神经生长因子及其受体在形觉剥夺性近视中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近视是眼科的常见病、多发病。高度近视又称病理性近视或变性近视。病理性近视病理改变主要有后巩膜葡萄肿、视网膜和脉络膜萎缩变性、黄斑变性、脉络膜新生血管、孔源性视网膜脱离等严重并发症而致失明。形觉剥夺性近视(form deprivation myopia,FDM)模型的建立,为探索近视的发病机制提供了新途径。形觉剥夺使存在于局部视网膜的多种神经递质与生长因子水平发生改变,它们通过互相平行或彼此交叉的途径发挥作用。经视网膜-脉络膜-巩膜复杂而精细的调控机制,作用于巩膜,引起巩膜生物化学和超微结构的改变,巩膜主动重塑,眼轴延长,引起轴性近视。随着眼轴长度进行性增长和眼底病变的发展,视网膜光感受器细胞减少,视网膜细胞的凋亡是退行性变性疾病的重要病理特征。现今对其光感受器细胞死亡的机制及相应的药物治疗尚缺乏深入细致的研究。
     神经生长因子(never growth factor,NGF)是神经营养素家族成员之一,具有调控神经元和非神经元的分化、增殖和维持其功能的双重作用。在视网膜感光细胞、视网膜神经节细胞、双极细胞三级神经元均有表达。Nastri将抗鼠NGF免疫血清通过局部点眼的方式阻止了鸡近视的发展,提出了NGF可能参与近视形成的推测。已知NGF的受体p75NTR与神经细胞凋亡密切相关,外源性NGF抑制实验性视网膜脱离的视网膜细胞凋亡。本实验在建立豚鼠形觉剥夺性近视模型的基础上应用免疫组织化学和RT-PCR的方法从蛋白质和RNA水平研究NGF与受体TrkA、p75NTR在FDM中的动态表达,首先探讨NGF与TrkA在FDM中的发生、发展的关系,然后研究了FDM发展过程中视网膜光感受器细胞是否也存在细胞凋亡现象及凋亡基因p75NTR、Caspase-3蛋白和mRNA表达的变化,并观察了NGF对视网膜细胞的保护作用,探索治疗高度近视的新途径。最后研究了NGF对体外培养的人巩膜成纤维细胞的影响。
     第一部分神经生长因子及其受体在豚鼠形觉剥夺性近视的表达
     方法
     1.动物模型的建立:选用出生7天花色豚鼠80只。随机分为4组,每组20只。A组(遮盖2周),B组(遮盖4周),C组(遮盖8周),D组(遮盖7周去遮盖1周)。每组10只用于HE染色及免疫组织化学检测,另10只用于RT-PCR检测。右眼以半透明眼罩遮盖作为遮盖眼,左眼不做任何处理为对照眼。
     2.屈光度及眼轴长度测量:分别于遮盖前、遮盖后2周、4周、8周及遮盖7周去遮盖1周,检影镜检测豚鼠双眼屈光状态,A型超声仪测定双眼轴长度。
     3.HE染色与形态学观察:光学显微镜下观察遮盖前后视网膜形态学变化。
     4.免疫组织化学染色检测:NGF蛋白、TrkA蛋白表达。
     5.逆转录聚合酶链反应(RT-PCR)检测:视网膜NGF mRNA、TrkA mRNA的表达。
     6.统计学处理:应用SPSS12.0统计软件进行统计学处理,数据以均数±标准差((?)±s)表示,双眼比较采用配对t检验,组间比较采用单因素方差分析,取α=0.05作为检验标准。
     结果
     1.遮盖眼与对照眼屈光度及眼轴比较:遮盖眼由实验前远视眼演变为近视眼,并随遮盖时间延长,近视度数加深,眼轴延长。遮盖8周,遮盖眼屈光度(-4.38±1.11)D与对照眼(3.75±0.71)D相比,眼轴长(8.18±0.16)mm与对照眼(7.26±0.20)mm相比屈光度前后变化为8.13D,眼轴前后变化为0.92mm,差异有统计学意义(P<0.01)。遮盖7周去遮盖1周屈光度前后变化为5.91D,眼轴前后变化为0.52mm。去遮盖眼屈光恢复27%,眼轴长恢复43%。
     2.视网膜、巩膜形态学变化:遮盖眼视网膜较对照眼变薄,后极部巩膜变薄、稀疏。
     3.免疫组织化学染色:NGF、TrkA阳性细胞主要位于视网膜神经节细胞层、内核层,表现为细胞浆呈棕褐色。经图象系统分析处理,遮盖8周和去遮盖1周眼视网膜NGF蛋白、TrkA蛋白表达减少,与对照眼相比差异有统计学意义(P<0.01)。
     4.RT-PCR:遮盖眼视网膜NGF mRNA、TrkA mRNA表达水平较对照眼降低,与对照眼相比差异有统计学意义(P<0.05)。
     第二部分形觉剥夺性近视豚鼠视网膜细胞凋亡和神经生长因子的保护作用
     研究一豚鼠形觉剥夺性近视视网膜细胞凋亡和NGF受体p75NTR、Caspase-3的表达
     方法
     1.动物模型的建立:60只出生7天花色豚鼠随机分为3组:A组(遮盖4周组)、B组(遮盖8周组)、C组(遮盖12周组),每组20只。右眼以半透明眼罩遮盖作为遮盖眼,左眼不做任何处理为对照眼。余同第一部分。
     2.屈光度及眼轴长度测量:同第一部分
     3.末端脱氧核苷酸转移酶介导d-UTP缺口末端标记(Terminal deoxynucleotidyl transferase mediated x-dUTP nick end labeling,TUNEL)染色技术:检测视网膜细胞凋亡。
     4.免疫组织化学染色:检测p75NTR蛋白、Caspase-3蛋白表达。
     5.逆转录聚合酶链反应(RT-PCR):检测视网膜p75NTR mRNA的表达。
     6.统计学处理:同第一部分。
     结果:
     1.各实验组遮盖眼分别与对照眼相比屈光度加深、眼轴增长,C组遮盖12周诱导出-11.47D近视,眼轴增长1.06mm,且其脉络膜、视网膜变薄,光感受器外节变长,视网膜色素上皮(Retinal Pigment Epithelium,RPE)细胞排列紊乱。
     2.TUNEL染色仅在C组遮盖眼视网膜内、外核层检测到凋亡细胞,对照眼、A组、B组遮盖眼未见到凋亡细胞。
     3.C组p75NTR蛋白、Caspase-3蛋白表达阳性染色呈棕褐色,主要位于神经节细胞层、内核层、外核层。与对照眼、A组、B组遮盖眼比较差异有统计学意义(P<0.05)。
     4.对照眼及A组、B组遮盖眼有极弱p75NTR mRNA表达,C组遮盖眼后极部视网膜p75NTR mRNA表达增强,与对照眼及A组、B组遮盖眼比较差异有统计学意义(P<0.05)。
     研究二神经生长因子对豚鼠形觉剥夺性近视细胞凋亡及凋亡相关基因表达的影响
     方法
     1.120只出生7天花色豚鼠随机分为6组:A组(正常对照组)、B组(遮盖12周组)、C组(遮盖12周+生理盐水组)、D组(遮盖12周+NGF5μg组)、E组(遮盖12周+NGF10μg组)、F组(遮盖12周+NGF20μg)组,每组20只。除A组外,各组均右眼以半透明眼罩遮盖作为遮盖眼,左眼不做任何处理为对照眼。按预定时间遮盖眼玻璃体腔注射NGF或生理盐水后检影验光,测量眼轴长度。
     2.流式细胞术检测各组视网膜细胞凋亡情况。
     3.免疫组织化学染色法检测TrkA蛋白、p75NTR蛋白、Caspase-3蛋白表达。
     4.逆转录聚合酶链反应检测视网膜TrkA mRNA、p75NTR mRNA的表达。
     5.统计学处理同第一部分,凋亡率应用多个样本比较秩和检验。
     结果:
     1.B组、C组、D组、E组、F组遮盖眼分别与对照眼、A组正常眼比较,其屈光度加深、眼轴增长。
     2.B组、C组视网膜细胞凋亡率为(4.45±0.48)%和(4.56±0.32)%,高于正常对照A组(0.31±0.22)%(P<0.05)。D组、E组及F组NGF玻璃体腔注射后,遮盖眼视网膜细胞凋亡率均降低:F组(1.05±0.26)%,E组(1.94±0.42)%,D组(3.22±0.34)%,与A组及B组、C组差异有统计学意义(P<0.05)。
     3.B组、C组遮盖眼视网膜p75NTR蛋白、Caspase-3蛋白阳性表达高于A组(P<0.05)。D组、E组及F组玻璃体腔注射NGF后,p75NTR蛋白、Caspase-3蛋白的阳性表达降低,TrkA蛋白升高,但与A组及B组、C组比较差异有统计学意义(P<0.05)。
     4.D组、E组及F组NGF玻璃体腔注射后p75NTR mRNA表达降低,TrkA mRNA表达升高,与A组及B组、C组比较差异有统计学意义(P<0.05)。
     第三部分神经生长因子对体外培养的人巩膜成纤维细胞的影响
     方法
     1.选取12周~18周人胚胎眼球,体外培养HSF,进行原代及传代HSF的形态学观察和波形蛋白免疫组织化学检测以鉴定是否为巩膜成纤维细胞。
     2.取第3~6代的细胞,MTT法观察NGF对体外培养HSF增殖的质量浓度、时间效应关系。
     3.流式细胞仪测定NGF对HSF细胞周期的影响。
     4.氯胺T法检测NGF对HSF胶原合成的影响。
     5.统计学处理同第一部分。
     结果
     1.原代、传代培养人胚胎巩膜成纤维细胞生长情况良好,波形蛋白免疫组织化学染色阳性。
     2.MTT法检测结果:NGF在25μg/L~200μg/L浓度范围内促进HSF的增殖且呈剂量效应关系,以100μg/L浓度时促进增殖作用最显著(P<0.01)。流式细胞检测发现NGF100μg/L作用下G_1期细胞比例下降,S期细胞比例增加,反映细胞增殖状况的细胞增殖指数提高。
     3.NGF在第3天开始与对照组相比对巩膜成纤维细胞有显著的促增殖作用(P<0.05)。
     4.NGF在25μg/L~200μg/L与对照组相比能有效刺激巩膜成纤维细胞胶原蛋白合成,并呈剂量效应关系。当浓度为200μg/L时,作用达到饱和。
     结论
     1.成功建立了豚鼠FDM的模型并在形态学上和生物特性方面进行了验证。
     2.在时空分布上从蛋白表达和RNA水平方面研究证实了NGF和功能性受体TrkA参与FDM的形成与发展。遮盖眼视网膜NGF蛋白、TrkA蛋白明显减少;NGFmRNA、TrkA mRNA表达水平明显降低。
     3.形觉剥夺可导致高度近视,遮盖眼视网膜内、外核层细胞出现凋亡细胞,p75NTR蛋白和Caspase-3蛋白明显增加,p75NTR mRNA表达水平明显升高。
     4.外源性NGF可能通过下调p75NTR与Caspase-3表达,上调TrkA表达而有效抑制形觉剥夺性高度近视视网膜细胞的凋亡。
     5.NGF可以促进HSF增殖并呈时间剂量效应依赖关系。其促细胞增殖作用可能与NGF对细胞周期的调节有关,在一定浓度范围内能有效刺激HSF胶原蛋白合成。
Myopia is commonly and frequently encountered disease in ophthalmology,especially high myopia, which is also called pathological myopia or degenerationmyopia. High myopia is often associated with excessive and progressive elongation ofthe eye globe, resulting in varying degrees of visual deterioration. It can give rise tomany complications leading to blindness, such as degenerative retinopathy, posteriorscleral staphyloma, choroidal neovascularization, macular degeneration andrhegmatogenous retinal detachment, etc. The foundation of form deprivationmyopia(FDM)model is helpful for us to further understand how high myopia occursand develops. Form deprivation modulates the development of local sclera by changing the level of various neurotransmiter and growth factors in the retina. Theseneurotransmiter and growth factors work by means of cooperate parallel and across,and lead to the ultrastructural and biomechanical alteration of sclera through a seriesof signal transduction. Sclera was remodeled and eye axial was lengthened andinduced to axis myopia. With the development of the axial length of eye and funduschanges, retinal photoreceptor cells decrease continuously. Apoptosis is one of thepathways of photoreceptor cell death in retinal degenerated disorders. At present, it islack of investigating the mechanisms of retinal apoptosis and its anti-apoptosistreatment in retinal degenerative disease including high myopia.
     Nerve growth factor is a member of family of neurotrophins. It exerts effects bysignaling through surface membrane receptors, trkA and p75NTR in the neurotissueand unneurotissue. NGF expresses and influences the shape and function of the threekinds neuron of in the retina. Nastri had discovered that Anti-NGF serum eye dropswere able to elicit a slight contraction on ocular overgrowth in chicks raised incontinuous light and suggested the NGF was possible to take part in the developmentof FDM. It is well known that NGF receptor p75NTR involved in programmed celldeath (PCD) and exogenous NGF may inhibit the apoptosis of retinal cell inexperiment retinal detachment.
     In this study, form deprivation myopia model is established to investigateexpression of NGF、TrkA、p75NTR and Caspase-3 protein in retina byimmunohistochemistry, and to detect the expression of NGF mRNA、TrkA mRNAand p75NTR mRNA in retina by reverse transcription-polymerase chainreaction(RT-PCR). We would investigate whether there are obvious retinal apoptosisin FDM in guinea pigs and observe the retinal rescue of NGF in order to provide anew additional strategy for the treatment of human high myopia. We also observedthe effect of NGF on human sclera fibroblast in vitro.
     Part one: Expression of nerve growth factor (NGF) and high affinityNGF receptor (TrkA) in retinal tissue of guinea pigs with form deprivation myopia
     Methods
     1. Establishment of a form deprivation myopia model: Eighty guinea pigs(seven-day-old) were divided into 4 groups randomly, i.e, group A (2 weeks'occluded), group B (4 weeks' occluded), group C (8 weeks' occluded), group D(7weeks' occluded and removed for 1 week). There were 20 guinea pigs in each group.Ten guinea pigs were used for immunohistochemistry, the other ten guinea pigs wereused for RT-PCR. All the right eyes underwent form deprivation with translucentgoggles and the left eyes were used as control.
     2. Measure of the refractive state and the axial length: Before occluding andafter occluding for A、B、C、D group, the refractive state and axial length weremeasured with retinoscopy and A-scan ultrasonography respectively.
     3. Hematoxylin-eosin staining and morphology: After the refractive state andaxial length were measured,the eyes were extracted,routine hematoxylin-eosinstaining were done, and morphological changes in form deprived guinea pigs retinaand sclera were observed under light microscope.
     4. The expression of NGF protein and TrkA protein in retina were detected byimmunohistochemistry.
     5. The expression of NGF mRNA and TrkA mRNA in retina were detected byRT-PCR.
     6. Statistical analysis SPSS12.0 software was used to perform t-test andanalysis of variance, less than 0.05 was considered statistical significance.
     Results
     1. Comparison of refraction state and axial length between the occluded eyesand control eyes: Monocular occluding for 8 weeks could lead to myopia, therefraction showed significant difference between the occluded eyes (-4.38±1.11)D andthe control ones((3.75±0.71)D, the change of refractive degree was 8.13D(P<0.01).The longer the eyes were occluded, the axial length was longer, there was significant differences between the occluded eyes(8.18+0.16)mm and the controlones(7.26±0.20)mm, the change of axial length was 0.92mm(P<0.01).The longerthe eyes were occluded, the more severe the myopia was. The removal of occludingfor I week, the refraction state and axial length was recovered 27%、43%respectively.
     2. Morphology change in retina and sclera: hematoxylin-eosin staining showedthe posterior retina of the occluded eyes were thinner than that of the control eyes,The posterior sclera of the occluded eyes were thin too.
     3. Immunohistochemistry: NGF and TrkA positive cells were mainlydistributed in the inner nuclear layer and ganglion cell layer of the retina, displayingas pale brown pellet. Through the image analysis, the expression of NGF protein andTrkA protein in retina of the occluded eyes was decreased, there were significantdifference compared with that in the control eyes(P<0.01)
     4. RT-PCR: The expression of NGF mRNA and TrkA mRNA in retina of theoccluded eyes decrease, there were significant difference compared with that in thecontrol eyes(P<0.01).
     Part two: Experimental study of retinal apoptosis and NGFrescue in form deprivation myopia in guinea pigs
     Research one: Expression of retinal apoptosis and NGF receptionp75NTR in form deprivation myopia in guinea pigs
     Methods:
     1. Sixty guinea pigs (seven-day-old)were divided into three groups, this is, groupA (4 weeks' occluded), group B (8 weeks' occluded), group C (12weeks' occluded).There were 20 guinea pigs in each group. All the right eyes underwent formdeprivation with translucent goggles and the left eyes were used as control.Establishment of a form deprivation myopia model and measure of the refractive stateand the axial length: refers to part one.
     2. Histopathological changes in retina were observed by light microscopy. Retinal apoptotic cells were determined by TdT medicated biotin-dUTP nick-endlabeling(TUNEL) staining.
     3. The expression of p75NTR protein and Caspase-3 protein in retina wasdetected by immunohistochemistry.
     4. The expression of p75NTRmRNA in retina was detected by RT-PCR.
     5. Statistical analysis refers to part one.
     Results
     1. Comparison of refraction state and axial length between the occluded eyes andcontrol eyes: The refractive degrees and axial length of occluded eyes weresignificantly deeper and longer than control eyes. After occluding for 12 weeks, thechange was -11.47D in refraction degree and 1.06mm in axial length.
     2. The thickness of choroid and retina occluded 12 weeks became thinneraccompanying with the outer Segment of photoreceptor elongated and RPE arrangeddisorderly. Apoptotie cells were only found in retinal outer and inner nuclear layer ofthe occluded eyes in group C by TUNEL staining.
     3. Immunohistochemistry:p75NTR and Caspase-3 positive cells were mainlydistributed in the outer segments of photoreceptor cells of the retina,immunohistochemistry staining shows that p75NTR and Caspase-3 positiveexpression display as pale brown. Through the image analysis, the expression ofp75NTR protein and Caspase-3 protein in retina of the occluded eyes increase. Therewere significant difference compared with that in the control eyes (P<0.01).
     4. RT-PCR: The expression of p75NTR mRNA and Caspase-3 mRNA in retinaof the occluded eyes increase, there were significant difference compared with that inthe control eyes (P<0.01).
     Research two: NGF protective effect on retinal apoptosis in formdeprivation myopia in guinea pigs
     Methods
     1. One hundred twenty guinea pigs (seven-day-old)were divided into six groups, this is, group A(normal control), group B(12 weeks' occluded), group C(12 weeks'occluded +saline),group D(12 weeks' occluded +NGF5μg), group E(12weeks'occluded+NGF10μg), group F(12 weeks 'occluded +NGF 20pg). There were 20guinea pigs in each group. Except group A, all the right eyes underwent formdeprivation with translucent goggles and the left eyes were used as control. AfterNGF or saline had been injected into vitreous of occluded eyes in planning time,myopia was confirmed by retinoscopy and A-scan ultrasonography.
     2. Retinal apoptotic cells were determined by flow cytometry.
     3. The expression of TrkA proteins, p75NTR proteins, Caspase-3 proteins inretina were detected by immunohistochemical staining.
     4. The expression of TrkA mRNA, p75NTR mRNA in retina was detected byRT-PCR.
     5. Statistical analysis refers to part one. Apoptotic rate by several independentsamples ranks test.
     Results:
     1. The refractive degrees and axial length of form deprivation eyes weresignificantly deeper and longer in group B、C、D、E、F comparing with its self-controleyes and group A(P<0.01).
     2. Retinal apoptotic rate of group B(4.45±0.48)%, C(4.56±0.32)%was morethan group A(0.31±0.22)%; The rate of group D(3.22±0.34)%、E(1.94±0.42)%、F(1.05±0.26)%was less than group B、C(P<0.01), but more than group A.
     3. Retinal p75NTR proteins and Caspase-3 proteins in group D、E、F weresignificantly less than group B、C(P<0.01), but more than in group A, whereas TrkAproteins is more than in group B and C(P<0.01).
     4. Retinal p75NTR mRNA in group D、E、F were significantly less than groupB、C(P<0.01), but more than in group A, whereas TrkA mRNA is more than in groupB and C.
     Part three: The effect of NGF on the human scleral fibroblast cultured in vitro
     Methods
     1. Primary culture of human scleral fibroblast was performed with sclera tissuefrom human embryonic eyes and identified with vimentin immunohistochemistystaining.
     2. MTT assayed the cell proliferation of scleral fibroblast at varying NGFconcentration. The cell cycle of HSF with stimulation of NGF is analyzed by the flowcytometry.
     3. Hydroxyproline contents (collagen synthesis) were measured with thechloramine T method.
     4. Statistical analysis refers to part one.
     Results
     1. The human scleral fibroblasts show good biological characteristics in primaryand secondary culture. Vimentin immunohistochemisty staining of HSF is positive.
     2. NGF can promote the cell proliferation of scleral fibroblast at theconcentration 25-200μg/L in dose and time dependent manner, when theconcentration of NGF is 100μg/L, the proliferative effect is the most significant(P<0.01). The result of flow cytometry reveals that with stimulation of NGF thepercentage of the cells in G_1 phase is decreased while the percentage of the cells in Sphase is increased and the Prl(cell proliferation index) is increased as well(P<0.01).
     3. NGF can stimulate HSF to increase the collagen protein production. Thiseffect is also in dose-depended manner. When the concentration of NGF is 50μg/L,the effect is the most powerful.
     Conclusions
     1. Form deprivation can succeed in setting up myopia model of guinea pigs,which cause the eyes axis to lengthen, induce to axis myopia;
     2. Investigating the dynamic expression and function of the protein and mRNAof NGF and TrkA on retina in form deprivation of guinea pigs. FDM made the expression of NGF and TrkA of protein and mRNA in retina down-regulating. NGFand TrkA may play an important role on the formation and development of myopia.
     3. Form deprivation in guinea pigs made apoptosis of retinal outer and innernuclear layer and the expression of p75NTR protein and Caspase-3 protein increased,whereas p75NTR mRNA increased significantly, too. The increased expression ofp75NTR and Caspase-3 in retina was consistent with retinal apoptosis.
     4. NGF can effectively reduce apoptosis by down-regulating of p75NTR andCaspase-3 and increased expression of TrkA. The rescue of NGF on retina was in adose dependent manner.
     5. NGF can stimulate the proliferation of HSF significantly and increase theproduction of collagen protein in a dose-dependent manner.
引文
1.瞿佳.坚持防治近视眼研究的正确方向.中华眼科杂志,2003,39(6):321-324
    2. Tano Y. Pathologic myopia: where are we now? Am J Ophthalmol, 2002, 134: 645-660
    3. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237(4819): 1154-1162.
    4. Nastri G, Benusiglio E, Sellitti L, et al. Does anti-NGF inhibit deprivative myopia onset? InterNet J Ophthalmol.1998,3:30-36
    5. Wiesel NT Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys Nature 1977;266(5597):66-68.
    6. Raviola E, Wiesel TN. Animal model of myopia. New Engl J Med, 1985,312(25): 1609-1615.
    7. Wallman J, TurkelJ, Tratchman J. Extreme myopia is produced by modest changes in early visual experience.. Science, 1978, 201(4362):1-249-1251
    8. Hodos W, Kuenzel WJ. Retinal-image degradation produces ocular enlargement in chicks. Invest Ophthalmol Vis Sci, 1984, 25(6): 652-659
    9. Holden AL, Hodos W, Hayes BP, et al. Myopia: induced, normal and clinical. Eye,1988, 2 Suppl: S242-256
    10.许军,徐艳春.实验性实验性近视研究的进展.国外医学眼科学分册,2004,28(2):139-142
    11. Hodos W, Kuenzel WJ. Retinal-image degradation produces ocular enlargement in chicks. Invest Ophthalmol Vis Sci, 1984,25(6):652-659
    12. Hayes BP, Fitzke FW, Hodos W, et al. A morphological analysis of experimental myopia in young chickens. Invest Ophthalmol Vis Sci, 1986, 27(6): 981-991
    13. Wallman J, Gotlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and myopia. Science, 1987, 237(4810): 73-77
    14. Marsh-Tootle WL, Norton TT. Refractive and structural measures of lid-suture myopia in tree shrew. Invest Ophthalmol Vis Sci,1989, 30(10): 2245-2257
    15. McBrien NA, Norton TT. The development of experimental myopia and ocularcomponent dimensions in monocularly lid-sutured tree shrews. Vision Res, 1992,32(5):843-852
    16. Gollender M, Thorn F, Erickson P.Development of axial ocular dimen-sions following eyelid suture in the cat.Vision Res, 1979;19(2): 221-223.
    17. Smith EL, Maguire GW, Watson JT.Axial lengths and refractive errors in kittens reared with an optically induced anisometropia. Invest Ophthalmol Vis Sci. 1980; 19(10): 1250-1255
    18.胡诞宁.近视的病因与发病机制研究进展眼视光学杂志,2004,6(1):1-5
    19.史剑波,徐锦堂,夏潮涌,等.豚鼠视网膜正常结构的定量研究.眼科研究,1999,17(2):98-100.
    20. Howler MH, McFadden SA. Form-deprivation myopia in the guinea pig. Vision Res. 2006,46(1-2):267-283
    21. McFadden SA. Partial occlusion produces local form deprivation myopia in the guinea pig eye. Invest Ophthalmol Vis Sci. 2002,43:E-Abstract 189.
    22.胡文政,褚仁远,张利能.豚鼠实验性近视眼巩膜的羟脯氨酸含量改变.眼视光学杂志 2001,3(2):103-104.
    23.欧阳朝祜,褚仁远,胡文政.呱仑西平对豚鼠透镜诱导性近视眼的作用.中华眼科杂志,2003,39(6):348-351.
    24. McFadden SA, Howler MH, Mertz JR. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res, 2004, 44(7): 643-653.
    25.程振英,李镜海,李荣等.形觉剥夺时限对豚鼠近视形成的影响.中华眼科杂志 2004,40(3):183-185
    26. McBrien NA, Comel LM,Gentle A.Structural and ultrastructural change to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci, 2001,42(10):2179-2187
    27. Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia. Vision Res,1995,35(9): 1271-1281
    28. Maffei L, Berardi N, Domeniei L, et al. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci. 1992,12(12): 4651-4662
    29. Domenici L, Cellerino A, Berardi N, et al. Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat. Neuroreport. 1994,5(16):2041-2044
    30. Alderson RF, Alterman AL, Barde YA, et al. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990,5(3):297-306
    31. Funakoshi H, Frisen J, Barbany G et al. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol. 1993,123(2):455-465
    32. Hollowell JP, Villadiego A, Rich KM. Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consider- ation of axonal branching. Exp Neurol. 1990,110(1):45-51
    33. Carmignotoq, Comelli MC, Candeo P, et al. Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Exp Neurol. 1991;111(3):302-311
    34. Yan Q, Johnson EM. An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci.1988,8(9):3481-3498
    35. Rossi FM, Sala R, Aldimucci D,et al. Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input. J Neurosci. 2002;22(3):9129-9136
    36. Bagnoli P, Dal Monte, M, Casini, G. Expression of neuropeptides and their receptors in the developing retina of mammals. Histology and Histopathology, 2003,18(4), 1219-1242.
    37. Rickman DW, Brecha NC. Expression of the protooncogene, trk, receptors in the developing rat retina. Vis Neurosci, 1995,12(2): 215-222.
    38. Ruiz-Ederra J, Hitchcock PF, Vecino E. Two classes of astrocytes in the adult human and pig retina in terms of their expression of high affinity NGF receptor(TrkA). Neumsci Lett, 2003, 337(3):127-130.
    39. Oku H, Ikeda T, Honma Y. et al. Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Muller cells[J]. Ophthalmic Res, 2002, 34(1): 38-42.
    40. Akamatsu S, Fujii S, Escano MF, et al. Altered Expression of Genes in Experimentally Induced Myopic Chick Eyes Jpn J Ophthalmol 2001 45(2): 137-143,
    41. Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neuroscience Letters, 2003, 345(1), 37-40.
    42. Schoups AA, Elliot RC, Friedman WJ, et al. NGF and BDNF are diferentially modulated by visual experience in thedeveloping geniculocortieal pathway Bra Res Dev Brain Res, 1995, 96(12): 326-334
    43. Pizzorusso T, Poreiati V, Tseng JL, et al. Transplant of polymerencapsulated cells genetically engineered to release nerve growth factor allows a normal funetonnal development of the visual cortex in dark-reared rats. Neurosciences, 1997, 80(2): 307-311
    44. Viegi A, Cotrufo T, Berardi N Effects of dark rearing on phosphorylation of neurotrophin Trk receptors Eur J Neurosci, 2002; 16(10): 1925-1930
    45. Lodovichi C, Berardi N, Pizzorusso T, et al. Efects of Neurotrophins on cortical plasticity: Same or Diferent? The Journal of Neuroscience, 2000, 20(6): 2155-2165
    46. Wildsoet C.F, Schmid K.L. Optical correction of form deprivation myopia inhibits refractive recovery in chick eyes with intact or sectioned optic nerves. Vision Res,2000,40(23):3273-3282
    47. Carmignoto G, Comelli MC, Candeo P, et al. Expression of NGF receptor mRNA in the developing and adult rat retina. Exp Neurobiol. 1991;111(3): 302-311.
    48. Siliprandi R, Canella R, Carmignoto G. Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest Ophthalmol Vis Sci. 1993; 34(12): 3232-3245.
    49. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci, 2001,24:1217-1281
    50. Harada T, Harada C, et al. Microglia-muller glia cell interactionscontral neurotrophic factor production during light induced retinaldegeneration. J Neurosci, 2002, 22(21):9228
    51. Haamedi SN, Karten HJ, Djamgoz MB. Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fishJ Comp Neurol. 2001 Mar 19; 431(4): 397-404
    52. Blochl A, Sirrenberg C. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75 Lntr receptors. J Biol chem., 1996, 271(35): 21100-21107
    53. Nikodi jevic B, Creveling CR, Koizumi S, et al. Nerve growth factor and k-252a increase catecholamine release form PC12 cells. J Neurosci Res, 1990, 26(3): 288 295
    54. Stone RA, Lin T, Laties AM, et al. Retinal dopamine and form depriva-tion myopia. Proc Natl Acad Sci USA, 1989, 86(2): 704-706
    55. Iuvone PM, Tigges M, Stone RA, et al. Efects of Apomorphine, a dopaminereca ptor agonist, on Ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci, 1991, 32(5):1674-1677
    56. Li XX, Schaefel F, Kohler K, et al. Dose-dependent effects of 6-hydroxydopam ine on deprivation myopia, electroretinograrns, and dopamine-rgica amacrine calls in chickens. Vis Neurosci, 1992, 9(5): 483-492
    57. Schonhoff CM, Bulseco DA. The Ras-ERK pathway is required for the induction of neuronal nitric oxide synthase in differentiating PC12 cells. J Neurochem. 2001,78(3):631-639
    58.金国华,徐慧君,武义明.BDNF、NGF对AD模型鼠脑移植区一氧化氮合酶阳性神经元发育生长的影响.神经解剖学杂志,1999,15(2):175-178
    59. Peunove N, Enikolopov G. Nitric oxide triggers a switch to growth arrest during diferentiation of neuronal cells. Nature, 1995,375(6526):68-73
    60. Hacket SF, Schoenfeld CL, Freund J, et al. Neurotrophic factors, cytokines and stress increase expression of basic fibroblast growth factor in retinal pigmented epithelial cells. Exp Eye Res,1997,64(6): 865-873
    61. Gentle A, McBrien NA. Retinoscleral control of scleral remodeling in refractive development: a role for endogenous FGF-2? Cytokine. 2002,18(6): 344-348
    62. Seko Y, Shimokawa H, Tokoro T.Expression of bFGF and TGF-β_2 in experi mental myopia in chicks. Invest Ophthalmol Vis Sci,1995,36(6): 1183-1187
    63. Rohrer B, Stell WK. Basic fibroblast growth faetor(bFGF) and transfo-rming growth factor beta(TGF-β_2)act as stop and go signals to modulate postnatal ocular growth in the chick. Exp Eye Res.1994,58(5): 553-561
    64. Lenzi L,Coassin M,Lambiase A,et al Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa Vision Research.2005,45(12): 1491-1500
    1.徐格致,李维英,曹安民.病理性近视视网膜变性中感光细胞的凋亡.中华眼底病杂志,1996,12:144-146
    2.毛俊峰,刘双珍,文丹等.Caspase-3抑制剂Ac-DEVD-CHO对实验性近视眼视网膜细胞凋亡的治疗.中华眼科杂志,2005,41(5):428-433
    3. Mastrangelo AJ, Betenbaugh MJ. Overcoming apoptosis: new methods for improving protein-expression systems. Trends Biotechnol, 1998, 16(2): 88-95.
    4. Schendel SL, Xie ZH, Montal MO ,et al. Channel formation by antiapototic protein Bcl-2. Proc Natl Acad Sci USA,1997;94(10): 5113-5118
    5. Kluck RN, Bossy-Wetzel E, Green DR, et al. The release of cytochrome-c from mitochondria Science, 1997;275:1132-1136
    6. Hayashi R, Luk H, Horio D, et al. Inhibition of apoptosis in colon tumors induced in the rat by 2-arnino-3-methylimidazo quinoline. Cancer Res, 1996,56(19):4307-4310
    7. Danciger M, Matthes MT, Yasamura D, et al. A QTL on diatal chromosome3 that influence the severity of light indued damage to mouse photoreceptor. Mammalian Genome,2000: 11(6): 422-427
    8. Aonuma H, Yamazaki R, Watanabe I. Retinal cell death by light damage. Jpn J Ophthalmol, 1999;43(3):171 179
    9. FischerAJ, Selmer RL, Poon J, et al. Immunocytochemical characteriza-tionof quisqualic acid- and N-methyl-D-aspartate-induced excitotox-icity in the retina of chicks. J Comp Neurol, 1998, 393(1):1-15
    10. Lam TT, Abler AS, Tso MO. Apoptosis injury in rat retina. Invest Ophthalmol Vis Sci,1999,40(5):967-975
    11. Hirata A, Negi A. Morphological changes of choricapillaris in expert-imentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol,1998, 236(2): 132-137
    12. Raviola E, Wiesel TN. Animal model of myopia. New Eng J Med,1995, 312(25): 1609—1615
    13. Jin N, Stjemschantz J. Regional Mood flow in the myopic chick eye during and after form deprivation: a study with radioactively labeled microspheres. Exp Eye Res, 2000, 71(3):233.238
    14. Shih YF, Fitzgeralol ME, Reiner A. Effect of choroidal and ciliary nerve transection on choroidal blood flow, retinal health and ocular enlargement. Vis Neurosei, 1993,10(5):969-979
    15. Liang H, Crewther DP, Crewther SG. A role for photoreceptor outer segments in the induction of deprivation myopia. Vision Res,1995, 35(9): 1217-1225
    16. Tso MO, Zhang C, Alber AS, et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmoi Vis Sci, 1994, 35: (6) 2693-2699
    17. Poter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Difer, 1999,6(2):99—104.
    18. Samardzija M, Wenzel A, Thiersch M, et al. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa Invest Ophthalmol Vis Sci.2006,47(12):5181-5190
    19. Chang CJ, Chemg CH, Liou WS,et al. Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic Res. 2005,37(4):202-213
    20. Lam TT, Abler AS, Tso MO. Apoptosis and caspases after ischemia-reperfusion injury in rat retina. Invest Ophthalmol Vis Sci,1999, 40(5):967-975
    21. Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience, 2001, 103(1): 203-218
    22. Ju WK, Lee MY, Hofrnann HD, et al. Expression of CNTF in Muller cells of the rat retina after pressure-induced iscbemia. Neuroreport, 1999, 10(2): 419-422.
    23. Hu B, Yip HK, So KF. Localization of p75 neurotrophin receptor in the retina of the adult SD rat: an immunocytochemical study at light and electron microscopic levels. Glia, 1998, 24(2): 187-197.
    24. Garcia M, Forster V, Hicks D, et al. In vivo expression of neurotrophins and neurotrophin receptors is conserved in adult porcine retina in vitro. Invest Ophthalmol Vis Sci.2003,44(10):4532-4541.
    25. Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol.2004, 58(3):341-354.
    26. Roux PP, Colicos MA, Barker PA, et al. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neuro sci, 1999,19(16):6887-6896.
    27. Ferri CC, Bisby MA. Improved survival of injured sciatic nerve Schwann cells in mice lacking the p75 receptor. Neurosci Lett. 1999,272 (3): 191-194.
    28. Friedman W J. Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci, 2000, 20(7): 6340-6346.
    29. Khursigara G, Orlinick JR, Chao MV. Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem, 1999, 274:2597-2600
    30. Gentry JJ, Rutkoski NJ, Burke TL, et al. A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. J Biol Chem. 2004,279:(16) 16646-16656.
    31. Mukai J, Hachiya T, Shoji-Hoshino S, et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem, 2000,275(23): 17566-17570.
    32. Park DS, Morris EJ, Padmanabhan J, et al. Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol, 1998,143(2):457-467.
    33. Dobrowsky RT, Jenkins GM, Hannun YA. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J Biol Chem, 1995,270(38):22135-22142.
    34. Zaccaro MC, Ivanisevic L, Perez P, et al. p75 Co-receptors regulateligand-depende nt and ligand-independent Trk receptor activation, in part byaltering Trk docking subdomains. J Biol Chem.2001,276(33): 31023-31029.
    35. Esposito D, Patel P, Stephens RM, et al.The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem, 2001, 276(35): 32687-32695.
    36. Soilu-Hanninen M, Ekert P, Bucci T, et al. Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci,1999,19(12): 4828-4838.
    37. Bamji SX, Majdan M, Pozniak CD, et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol, 1998, 140(4): 911-923.
    38. Sedel F, Bechade C, Triller A. Nerve growth factor (NGF) induces motonenron apoptosis in rat embryonic spinal cord in vitro. Eur J Neurosci, 1999, 11(11): 3904-3912.
    39. Barret GL, Bartlett PF. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA,1994,91(14): 6501-6505.
    40. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, et al. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75.Nature,1996,383(6602): 716-719.
    41. Bredesen DE, Rabizadeh S. p75NTR and apoptosis: Trk-dependent andTrk-indep endent effects.Trends Neurosci, 1997, 20(7): 287-290.
    42. Lievremont JP, Sciorati C, Morandi E, et al. The p75(NTR)-induced apoptotic program develops through a ceramide-caspase pathway negati-vely regulated by nitric oxide. J Biol Chem, 1999, 274(22): 15466-15472.
    43. Coulson FJ, Reid K, Barrctt GL,et al.p75 neurotrophin receptor-mediated neuronal death is promoted by Bcl-2 and prevented by Bel-xL. J Biol Chem,1999,274 (23):16387-16391.
    44. Wexler EM, Berkovich O, Nawy S. Role of the low-affinity NGF receptor (p75)in survival of retinal bipolar cells.Vis Neurosci,1998,15 (2): 211-221
    45. Campochiaro PA, Chang M, Ohsato M, et al. Retinal degeneration in transgenic mice with photoreceptor-specific expression of a dominant-negative fibroblast growth factor receptor. J Neurosci, 1996, 16 (5): 1679-1688
    46. Carwile ME, Culbert RB, Sturdivant RL,et al.Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and G DNF. Exp Eye Res,1998, 66(6):791-805.
    47. Traverso V, Kinkl N, Grimm L, et al.Basic fibroblast and epidermal growth factors stimulate survival in adult porcine photoreeeptor cell cultures. Invest Ophthalmol Vis Sci, 2003,44(10):4550-4558.
    48. Desire L, Courtois Y, Jeanny JC. Endogenous and exogenous fibroblast growth factor 2 support survival of chick retinal neurons by control of neuronal neuronal bcl-x(L) and bcl-2 expression through a fibroblast berowth factor receptor 1-and ERK-dependent pathway. J Neurochem, 2000,75(1): 151-163.
    49. Harada T, Harada C, Nakayama N, et al.Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-in-duced retinal degeneration. Neuron, 2000,26(2):533-541
    50. Varon S, Conner JM. Nerve growth factor in CNS repair.J Neurotrauma. 1994;11 (5):473-86
    51.陈谦,汪家政,范明.神经营养因子在神经损伤中的作用机制.神经解剖学杂志,1998,14(3):278-282
    52. Frasson M, Picaud S, Leveillard T, et al.Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci, 1999, 40(11):2724-2734.
    53. Chong NH, Alexander RA, Waters L, et al. Repeated injections of a ciliary neurotrophic factor analogue leading to long-term photoreceptor survival in hereditary retinal degeneration. Invest Ophthalmol Vis Sci,1999,40(6): 1298-1305.
    54. Raynal P, Pollard HB. AnnexinV: the problem of assessing the biological Role for a gene family of multifunctional calcium and hospholipid-binding proteins. Biochemica & Biophysica Acta. 1994,1197(1): 63-93
    55.钟一声.生长因子与视网膜神经节细胞.国外医学眼科学分册,1998,22(4):204-210
    56. Caminos E, Becket E, Martin-Zanca D,et al Neurotrophins and their receptors in the tench retina during optic nerve regeneration.J CompNeurol.1999;404(3):321-331.
    57. Vecino E, Caminos E, Becket E, et al. Increased levels of TrkA in the regenerating retinal ganglion cells of fish.Neuroreport. 1998;9(15): 3409-3413.
    58.胡诞宁,Robert Ritch.神经营养因子与生长因子在体外对人视网膜神经节细胞之作用.中华眼底病杂志,1999,15(3):149-152
    59. Felderhoff-Mueser U, SifringerM, PesditschekS,et al. Pathways leading to apoptotic neuro degeneration following trauma to the developing rat brain. Neurobiol Dis, 2002,11 (2):231-245
    60. Asaumi K, Nakanishi T, Asahara H,et al. Expression of neurotrophins and their receptors TRK during fracture healing. Bone,2000,26(2): 625-635.
    61. Shimoke K, Kudo M. 1-Methyl-4-phenyl-1,2,3,6-tetra-hydropyridine has a transient proliferative effect on PCI2h cells and nerve growth factor additively promotes this effect: possible involvement of distinct mechanisms of activation of MAP kinase family proteins. Brain Res Dev Brain Research,2002,133(2):105-114.
    62. Culmsee C, Gerling N, Lehmann M, et al. Nerve growth factor survival signaling in cultured hippocampal neurons is mediated though t rkA and requires the common neurot rophin receptor P75. Neuroscience,2002,115 (4):1089-1108.
    63. Kramer BM, Van der zee CE, Hang T. P75nerve growth factor receptor is important for retrograde transport of neurotrophins in adult cholinergic basal forebrain neuron. Neuroscience. 1999,94(4): 1163-1171.
    64. Hashimoto Y, Kaneko Y, Tsukamoto E, et al. Molecular characterization of neurohybrid cell death induced by Alzheimer's amyloid-beta peptides via p75NTR/PLAIDD.J Neurochem, 2004, 90(3): 549-558
    65. EnariM, Sakah ira H, Yokoyama H et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998; 391:43-50
    1. Kee CS, Marazani D, Wallman J. Differences in time course and visual requirements of ocular responses to lenses and diffusers. Invest Ophthalmol Vis Sci,2001,42(3):575-583.
    2. Tejedor J, de la Villa P. Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci, 2003, 44(1):32-36.
    3. Rada JA, Nickla DL,Troilo D. Decreased proteoglycan synthesis associated with form depriivation myopia in mature primate eyes. Invest Opthalmol Vis Sci, 2000, 41(8): 2050-2058.
    4.龙心光.巩膜加固术治疗高度近视的研究进展国外医学.眼科学分册,1995,19(3):139-142
    5.戴纬.变性近视超微结构研究.眼屈光专辑.1991:22-29
    6. Christensen AM, Wallman J. Evidence that increased scleral growth underlies visual deprivation myopia in chicks.Invest Ophthalmol Vis Sci. 1991,32(7):2143-2150.
    7. Nastri G, Benusiglio E, Sellitti L,et al. Does anti-NGF inhibit deprivative myopia onset? InterNet J Ophthalmol. 1998,3:30-38
    8. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci,2001,24:1217-1281
    9. Iannone F, De Bari C, Dell'Accio F, et al. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor(pl40 TrkA)in human osteoarthritic chondrocytes. Rheumatology,2002, 41 (12): 1413-1418
    10. Frenkel SR, Guerra LA, Mitchell OG, et al. Nerve growth factor in skeletal tissues of the embryonic chick. Call Tissue Res, 1990, 260 (3):507-511.
    11.郑斌,张金嵩.NGF在鸡巩膜中的表达及其与形觉剥夺性近视眼形成的关系.眼科研究,2005,23(6)572-574
    12. Micera A, Puxeddu I,Lambiasew A, et al. The pro-fibrogenic effect of nerve growth factor on conjunctival fibroblasts is mediated by trans- forming growth factor-β.Clin Exp Allergy,2005,35 (5):650-656
    13. Micera A, Lambiasc A,Puxeddu I et al.Nerve growth factor effect on human primary fibroblastic-keratocytes:Possible mechanism during corneal healing. Exp Eye Res,2006,83(4):747-757
    14. Coassin M, Lambiase A, Micera A,et al. Nerve growth factor modui-ates in vitro the expression and release of TGF-β1 by amniotic membrane Graefe's Arch Clin Exp Ophthalmol,2006,244(4):485-491
    15. Forander P, Krieglstein K, Soderstrom S,et al. Mutual induction of TGF-β1 and NGF after treatment with NGF or TGF-β1 in grafted chromaffin calls of the adrenal medulla. Exp Neurol, 2000,164(2): 303-313
    16. Curtin BJ, Teng CC. Seleral changes in pathological myopia. Trans Am Acad Ophthalmol Otolaryngol, 1958,62:777-788.
    17. Siegwart JT, Norton TT. Regulation of themechanieal properties of tree shrew sclera by the visual envir6nment. Vision Res,1999(2), 39:387-407.
    18. Mebrien NA, Cornell LM, Gentle A. Structural and ultrastructural changes to the selera in a mammalian model of high myopia. Invest Ophthalmol Vis SCI,2001,42(10):2179-2187.
    19. Gentle A, Liu Y, Martin JE, et al. Collagen gene expression and thealtered accumulation of seleral collagen during the development of high myopia. Biol Chem, 2003, 278(19): 16587-16594.
    20. Siegwart JT, Norton TT. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery. Invest Ophthalmol Vis SCI, 2002,43(7):2067-2075.
    21. Wollensak G, Spoerl E. Collagen erosslinking of human and porcine selera. Cataract Refract Surg, 2004, 30(3):689-695.
    22. Wollensak G, lomdina E, Dittert DD, et al. Cross-linking of seleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Seand, 2005, 83(4): 477-482.
    23. Jobling AI, Nguyen M, Gentle A, et al. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem, 2004, 279(18): 18121-18126.
    1. Levi-Montalcini R. The nerve growth factor 35 years later. Science, 1987;237(4819): 1154-1162.
    2. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuron-protection, and neural repair. Annu Rev Neurosci,2001,24:1217-1281
    3. Smeyne RJ, Klein R, Schnapp A, et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature, 1994,368 (6468):246-249
    4. Lewin GR, Lisney SJ, Mendell LM. Neonatal Anti-NGF treatment reduces the adelta- and C-fibre evoked vasodilator responses in rat skin: evidence that receptor afferents mediate antidromic vasodilatation. Eur J Neurosci, 1992,4 (12):1213-1218
    5. Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature,1989,337 (6205):362-364
    6. Maffei L, Berardi N, Domenici L, et al. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocular deprived rats. J Nenrosci. 1992,12 (12):4651-4662
    7. Domenici L, Cellerino A, Berardi N, et al. Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat. Neuroreport. 1994,5 (16):2041-2044
    8. Constantinou J, Reynolds ML, Woolf C J, et al. Nerve growth factor levels in developing rat skin: upregulation following skin wounding. Neuroreport, 1994,5 (17):2281-2284
    9. Alderson RF, Alterman AL, Barde YA, et al. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture.Neuron,1990,5 (3):297-306
    10. Funakoshi H, Frisen J, Barbanyq et al. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol,1993,123 (2):455-465
    11. Hollowell JP, Villadiego A, Rich KM. Sciatic nerve regeneration across gaps within silicone chambers:long-term effects of NGF and consideration of axonal branching. Exp Neurol,1990,110 (1):45-51
    12. Meakin SO, Shooter EM. The note growth factor family of receptors. Trends Neurosci, 1992;15(9):323-331
    13. Welcher AA, Bitler CM, Radeke MJ.Nerve growth factor binding domain of the nerve growth factor receptor. Proc Natl Acad Sci USA, 1991,88(1): 159-163.
    14. Barker PA.p75NTR:A study in contrasts. Cell Death Differ, 1998;5(5): 346-356
    15. Ye X, Mehlen P, Rabizadeh S TRAF family protons interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem. 1999;274(42): 30202-30208
    16. Liepinsh E, Ilag LL, Otting G,et al. NMB structure of the death domain of the p75 neurotrophin receptor.EMBO J 1997; 16(16):4999-5005.
    17. Rabizadeh S, Oh J, Zhong LT, et al.lnduction of apoptosis by the low-affinity NGF receptor. Science, 1993;261 (5119):345 -348.
    18. Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis.Prog Neurobiol,2000,61(2):205-229.
    19. Cheema SS, Barrett GL, Bartlett PF.Reducing p75 nerve growth factor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. J Neurosci Res,1996;46(2):239-245.
    20. Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor.Nature, 1996;383(6596): 166-168.
    21. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, et al. Death ofoligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75.Nature, 1996;383 (6602):716-719.
    22. Carter BD, Dechant G,Frade JM, et al. Neurotrophins and their p75 receptor. Cold Spring Harb Syrup Quant Biol,1996;61:407-415
    23. Dobrowsky RT, Jenkins GM, Hannun YA.Neurotrophins induce sphingomyelin hydrolysis: Modulation by co-expression of p75NTR with Trk receptors.J Biol Chore, 1995;270(38):22135-22142.
    24. Dobrowsky RT, Werner MH, Castellino AM, et al. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science, 1994; 265(5178): 1596-1599.
    25. Gu C, Casaccia-Bonnefil P, Srinivasan A, et al. Oligodendrocyte apoptosis mediated by Caspase activation. J. Neurosci,1999,19(8):3043-3049
    26. Khursigara G, Orlinick JR, Chao MV Association of the p75 neurotrophin receptor with TRAF6.J Biol Chem,1999;274(5):2597-2600.
    27. Casademunt E, Carter BD, Benzel I, The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J, 1999,18(21):6050-6061.
    28. Bredesen DE, Rabizadeh S p75NTR and apoptosis: Trk-dependent and Trk-independent effects.Trends Neurosci,1997,20(7):287-290.
    29. Barrett GL, Bartlett PF. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development.Proc Natl Acad Sci USA, 1994;91 (14):6501-6505.
    30. Ryden M, Hempstead B, Ibanez CF. Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor.J Biol Chem,1997;272(26): 16322-16328
    31.卢艳,盛树力,吴航等.大鼠视网膜神经网膜上神经营养因子的表达.眼科新进展2000,22(1):21-22.
    32. Vecino E, Caminos E, Ugarte M, et al. Immunohistochemical distribution of neurotrophins and their receptors in the rat retina and the effects of ischemia and reperfusion. Gen Pharmacol, 1998,30(3):305-134.
    33. Lambert W, Agarwal R,Howe W, et al. Neurotrophin andneurotrophin receptor expression by calls of the human lamina cribrosa. Invest Ophthalmol Vis Sci,2001,42(10):2315-2323
    34. Sheedlo HJ, Srinivasan B,Brun-Zinkermasel AM,et al. Expression of p75(NTR) in photoreceptor cells of dystrophic rat retinas. Brain Res Mol Brain Res,2002,130(1):71-79
    35. Oku H, lkeda T, Houma Y, Sotozono C, et al. Gene expression ofneurotrophins and their high-affinity Trk receptors in cultured human muller cell. Ophthalmic Res 2002;34(1):38-42.
    36. Harada T, Harada C, Nakayama N, et al. Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron,2000;26(2):533-541.
    37. Hu B, Yip HK, So KF. Expression of p75 neurotrophin receptor in the injured and regenerating rat retina. Neuroreport, 1999,10(6): 1293-1297
    38. Cui Q, Tang LS, Hu B, So KF, Yip HK. Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Invest Ophthalmol Vis Sci, 2002;43(6)1954-1964
    39. Wexler EM, Berkovich O, Nawy S. Role of the low-affinity NGFreceptor (p75) in survival of retinal bipolar cells. Vis Neurosci,1998; 15(2): 211-218.
    40. Kokaia Z, Bengzon J, Metsis M, et al. Coexpression of neurotrophins and their receptors inneurons of the central nervous system. Proc Natl Acad Sci USA, 1993,90(14):6711-6715
    41. Carmignoto G, Comelli MC, Candeo P, et al. Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Exp Neurol, 1991;111(3):302-311
    42. Yan Q, Johnson EM. An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci,1988,8(9) 3481-3498
    43. Lambiase A, Manni L, Bonini S,et al. Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Invest Ophthalmol Vis Sci,2000,41(5): 1063-1069
    44. Lambiase A, Bonini S, Manni L, et at. Intraocular production and release of nerve growth factor after iridectomy. Invest Ophthalmol Vis Sci, 2002,43 (7) 2334-2340
    45. Ebendal T, Olson L, Seiger A, et al. Nerve growth factors in the rat iris. Nature,1980,286:258-263
    46. Fregnac Y,Inbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev,1984,64:325-434
    47. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Nenrosci, 1987,7:3416-3468
    48. Boothe RG, Dobson V, Teller DY. Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci,1985,8:495-545
    49. Wiesel TN, Hubel DH. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol, 1963,26:978-993
    50. Freeman RD, Olson C. Breif periods of monocular deprivation in kittens: effects of delay prior to physiological study. Neurophysiol 1982,47(2): 139-152
    51. Carmignoto G, Canella R, Candeo P, et al. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol, 1993,464:343-360
    52. Fiorentini A, Berardi N, Maffei L. Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens. Vis Neurosci. 1995,12(1):51-55
    53. Domenici L, Berardi N, Carmignoto G, et al. New growth factor prevents amblyopic effects of monocular deprivation. Proc Natl Acad Sci USA,1991,88(19):8811-8815
    54. Gu Q, Liu Y, Cynader M. Nerve growth factor induced ocular dominanceplasticity in adult cat visual cortex. Proc Natl Acad Sci USA,1994,91(18):8408-8412
    55. Berardi N, Cellerino A, Domenici L, et al. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system. Proc Natl Acad Sci USA,1994,91(2):684-688
    56. Pizzorusso T,. Fagiolini M, Fabris M, et al. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical efects of monocular deprivation in the rat. Proc Nat Acad Sci USA. 1994,91(7):2572-2576
    57. Pizzorusso T, Berardi N, Rossi FM, et al. TrkA activation in the rat visual cortex by antirat trkA IgG prevents the effect of monocular deprivation. Eur J Neurosci, 1999, 11(1):204-212
    58. Caleo M, Lodovichi C, Maffei L. Effects of nerve growth factor onvisual cortical plasticity require afferent electrical activity. Eur JNeurosci. 1999,11(8): 2979-2984
    59. Rossi FM, Sala R, Maffei L. Expression of the nerve receptors TrkA and p75NTR in the visual cortex of the rat growth factor: development and regulation by the cholinergic input. Neurosci, 2002, 22(3):912-919
    60. Nastri G, Benusiglio E, Sellitti L, et al. Does anti-NGF inhibitdeprivative myopia onset?lnterNet J Ophthalmol,1998,3:30-36
    61. Akamatsu S, Fujii S, Michael F.T, et al. Altered Expression of Genes in Experimentally Induced Myopic Chick Eyes. Jpn J Ophthalmol. 2001,45(2): 137-143
    62. Siliprandi R, Canella R, Carmignoto G. Nerve growth factor promotes functional recovery of retinal ganglion cells after ischemia. Invest Ophthalmol Vis Sci,1993,34:3232-3245
    63. Lambiase A, Centofanti M, Micera A, et al. Nerve growth factor(NGF)reduces and NGF antibody exacerbates retinal dernage induced in rabbitby experimental ocular hypertention. Graefe Arch Clin Exp Ophthalmol, 1997,23(5):780-785
    64. Tomita H, Ishiguro S, Abe T, et al. Increased expression oflow affinity NGF receptor in rat retinal Muller cells afterischemia and reperfusion. Cell Struct Funct, 1998,23(4): 201-207
    65. Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1995,1(5):527-534
    66. Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett, 2003,345(1):37-40
    67. Lambiase A, Aloe L. Nerve growth factor delays retinal degeneration in C3 H mice. Graefe Arch Clin Exp Ophthalmol,1996,234(2):96-100
    68. Caffe AR, Soderpalm A, van Veen T. Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factor. Curr Eye Res,1993,12(8):719-726
    69. La Vail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degeneration. Invest Ophthalmol Vis Sci,1998,39(3): 592-602
    70. Wexler EM, Berkovich O, Nawy S. Role of the low-affinity NGF receptor(p75)in survival of retinal bipolar cells. Vis Neurosci, 1998,15(2):211-218
    71. Harada T, Harada C, et al. Microglia-MuUer glia cell interactions control neurotrophic factor production during light-induced retinaldegeneration. J Neurosci,2002,22(21): 9228-9236
    72. Hammes HP, Federoff H J, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med,1995,1 (5):527-534.
    73. Mansour-Robaey S, Clarke DB, Wang YC. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA, 1994, 91(5): 1632-1636.
    74. Rabacchi SA, Ensini M, Bonfanti L, Nerve growth factor reduces apoptosis of axotomized retinal ganglion cells in the neonatal rat. Neuroscience, 1994;63(4):969-973.
    75. Harada T, Harada C,Nakayama N. Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron,2000,26(2):533-538
    76. Tomita H, Ishiguro S, Abe T.Increased expression of low-affinity NGF receptor in rat retinal Muller calls after ischemia and. reperfusion. Call Struct Funct,1998;23(4): 201-207.
    77. Ross GM, Shamovsky IL,Lawrance G, et al. Zinc alters conformation and in hibits biological activities of growth factor and related neurotrphins, Nat Med,1997,3(8): 872-578.
    78. Allington C, Shamovsky IL, Ross GM, Riopele RJ. Zinc inhibits p75NTR-mediated apoptosis in chick neural retina.Cell Death Differ, 2001,8(5):451-456
    79. Chang CJ,Lai WW, Edward DP, et al. Apoptotic photoreceptor call death after traumatic retinal detachment in humans. Arch ophthalmol.1995,113(7):880-886
    80. Cook B,Lewis GP,Fisher SK,et al. Apoptotie photoreceptor degeneration in experimental retinal detachment.Invest Ophthalmol Vis Sci,1995,36(6):990-996
    81.孙声桃,郭希让.家兔视网膜脱离状态下玻璃体NGF水平及视网膜细胞动态观察河南医科大学学报,2001,36(5):570-573
    82. Dicou E, Nerriere V, Naud MC,et al. NGF involvement in ocular inflammation secration by rat resident retinal cells. Neuroreport,1994,6(1):26-28.
    83. Ishida K, Yoshimura N, Yoshida M, et al. Expression of neurotrophic factors in cultured human retinal pigment epithelial calls. Curr Eye Res, 1997, 16(2):96-101.
    84. Ikeda T, Puro DG. Nerve growth factor: amitogenic signal for retinal miiller glia calls. Brain Res, 1994,649(2):260-264
    85.蔡季平,周韵秋,奚寿增.生长因子对人视网膜胶质细胞增殖的作用.中华眼底病杂志.1998,14(1):33-34.
    86. Cui Q, Harvey AR. At least two mechanisms are involved in the death of retinal ganglion cells following target ablation in neonatal rats. J Neurosci,1995,15(12): 8143-8155.
    87. Hammes HP, Federoff H J, Brownlee M. Nerve growth factor prevents both neuroretinal programmed call death and capillary pathology in experimental diabetes. Mol Med,1995,1(5):527-534.
    88. Ehrlich D, Keyser K, Manthorpe M, et al. Differential effects of axotomy on substance P-containing and nicotinic acetylcholine receptor-containing retinal ganglion cells:time course of degeneration and efects of nerve growth factor. Neuroscience, 1990,36(3):699-723.
    89. Maffei L,Carmignoto G,Perry VH, et al. Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section. Proe Natl Aead Sei USA,1990,87 (5):1855-1859.
    90. Hallbook F, Baekstrom A, Kullander K, et al. Expression of neurotrophins and trk receptors in the avian retina. J Comp Neurol. 1996,364 (4):664-676.
    91. McQuarrie IG, Grafstein B. Protein synthesis and axonal transport in goldfish retinal ganglion cells during regeneration accelerated by a conditioning lesion. Brain Res,1982,251 (1):25-37.
    92. Turner JE, Delaney RK, Johnson JE. Retinal ganglion cell response to axotomy and nerve growth factor antiserum treatment in the regenerating visual system of the goldfish (Carassius auratus): an in vivo and in vitro analysis.Brain Res, 1981,204 (2):283-294.
    93. Lambiase A, Manni L, Rama P,et al.Clinieal application of nerve growth factor on human corneal ulcer. Arch Ital Biol,2003,141 (2):141-148
    94. Lambiase A, Manni L, Bonini S, et al. Nerve growth factor promotes corneal healing: structural, biochemical,and molecular analyses of rat and human corneas. Invest Ophthalmol Vis Sci,2000,41 (5):1063-1069
    95. Bonini S, Lambiase A, Rama P, et al. Topical treatment with nerve growth factor for neurotrophic keratitis.Ophthalmology, 2000, 107(7): 1347-1351
    96. Joo MJ, Yuhan KR, Hyon JY, et al.The effect of nerve growth factor on corneal sensitivity after laser in situ keratomileusis. Arch Ophthalmol, 2004, 122(9): 勤部 1338-1341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700