbon based conductive polymer composites [J]. J. Mater. Sci., 2007, 42 (10): 3408-3418.
    [206] Thostenson E., Li C., Chou T., Nanocomposites in context [J]. Comp. Sci. Techn., 2005, 65(3-4): 491-516.
    [207] Fukushima H., Drzal L. T., Rook B. P., Rich M. J., Thermal conductivity of exfoliated graphite nanocomposites [J]. J. Therm. Anal. Calor., 2006, 85(1): 235-238.
    [208] Stankovich S., Dikin D. A., Dommett G. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., Graphene-based composite materials [J]. Nature, 2006, 442(20): 282-286.
    [209] Hussain F., Hojjati M., Okamoto M., Gorga R. E., Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview [J]. J. Compos. Mater., 2006, 40(17): 1511-1575.
    [210] Krueger Q. J., King, J. A., Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6,6- and polycarbonate-based resins [J]. Adv. Polym. Technol., 2003, 22(2): 96-111.
    [211] Li J., Kim J. K., Sham M. L., Marom G., Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites [J]. Comp. Sci. Techn., 2006, 67(2): 296-305.
    [212] Zheng W., Wong S. C., Electrical conductivity and dielectric properties of PMMA/expanded graphite composites [J]. Compos. Sci. Technol., 2003, 63(2): 225-235.
    [213] Wang W. P., Pan C. Y., Wu J. S., Electrical properties of expanded graphite/poly(styrene-co-acrylonitrile) composites [J]. J. Phys. Chem. Solids, 2005, 66(10): 1695-1700.
    [214] Xiao P., Xiao M., Gong, K., Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique [J]. Polymer, 2001, 42(11): 4813-4816.
    [215] Stankovich S., Dikin D.A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45(7): 1558-1565.
    [216] Gilje S., Han S., Wang M., Wang K. L., Kaner R. B., A chemical route to grapheme for device applications [J]. Nano. Lett., 2007, 7(11): 3394-3398.
    [217] Stankovich S., Dikinl D.A., Dommett G.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S., Nature, 2006, 442(20): 282-286.
    [218] Kalaitzidou K., Fukushima H., Drzal L. T., A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold [J]. Compos. Sci. Technol., 2007, 67(10): 2045-2051.
    [219] Yang, J., Tian, M., Jia, Q.X, Zhang, L.Q., and Li, X.L., Influence of graphite particle size and shape on the properties of NBR [J]. J. Appl. Polym. Sci., 2006, 102: 4007-4015.
    [220] Pramanik P. K., Khastgir D., Saha T. N., Electromagnetic interference shielding by conductive nitrile rubber composites containing carbon fillers [J]. J. Elastomers Plast., 1991, 23(4): 345-361.
    [221] Foy J. V., Lindt, J. T., Electrical properties of exfoliated-graphite filled polyester based composites [J]. Polym. Compos., 1987, 8(6): 419-426.
    [222] Hussain M., Choa Y. H., Niihara K., Effects of nanoceramics on electrical resistivity of carbon filled rubber materials [J]. Scripta. Mater., 2001, 44(8-9): 1203-1206.
    [223] Todorova Z., El-Tantawy F., Dishovsky N., Dimitrov R., Investigation of conductivity characteristics of nitrile butadiene rubber vulcanizates filled with semiconducting carbide ceramic [J]. J. Appl. Polym. Sci., 2007, 103(4): 2158-2165.
    [224] Fukushima H., Drzal L. T., Rook B. P., Rich M. J., Thermal conductivity of exfoliated graphite nanocomposites [J]. J. Therm. Anal. Calor., 2006, 85(1): 235-238.
    [225] Chuang T. H., Chern C. K., Guo W. J., The application of expandable graphite as a flame retardant and smoke-suppressing additive for ethylene-propylene-diene terpolymer [J]. J. Polym. Res., 1997, 4(3): 153-158.
    [226] Litt M. H. Brinkmann A. W., Nylon 6/Graphite Fiber Composites by in Situ Polymerization [J]. J. Elastoplast., 1973, (5): 153-160.
    [227] Serafini T. T., Delvigs P., Vannucci R. D., In: Society of the Plastics Industry, Reinforced Plastics/Composites Institute, Annual Conference, Proceedings [C]. 1974, p.6.
    [228] Chung D. D. L., Composites of in situ exfoliated graphite [P]. US patent, 4946892, 1990.
    [229] Martin C. A., Sandler J. K. W., Shaffer M. S. P., Schwarz M. K., Bauhofer W., Schulte K., Windle A.H., Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites [J]. Comp. Sci. Technol., 2004, 64(15): 2309-2316.
    [230] Celzard A., McRae E., Mareche J.F., Furdin G., Dufort M., Deleuze C., Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy [J]. J. Phys. Chem. Solids, 1996, 57(6–8): 715-718.
    [231] Zou J. F., Yu Z. Z., Pan Y. X., Fang X. P., Ou Y. C., Conductive mechanism of polymer/graphite conducting composites with low percolation threshold [J]. J. Polym. Sci. Part B, 2002, 40(10): 954-963.
    [232] Chen G. H., Wu D. J., Weng W.G., Yan W. L., Dispersion of Graphite Nanosheets in a Polymer Materix and The Conducting Property of Nanocomposite [J]. Polym. Eng. Sci., 2001, 41(12): 2148-2154.
    [233] Chen G. H., Wu D. J., Weng W. G., Yan W. L., Preparation of Polymer Graphite Conducting Nanocomposite by Intercalation Polymerization [J]. J. Appl. Polym. Sci., 2001, 82(10): 2506-2513.
    [234] Song L. N., Xiao M., Meng Y. Z., Electrically conductive nanocomposites of aromatic polydisulfide/expanded graphite [J]. Compos. Sci. Technol., 2006, 66(13): 2156-2162.
    [235] Li L. W., Luo Y. L., Li Z.Q., The preparation and vapor-induced response of a conductive nanocomposite based on poly(methyl acrylic acid)/expanded graphite by in situ polymerization [J]. Smart. Mater. Struct., 2007, 16(5): 1570-1574.
    [236] Weng W. G., Chen G. H., Wu D. J., Chen X. F., Lu J. R., Wang P. P., Fabrication and Characterization of Nylon 6/foliated Graphite Electrically Conducting Nanocomposite [J]. J. Polym. Sci., Part B, Physics Edition, 2004, 42(15): 2844-2856.
    [237] Zheng G. H., Wu J. D., Wang W. P., Pan C. Y., Characterization of expanded graphite/polymer composites prepared by in situ polymerization [J]. Carbon, 2004, 42(14): 2839-2847.
    [238] Du X. S., Xiao M., Meng Y. Z., Hay A. S., Synthesis and properties of poly (4, 4'-oxybis (benzene) disulfide)/graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers [J]. Polymer, 2004, 45(19): 6713-6718.
    [239] Chen G. H., Weng W. G., Wu D. J., Wu C. L., Nonlinear conduction in nylon6/foliated nanocomposites above the percolation threshold [J]. J. Polym. Sci. Part B, 2004, 42: 155-167.
    [240] Mo Z. L., Zuo D. D., Chen H., Sun Y. X., Zhang P., Synthesis and Conductivity of Graphite Nanosheets/Polypyrrole Composites [J]. Chinese J. Inorg. Chem., 2007, 23(2): 265-269.
    [241] Mo Z. L., Sun Y. X., Chen H., Zhang P., Zuo D. D., Liu Y. Z., Li H. J., Preparation and characterization of a PMMA/Ce (OH) 3, Pr2O3/graphite nanosheet composite [J]. Polymer, 2005, 46(26): 12670-12676.
    [242] Xiao M., Sun L., Liu J., Li Y., Gong K., Synthesis and properties of polystyrene/graphite nanocomposites [J]. Polymer, 2002, 43(8): 2245-2248.
    [243] Kim H., Hahn H. T., Viculis L. M., Gilje S., Kaner R. B., Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite [J]. Carbon, 2007, 45(7): 1578-1582.
    [244] Kotov N. A., Dekany I., Fendler J. H., Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states [J]. Adv. Mater., 1996, 8: 637-641.
    [245] Zheng W., Wong S. H., Sueb H. J., Transport behavior of PMMA/expanded graphite nanocomposites [J]. Polymer, 2002, 73: 6767-6773.
    [246] Shen J. W., Chen X. M., Huang W. Y., Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation [J]. J. Appl. Polym. Sci., 2003, 88: 1864-1869.
    [247] George J. J. Bhowmick A. K., Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties [J]. J. Mater. Sci., 2008, 43(1): 702-708.
    [248] Yang J., Tian M., Jia Q. X., Shi J. H., Zhang L. Q., Lim S. H., Yu Z. Z., Mai Y. W., Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding [J]. Acta. Mater., 2007, 55: 6372-6382.
    [249] Chen L., Lu L., Wu D., Chen G., Silicone Rubber/Graphite Nanosheet Electrically Conducting Nanocomposite with A Low Percolation Threshold [J]. Polymer Composites, 2007, 28(4): 493-498.
    [250] Shen J. W., Huang W. Y., Zuo S. W., Hou, J., Polyethylene/grafted polyethylene/graphite nanocomposites: Preparation, structure, and electrical properties [J]. J. Appl. Polym. Sci., 2005, 97(1): 51-59.
    [251] She Y. H., Chen G. H., Wu D. J., Fabrication of Polyethylene/Graphite Nanocomposite from Modified Expanded Graphite [J]. Polym. Int., 2007, 56: 679-685.
    [252] Li, Y. C. Chen G. H., HDPE/EG Nanocomposites Prepared via a Masterbatch Process [J]. Polym. Eng. Sci., 2007, 47(6): 882-888.
    [253] Yang J., Tian M., Jia Q. X., Zhang L. Q., Li, X. L., Influence of graphite particle size and shape on the properties of NBR [J]. J. Appl. Polym. Sci., 2006, 102: 4007-4015.
    [254] Chen G. H., Chen X. F., Wang H. Q., Wu, D. J., Dispersion of Graphite Nanosheets in Polymer Resins via Masterbatch Technique [J]. J. Appl. Polym. Sci., 2007, 103(6): 3470-3475.
    [255] Chen G. H., Lu J. R., Wu D. J., The Electrical Properties of Graphite Nanosheet Filled Immiscible Polymer Blends [J]. Mater. Chem. Phys., 2007, 104: 240-243.
    [256] Furgiuele N., Lebovitz A. H., Khait K., Torkelson J. M., Novel strategy for polymer blend compatibilization: solid-state shear pulverization [J]. Macromolecules, 2000, 33(2): 225-228.
    [257] Wakabayashi K., Pierre C., Dikin D. A., Ruoff R. S., Ramanathan T., Brinson L. C., Torkelson J. M., Polymer-Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization [J]. Macromolecules, 2008, 41: 1905-1908.
    [258] Heyong H., Jaeek K., Michael F., Anton L., Structure of graphite oxide [J]. Chem. Phys. Lett., 1998, 287(1-2): 53-56.
    [259] Hamwi A., Marchand V., Some chemical and electrochemical properties of graphite oxide.J. Phys. Chem. Solids, 1996, 57(6-8): 867-872.
    [260] Mermoux M., Chabre Y., Rousseau A., FTIR and 13C NMR study of graphite oxide [J]. Carbon, 29(3): 469-474.
    [261] Arangon F., Cowley M., Chemistry and structure of graphite oxide [J]. Nature, 1962, 196: 468-472.
    [262] Clauss A., Plass R., Hofmann U., Funktionelle gruppen an festkorpen-oberflachen [J]. Z. Anorg. Allg. Chem., 1957, 291: 205.
    [263] Ruess G. L., Model for graphite oxide [J]. J. Kolloid., 1945, 110: 17.
    [264] Scholz W., Boehm H. P., Betrachtungen zur struktur des graphitoxid., Z. Anorg. Allg. Chem., 1969, 369: 327-341.
    [265] Alexanian C., Reflexions sur la synthese des composes lamellaires [J]. J. Chimie Physique, 1961, 58: 133.
    [266] Cruz M., Jacobs A., Fripiat J., In proceedings of the international clay conference [C]. Mater. Sci. Engr. 1977, 31: 319.
    [267] Bourlinos A. B., Gournis D., Petridis D., SzabóT., Szeri A., Dékány I., Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids [J]. Langmuir, 2003, 19(15): 6050-6055.
    [268] Padi J. T., Belytschko T., Schatz G. C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide [J]. J. Phys. Chem. C, 2007, 111(49): 18099-18111.
    [269]王慎敏,周群,乔英杰,低硫可膨胀石墨制备新工艺[J].应用化学, 2000, 17(1): 93-94.
    [270] Kang F., Leng Y., Zhang T. Y., Electrochemical synthesis and characterization of formic acid-graphite intercalation compound [J]. Carbon, 1997, 35(8): 1089-1096.
    [271] He H., Klinowski J., Forster M., Lerf A., A new structure model for graphite oxide [J]. Chem. Phys. Lett., 1998, 287(1-2): 53-56.
    [272] Lerf A., He H., Forster M., Klinowski J., Structure of graphite oxide revisited [J]. J. Phys. Chem. B, 1998, 102(23): 4477-4482.
    [273] Staudenmaier L., Verfahren zur Darstellung der Graphits?ure [J]. Ber. Dtsch. Chem. Ges., 1898, 31(2): 1481-1487.
    [274] Brodie B. C., Sur le poids atomique du graphite [J]. Ann. Chim. Phys., 1860, 59: 466-472.
    [275] Becerril H. A., Mao J., Liu Z., Stoltenberg R. M., Bao Z., Chen Y., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors [J]. Acs Nano, 2008, 2(3): 463-470.
    [276] Rudorff W., Hoffmann U., Uber graphitsaltse [J]. Z. Anorg. Allg. Chem., 1938, 238(1): 1-50.
    [277] Boehm H. P., Functional Groups on the Surfaces of Solids [J]. Angew. Chem. lnt. Ed. Engl., 1966, 5(6): 533-544.
    [278] Randin J. P., Bard A. J. ed., in 'Encyclopedia of Electrochemistry of the Elements' [C], Marcel Dekker, New York, 1976, 7, p.22.
    [279] Besenhard J. O., Fritz H. P., The Electrochemistry of Black Carbons [J]. Angew. Chem., Int. Ed. Engl., 1983, 22(12), 950-975.
    [280] Kozlowski C., Sherwood P. M. A., X-ray photoelectron spectroscopic studies of carbon-fibre surfaces. Part 4.-The effect of electrochemical treatment in nitric acid [J]. J. Chem. Soc., Faraday Trans., 1984, 80: 2099-2107.
    [281] Fitzer E., Jager H., Popovska N., von Sturm F., Anodic oxidation of high modulus carbon fibres in sulphuric acid [J]. J. Appl. Electrochem., 1988, 18(2): 178-182.
    [282] Jannakoudakis A. D., Jannakoudakis P. D., Theodoridou E., Electrochemical oxidation of carbon fibres in aqueous solutions and analysis of the surface oxides [J]. J. Appl. Electrochem., 1990, 20(4): 619-624.
    [283] Nakajima T., Matsuo Y., Formation process and structure of graphite oxide [J]. Carbon, 1994, 32(3): 469-475.
    [284] Sumanasekera G. U., Allen J. L., Fang S. L., Loper A. L., Rao A. M., Eklund P. C., Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid [J]. J. Phys. Chem. B, 1999, 103(21): 4292-4297.
    [285] Peckett J. W., Trens P., Gougeon R. D., Poppl A., Harris R. K., Hudson M. J., Electrochemically oxidised graphite.:: Characterisation and some ion exchange properties [J]. Carbon, 2000, 38(3): 345-353.
    [286] Weng W. G., Chen G. H., Wu D. J., Lin Z. Y., Yan W. L., Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method [J]. Synth. Met., 2003, 139(2): 221-225.
    [287] liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite [J]. Adv. Funct. Mater., 2008, 18(10): 1518-1525.
    [288] Cui A. L., Feng C. X., Zhao Y. F., Kou H. Z., Li H., Zhu G. H., Hwang H. S., Oh H. C., Kwon Y. J., Lee D. C., Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water [J]. Electrochem. Commun., 2009, 11(2): 409-412.
    [289] Hu H. W., Chen G. H., Fang M., Zhao W. F., Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method [J]. Synth. Met., 2009, 159(14): 1505-1507.
    [290] Hu H. W., Chen L. F., Chen G. H., Reinforcement of epoxy with graphite oxide nanoparticles prepared via electrochemical route [J]. Mater. Manuf. Process., 2010, 25(11): 1-6.
    [291] Hu H. W., Chen G. H., Electrochemically modified graphite nanosheets and their nanocomposite films with poly(vinyl alcohol) [J]. Polym. Compos., 2010, 31(10): 1770-1775.
    [1] Wakabayashi K., Pierre C., Dikin D.A., Ruoff R.S., Ramanathan T., Brinson L.C., Torkelson J. M., Polymer-graphite nanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization [J]. Macromolecules, 2008, 41(6): 1905-1908.
    [2] Kelly B.T., Physics of Graphite [M], Appl. Sci., London, 1981, pp.475.
    [3] Stankovich S., Piner R. D., Chen X. Q., Wu N. Q., Nguyen S. T., Ruoff R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate) [J]. J. Mater. Chem., 2006, 16(2): 155-158.
    [4] Ramanathan T., Stankovich S., Dikin D. A., Liu H., Shen H., Nguyen S. T., Brinson L. C., Graphiticnanofillers in PMMA nanocomposites-an investigation of particle size and dispersion and their influence on nanocomposite properties [J]. J. Polym. Sci. Pol. Phys., 2007, 45(15): 2097-2112.
    [5] Chen G., Wu D., Weng W., Wu C., Exfoliation of graphite flake and its nanocomposites [J]. Carbon, 2003, 41(3): 619-621.
    [6] Chen L., Chen G., Lu L., Piezoresistive Behavior Study on Finger‐ Sensing Silicone Rubber/Graphite Nanosheet Nanocomposites [J]. Adv. Funct. Mater., 2007, 17(6): 898-904.
    [7] Kalaitzidou K., Fukushima H., Drzal L. T., A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold [J]. Compos. Sci. Technol., 2007, 67(10): 2045-2051.
    [8] Kalaitzidou K., Fukushima H., Drzal L.T., Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets [J]. Carbon, 2007, 45(7): 1446-1452.
    [9] Gopakumar T.G., Page D. J. Y. S., Polypropylene/graphite nanocomposites by thermo-kinetic mixing [J]. Polym. Eng. Sci., 2004, 44(6): 1162-1169.
    [10] Yasmin A., Luo J. J., Daniel I. M., Processing of expanded graphite reinforced polymer nanocomposites [J]. Compos. Sci. Technol., 2006, 66(9): 1182-1189.
    [11] C Celik., Warner S. B., Analysis of the structure and properties of expanded graphite‐ filled poly (phenylene ether)/atactic polystyrene nanocomposite fibers [J]. J. Appl. Polym. Sci., 2007, 103 (2): 645-652.
    [12] Du X. S., Xiao M., Meng Y. Z., Hay A. S., Novel synthesis of conductive poly (arylene disulfide)/graphite nanocomposite [J]. Synth. Met., 2004, 143(1): 129-132.
    [13] Uhl F.M., Wilkie C.A., Polystyrene/graphite nanocomposites: effect on thermal stability [J]. Polym. Degrad. Stabil., 2002, 76 (1): 111-122.
    [14] Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286.
    [15] Staudenmaier L., Verfahren zur Darstellung der Graphits?ure [J]. Ber. Dtsch. Chem. Ges., 1898, 31(2): 1481-1487.
    [16] Brodie B. C., Sur le poids atomique du graphite [J]. Ann. Chim. Phys., 1860, 59: 466-472.
    [17] Hummers W. S, Offeman R. E, Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339.
    [18]周名成,紫外与可见分光光度分析法[M],北京:化学工业出版社, 1986, pp.1-31.
    [19]翁文贵.天然石墨的纳米分散及其与尼龙6的纳米复合研究[D].硕士,华侨大学, 2003.
    [20] Weng W. G., Chen G. H., Wu D. J., Lin Z. Y., Yan W. L., Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method [J]. Synthetic Met., 2003, 139(2): 221-225.
    [21] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruo
    [1] Bandyopadhyay A., Sarkar de M., Bhowmick A. K., Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties [J]. J. Mater. Sci., 2005, 40: 5233-5241.
    [2] Mark H. F., Gayload N. G., Encyclopedia of polymer science and technology [M], Vol. 14., New York: Wiley Press, 1980.
    [3] Park J. S., Park JW., Ruckenstein E., Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels [J]. Polymer, 2001, 42: 4271-4280.
    [4] Li J. K., Wang N., Wu X. S., Poly (vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery [J]. J. Control. Release, 1998, 56: 117-126.
    [5] Razzak M. T., Zainuddin, Erizal, Dewi S. P., Lely H., Taty E., Sukirno, The characterization of dressing component materials and radiation formation of PVA-PVP hydrogel [J]. Radiat. Phys. Chem., 1999, 55(2): 153-165.
    [6]陈允魁,红外吸收光谱法及其应用[M],上海:上海交通大学出版社, 1993, PP.5-10.
    [7] Lan T., Kaviratna P. D., Pinnavaia T. J., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites [J]. Chem. Mater., 1995, 7: 2144-2150.
    [8] Wang Z., Pinnavaia T. J., Hybrid Organic Inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer [J]. Chem. Mater., 1998, 10: 1820-1826.
    [9] Fu X., Qutubuddin S., Polymer-clay nanocomposites: exfoliation of organophili montmorillonite nanolayers in polystyrene [J]. Polymer, 2001, 42: 807-813.
    [10]李余,热分析[M],北京:清华大学出版社, 1987, pp.122-129.
    [11] Arroyo M., Lo′pez-Manchado M. A., Herrero B., Organo-montmorillonite as substitute of carbon black in natural rubber compounds [J]. Polymer, 2003, 44: 2447-2453.
    [12] Stankovich S. , Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruo
    [14] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruooxide [J]. R .5.,Synihesis of graPhene一ased nanosheets via ehelnieal reduetion of exfoliated graPhiteCarbon, 2007, 45: 1558-1565.
    [15] Szabo T., Berkesi O., Dekany I., DRIFT study of deuterium-exchanged graphite oxide [J]. Carbon, 2005, 43(15): 3186-3189.
    [1] Yasmin A., Abot J. L., Daniel I. M., Processing of clay/epoxy nanocomposites by shear mixing [J]. Scripta Mater., 2003, 49: 81-86.
    [2] Wetzel B., Haupert F., Zhang M. Q., Epoxy nanocomposites with high mechanical and tribologicalperformance [J]. Compos. Sci. Technol., 2003, 63: 2055-2067.
    [3] Kornmann X., Lindberg H., Berglund L. A., Synthesis of epoxy-clay nanocomposites: in?uence of the nature of the clay on structure [J]. Polymer, 2001, 42: 1303-1310.
    [4] Kornmann X., Lindberg H., Berglund L. A., Synthesis of epoxy-clay nanocomposites: In?uence of the nature of the curing agent on structure [J]. Polymer, 2001, 42: 4493-4499.
    [5] Kornmann X., Thomann R., Mulhaupt R., Finter J., Berglund L. A., High performance epoxy-layered silicate nanocomposites [J]. Polym. Eng. Sci., 2002, 42: 1815-1826.
    [6] Tolle T. B., Anderson D. P., Morphology development in layered silicate thermoset nanocomposites [J]. Compos. Sci. Technol., 2002, 62: 1033-1041.
    [7] Li J., Sham M. L., Kim J. K., Marom G., Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites [J]. Compos. Sci. Technol., 2007, 67: 296-305.
    [8] Miyagawa H., Drzal L. T., Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes [J]. Polymer, 2004, 45(15): 5163-5170.
    [9] Liu W. P., Hoa S. V., Pugh M., Organoclay-modified high performance epoxy nanocomposites [J]. Compos. Sci. Technol., 2005, 65(2): 307-316.
    [10] Song Y. S. Youn J. R., In?uence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites [J]. Carbon, 2005, 43(7): 1378-1385.
    [11] Yasmin A., Luo J. J., Daniel I. M., Processing of expanded graphite reinforced polymer nanocomposites [J]. Compos., Sci., Technol., 2006, 66(9): 1182-1189.
    [12] Wang Q., Dai J., Li W., Wei Z., Jiang J., The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites [J]. Compos. Sci. Technol., 2008, 68(7-8): 1644-1648.
    [13] Franchini E., Galy J., Gérard J. F., Sepiolite-based epoxy nanocomposites: Relation between processing, rheology, and morphology [J]. J. Colloid. Interface Sci., 2009, 329(1): 38-47.
    [14] Mahrholz T., Stangle J., Sinapius M., Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes [J]. Composites Part A, 2009, 40(3): 235-243.
    [15] Wetzel B., Rosso P., Haupert F., Friedrich K., Epoxy nanocomposites-fracture and toughening mechanisms [J]. Eng. Fract. Mech., 2006, 73(16): 2375-2398.
    [16] Wetzel B, Haupert F, Friedrich K, Zhang M. Q., Rong M. Z., Proceedings of the 13th ICCM Beijing [C], id1021, 2001.
    [17] Liang J., Huang Y., Zhang L., Wang Y., Ma Y., Guo T., Chen Y., Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites [J]. Adv. Funct. Mater., 2009, 19(14): 2297-2302.
    [18] Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G. G., Processable aqueous dispersions of graphene nanosheets [J]. Nat. Nanotechnol., 2008, 3: 101-105.
    [19] Lotya M., Hernandez Y., King P. J., Smith R. J., Nicolosi V., Karlsson L. S., Blighe F. M., De S., Wang Z., McGovern I. T., Duesberg G. S., Coleman J. N., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions [J]. J. Am. Chem. Soc., 2009, 131: 3611-3620.
    [20] Lan T., Kaviratna P. D., Pinnavaia T. J., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites [J]. Chem. Mater., 1995, 7: 2144-2150.
    [21] Wang Z., Pinnavaia T. J., Hybrid Organic Inorganic Nanocomposites: Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer [J]. Chem. Mater., 1998, 10: 1820-1826.
    [22] Fu X., Qutubuddin S., Polymer-clay nanocomposites: exfoliation of organophili montmorillonite nanolayers in polystyrene [J]. Polymer, 2001, 42: 807-813.
    [23] Weng W.G., Chen G. H., Wu D. J., Lin Z. Y., Yan W. L., Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method [J]. Synth. Met., 2003, 139(2): 221-225.
    [24] Hu H. W., Chen G. H., Fang M., Zhao W. F., Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method [J]. Synth. Met., 2009, 159(14): 1505-1507.
    [25] Wei T., Fan Z., Zheng C., Yao C., Li W., Movement-induced voltage properties of stable graphite nanoplatelet suspensions [J]. Mater. Lett., 2009, 63(18-19): 1608-1610.
    [26] de Boer J. H., van Doorn A. B. C., Graphite oxide. I. The adsorption of water. Koninkl Ned Akad Wetenschap, Proc, 1958, 61B: 242-252.
    [27] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruo

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700