CPC水化过程液固态演化及其复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙骨水泥(CPC)以其良好的生物相容性、骨诱导性及可降解性被广泛应用于牙科、整形外科及骨重建手术中的骨替代领域。但CPC有其固有的缺陷,如脆性大、力学强度较低、降解和骨替代速度较慢等,并且CPC植入体常会引起术后发炎感染,使其临床应用受到限制,因此制备强度较高并且可以在人体内缓慢释放药物的CPC复合材料具有重要的现实意义。此外,CPC水化过程中液固态演化方面的研究还不全面,不同程度的影响了CPC的改进设计。
     本文基于上述问题,首先制备了α_H-TCP和TTCP/DCPA两种骨水泥粉体,利用XRD分析、SEM观察、DSC分析,尤其是首次采用了液态XRD分析等方法,对两种CPC由液态到固态演化过程中的物相、微观结构及热效应等的变化情况进行了动态的检测观察;然后将TTCP/DCPA骨水泥粉体与可降解高分子聚合物聚乳酸(PLA),以及抗生素头孢唑啉钠(Cefazolin)复合,制备出CPC/PLA/Cefazolin复合材料,使其同时获得良好的力学性能与抗菌功能,并对复合材料的抗压强度、微观结构、降解情况和药物缓释情况等进行了研究。
     通过对两种CPC水化过程的比较分析得出,α_H-TCP和TTCP骨水泥粉体水化时的液固态演化过程呈现大致相同的规律,水化过程可分为早期、中期、后期三个阶段。物相上,反应物逐渐溶解并反应生成主晶相羟基磷灰石(HA);微观结构从少而分散的点状结构,到薄膜结构,再到突出的点状结构,进而演变为棒状或针状结构,同时还存在一种密集的不规则皱状结构;水化放热曲线同水泥的相似,水化反应可分为初始期、诱导期、加速反应期、减速反应期、稳定期五个阶段,每个阶段反应的控制机理不同;液态XRD检测出的信号变化与其液固态演化的规律基本一致,初始时液体中原子团簇排列的混乱度很大,主要以非晶状态存在,水化过程中,液态结构的变化较为稳定,液体中的团簇结构没有突变现象发生,而是作为晶胚直接形核,其形核方式为“稳定形核模式”,随着HA逐渐晶化,团簇的有序度也逐渐提高。
     在复合材料制备过程中,采用将CPC粉体与PLA颗粒球磨混合,将Cefazolin粉末溶于去离子水中制成调和液,使药物在固液相混合时载入的方法,成功制备出CPC/PLA/Cefazolin复合材料。Cefazolin的载入使CPC基体的孔隙增多,强度降低,而复合进PLA后,可使基体结构更加密实,孔隙减少,强度大幅度提高,并且可以缓和Cefazolin对材料抗压强度的减弱作用。
     通过对材料降解性能的研究,发现HA的降解不太显著,加入PLA后,由于PLA的降解速度较快,降解后形成较大的孔洞,可加快HA的降解,而且形成的多孔结构利于成骨细胞的粘附、迁移和增殖。
     复合材料前期的体外缓释研究表明,该载药复合材料具有药物缓释的功能,初期缓释速度较快,5d左右后,基本趋于稳定;载药量对缓释作用有一定的影响,载药量越大,初期缓释速度越快,总释药量也越大;PLA的加入对药物的前期释放也有影响,载药量较高时可促进药物的释放,而载药量较低时会阻滞药物的释放。此外,PLA的降解对药物的长期释放有积极的作用,50d后缓释仍在进行。
Calcium Phosphate Cement (CPC) is widely used as bone substitutes in dentistry, orthopedics and reconstructive surgery, because of its biocompatibility, osteoconductivity and biodegradability. However, the high brittleness, low strength and slow biodegradation restrict its clinical application. And implant-caused infections are considered to be very serious too. As a result, it is very important to improve the mechanical strength of CPC as well as to make it antibacterial. In addition, there are few reports on the changes of CPC during hydration process from liquid to solid, which influence the improvement of CPC.
     So in this experiment, two kinds of CPC powders, aH-TCP and TTCP/DCPA, were prepared first and studied the changes of them during hydration process from liquid to solid by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and especially high temperature X-ray diffraction. Then, The composites CPC/PLA/Cefazolin were prepared to make CPC high strength and antibacterial at the same time. The strength, microstructure, the properties of degradation and releasing antibiotics and so on were studied whereafter.
     The results of different tests showed consistency. The changes of aH-TCP and TTCP/DCPA bone cements were similar during hydration process, and the hydration process could be divided into three periods. The reactant dissolved gradually and the last product was the same HA; The microstructure was granular first, then was filmy, and granular protrudently, and claviform or acicle further, a close-grained corrugated structure was existent at the same time; The hydrate heat evolution curve of CPC was similar with cement. The reaction could be divided into five periods with different mechanisms. The results tested by high temperature X-ray diffraction was accordant with the changes of CPC during hydration process from liquid to solid. In earlier period, the cluster was noncrystal and very disordered. Liquid structure changed steadily without shape change of cluster. The crystal nucleus formed steadily, and the cluster was ordered gradually with the crystallization of HA.
     The strength of CPC added Cefazolin could be decreased because of the increase of pores; however, adding PLA could cause the close-grained structure, so the strength of CPC increased. Moreover, macropore created by PLA hydrolysing could accelerate the degradation of CPC and the ingrowth of new bone tissue. The composites with Cefazolin could release antibiotics slowly. In the earlier period, the speed of release was faster. About 5 days later, Cefazolin was released steadily. The earlier released speed and the total amount of Cefazolin released increased with the increase of Cefazolin contents. The addition of PLA had influence on the release of Cefazolin and had contribution to the long-term release after 50 days.
引文
[1].Nerem RM.Tissue engineering in U.S.A[J].Med Biol Eng Comput,1992,30:CE8-CE12.
    [2].Lin AS,Barrows TH,Cartmell SH,et al.Microarchitectural and mechanical characterization of oriented porous polymer scaffolds[J].Biomaterials,2003,24(3):481-489.
    [3].Li S,De Wijn JR,Li J,et al.Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio[J].Tissue Eng,2003,9(3):535-548.
    [4].Kokubo T,Kim HM,Kawashita M.Novel bioactive materials with different mechanical properties[J].Biomaterials,2003,24(13):2161-2175.
    [5].E.Sachlos,N.Reis,C.Ainsley,et al.Novel collagen scaffolds with predeftened internal morphology made by solid freefom fabrication[J].Biomaterials,2003,24(8):1487-1497.
    [6].Kim BS,Mooney DJ.Development of biocompatible syntheticextra cellular matrices for tissue engineering[J].Trends Biotechnol,1998,16(5):224-248.
    [7].Takechi M,Miyamoto Y.Basic properties of hydroxyapatite putty made with fast-setting calcium phosphate cement and sodium alginate[J].Bioceramics,1996,9:235-238.
    [8].Lv H S.Surgery of artificial joint[M].Beijing Science Publisher,1998,546-550.
    [9].Chow L C.Development of self-setting calcium phosphate cements[J].Ceram Soci Jap,1991,99(10):954-960.
    [10].Costanatino P D,Friedman C D.Experimental hydroxyapatite cement[J].Plast.Reconstr.Surg,1992,90(2):174.
    [11].许永华,施新猷,胡蕴玉等.同种异体成骨细胞-煅烧骨复合物的动物体内植入[J].第四军医大学学报,2002,23(3):223.
    [12].Savolainen S,Usenius JP,Hernesniemi J,et al.Iliac crest versus artificial bone graftin 250 cervical fusion[J].Acta Neurochir,1994,71(7):378-382.
    [13].Au Hs,Michael Simpson J,Michael Glover J,et al.Comparison between allograft plus dermineralized bone matrix versus autogaft in anterior cervical fusion:a prospective multicenter study[J].Spine,1995,20(20):2211.
    [14].Urist MR.Formation by autoinduction[J].Science,1965,150:893.
    [15].Arnaud E,Depollak C,Meunier A,et al.Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty[J].1999,20(20):1909-1918.
    [16].吴景梅,吴若峰.骨组织工程多孔支架材料性质及其制备技术[J].化工新型材料,2004,32(9):17-20.
    [17].Thomaon RC,Yaszemski MJ,Powers JM,et al.Biomater Sci Polym Ed,1995,7:23-38.
    [18].Inone H,Irie.Porous beta-TCP as a bone graft substitute[J].7th world biomaterials congress-2004.
    [19].Hockin H.K.Xu,Janet B.Quinn,Shozo Takagi,et al.Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering[J].Biomaterial,2004,25(6):1029-1037.
    [20].Devin JE,Attawia MA,Laurencin CT.Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair[J].Biomater Sci Polymer,1996,7(8):661-669.
    [21].Brown WE,Chow LC.A new calcium phosphate setting cement[J].Dent Res,1983,62:672.
    [22].Brown WE,Chow LC.Dental restorative cement pastes.US Patent,4518430,1985-05-21.
    [23].Brown WE,Chow LC.Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements.US Patent,4612053,1986-09-16.
    [24].Fukase Y,Eanes ED,Takagi S,Chow LC,Brown WE.Setting reactions and compressive strengths of calcium phosphate cements[J].Dent Res,1990,69(12):1852-1856.
    [25].Driessens FCM,Boltong MG,Bermudez O,Planell JA,Ginebra MP,Fernandez E.Effective formulations for the preparation of calcium phosphate bone cements [J].Mater Sci:Mater in Med,1994,5(3):164-170.
    [26].Monma H,Uemo S.Properties of Hydroxyapatite Prepared by the Hydrolysis of Tricalcium Phosphate[J].Chem Biotech,1981,31(1):15-24.
    [27].Fukase Y,Eanes ED,Takagi S,Chow LC,Brown WE.Setting reactions and compressive strengths of calcium phosphate cements[J].Dent Res,1990,69(12):1852-1856.
    [28].Brown WE,Chow LC.A new calcium phosphate water-setting cement[J].American Ceramic Society,1986,69:352-379.
    [29].Hockin HK,Xu,Janet B Quinn,Shozo Takagi,Laurence C Chow.Synergistic reinforcement of insitu hardening calcium phosphate composite scaffold for bone tissue engineering[J].Biomaterials,2004,25(6):1029-1037.
    [30].B Dickens,L W Schroeder.Investigation of epitaxy relationships between Ca_5(PO_4)_3OH and other calcium ortho-phosphates[J].Res Nat Bur Stan,1980,85(5):347-362.
    [31].Laurence CC.Development of setting calcium phosphate cements[J].The Cement Memorial Issue of the ceramic society of Japan,1991,99(10):954-964.
    [32].戴红莲,陈芳,闫玉华.α-TCP骨水泥水化产物及其影响因素[J].武汉工业大学学报,1996,18(1):43-46.
    [33].沈卫,刘昌胜,顾燕芳,胡黎明.骨水泥的水化反应机理研究[J].无机材料学报,1996,11(4):685-690.
    [34].戴红莲,闫玉华,李世普,贺建华.α-磷酸三钙-TTCP生物骨水泥的研究[J].材料科学与工程,2002,20(3):331-335.
    [35].刘昌胜,刘子胜,潘颂华.CPC的水化放热行为[J].硅酸盐学报,2000,28(6):501-506.
    [36].戴红莲,闫玉华,曹献英,李世普,贺建华,余国荣.磷酸钙骨水泥的生物相容性[J].中国有色金属学报,2002,12(6):1252-1256.
    [37].Chow LC,Markovic M,Takagi S.Calcium phosphate cements.In:Cements Research Progress,Chapter 7,Struble LJ,ed.American Ceramic Society[J],1998:215-238.
    [38].U.Gbureck,J.Probst,R Thull.Surface properties of calcium phosphate particles for self setting bone cements[J].Biomolecular Engineering,2002,19:51-55.
    [39].李旭,杨德安.磷酸钙骨水泥机械性能的研究[J].材料导报,2005,19(5):351-354.
    [40].GINEBRA M P,DR IESSENS F C M,PLANELL J A.Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement:a kinetic analysis[J].Biomaterials,2004,25:3453-3462.
    [41].XU HHK,SIMON C G.Fast setting calcium phosphate chitosan scaffold:mechanical properties and biocompatibility[J].Biomaterials,2005,26:1337-1348.
    [42].刘晨光,刘成圣,孟祥红等.壳聚糖作为药物缓释材料的研究进展[J].高技术通讯,2003,3:98.
    [43].卢霞,应国清,应雪肖.壳聚糖在药物缓释中的应用[J].药物生物技术,2006,13(3):233-236.
    [44].罗华丽,鲁在君.壳聚糖作为药物缓释载体的研究进展[J].高分子通报,2006,7:25-30.
    [45].尚佳健,杨圣辉.壳聚糖在口腔医学中的应用研究[J].北京口腔医学,2004,12(2):114-120.
    [46].周丽珍,陈玲,李琳等.胶原蛋白的制备及用作生物医用材料的研究进展[J].中国医药工业杂志,2004,35(12):761-763.
    [47].杨莽,张彩霞,陈德敏.磷酸钙骨水泥药物缓释载体研究进展[J].国外医学生物医学工程分册,2002,25(1):8-11.
    [48].杨建东.复合磷酸钙骨水泥的研究进展[J].中国矫形外科杂志,2004,12(3,4):2171-2174.
    [49].宋志国,尹光福,郑昌琼.复合型磷酸钙骨水泥及其外添加剂的研究进展[J].国外医学生物医学工程分册,2004,27(1):33-36.
    [50].李娟莹,张超武.磷酸钙骨水泥作为药物缓释载体的研究[J].陶瓷,2006,6:12-15
    [51].Christoffersen J.Christoffersen MR,Kolthoff,et al.Effects of strontiumions on growth and dissolution of hydroxyapatite and on bone mineral detection[J].Bone,1997,20(1):47-54.
    [52].Dagang Guo,Kewei Xu,Xiaoyun Zhao,et al.Development of astrontium-containing hydroxyapatite bone cement[J].Biomaterials,2005,26(19):4073-4083.
    [53].Xu HHK,Eichmiller FC,Giuseppetti AA.Reinforcement of a self-setting calcium phosphate cement with different fibers[J].Journal of Biomedical Materials Research,2000,52(1):107-114.
    [54].戴红莲,李世普,贺建华等.碳纤维增强α-TCP/TTCP骨水泥的研究[J].无机材料学报,2004,19(5):1025-1030.
    [55].赵萍,孙康宁,朱广楠等.碳纤维增强CPC复合材料[J].硅酸盐学报,2005,33(1):32-35.
    [56].Takagi S,Chow L C,Hirayama S,et al.Properties of elastomeric calcium phosphate cement-chitosan composites[J].Dental Materials,2003,19(8):797-804.
    [57].Wang XH,Ma jiabia,Wang YN,et al.Structural characterization of phosphorylated chitosan and their applications as additives of calcium phosphate cements[J].Biomaterials,2001,22(16):2247-2255.
    [58].Xu HHK,Quinn JB.Whisker reinforced bioactive composites containing calcium phosphate cement fillers:effects of filler ratio and surface treatments on mechanical properties[J].Biomed Mater Res,2001,57(2):165-174.
    [59].Xu HHK,Smith D T,Simon Jr C G.Strong and bioactive composites containing nano-silica-fused whiskers for bone repair[J].Biomaterials,2004,25(19):4615-4626.
    [60].Xu HHK,Quinn JB.Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity[J].Biomaterials,2002,23(1):193-202.
    [61].Ignjatovic N,Tomic S,Dakic M,et al.Synthesis and properties of hydroxyapatite/poly-L-Lactide composite biomaterials[J].Biomaterials,1999,20(2):809-816.
    [62].郑治,王剑龙,肖飞等.CPC/PLA-聚羟基乙酸生物复合材料的实验研究[J].中国现代医学杂志,2005,15(8):1152-1154.
    [63].Xu HHK,Quinn J B,Takagi S,et al.Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering[J].Biomaterials,2004,25(6):1029-1037.
    [64].栗向东,胡蕴玉.抗生素缓释系统在骨科的应用[J].中华骨科杂志,2000,11(20):693-695.
    [65].Takechi M,Miyamoto Y,Ishikawa K,et.al.Effects of added antibiotics on the basic properties of an ti-washout type fast-setting calcium phosphate cement[J].Biomed Mater Res,1998,39(2):308-316.
    [66].Otsuka M,matuda Y,Suwa Y,et al.A novel skeletal drug delivery system using self-setting calcium phosphate cement.5.Drug release behavior from a hetero-geneous drug-loaded cement containing an anticancer drug[J].Journal of pharmaceutical Sciences,1994,83(11):1565-1573.
    [67].Otsuka M,matsuda Y,Suwa Y,et al.A novel skeletal drug delivery system using self-setting calcium phosphatecement.4.Effects of themixing colutionvolume on the drug-release rate of heterogeneous aspirin-loaded cement [J].Journal of Pharmaceutical Sciences,1994,83(2):255-263.
    [68].Otsuka M,Matsuda Y,Suwa Y,et al.A novel skeletal drug delivery system using self-setting calcium phosphatecement.2.Physicochemical properties and drug release rate of the cement-containing indomethacin[J].Journal of Pharmaceutical Sciences,1994,83(5):611-615.
    [69].Otsuka M,Matsuda Y,Fox JL,et al.A novel skeletal drug delivery system using self-setting calcium phosphate cement.9.Effects of the mixing solution volume on an ticancer drug release from homogeneous drug- loaded cement[J].Journal of Pharmaceutical Sciences,1995,84(6):733-736.
    [70].Otsuka M,Sawada Y,Matsuda T,et al.Antibiotic deLivery system using bioactive bone cement consisting of bis-GMA-TEGDMA resin and bioactive glass ceramics[J].Biomateriais,1997,18(23):1559-1564.
    [71].Bohner M,Lemaitre J,Landuyt PV,et al.Gentamicin-loaded hydraulic calcium phosphate bone cement as antibioticdelivery system[J].Journal of Pharmaceutical Sciences,1995,84(5):565-572.
    [72].Guicheux J,Grimandi G,Trecant M,et al.Apatite as carrier for grow the hormone:in vitro characterization of loading and release[J].J Biomed Mater Res,1997,34(2):165-170.
    [73].Masri BA,Duncan CP,Beauchamp CP,et al.Long-term elution of antibiotics from Arthroplasty[J],1998,13(3):331-338.
    [74].Otsuka M,Yoneoka K,Matsuda Y,et al.Oestradiol release from self-setting apatitic bone cement responsive to plasma-calcium level in ovariectomized rats and its physicochemical mechanism[J].Pharm Pharmacol,1997,49:1182-1188.
    [75].Guicheux J,Gauthier O,Laguado E,et al.Growth hormone-loaded macroporous calcium phosphate ceramic:in vitro biopharmaceutical characterization and prelim inary in vivo study[J].Biomed Mater Res,1998,40(4):560-566.
    [76].Gautier H,Guicheux J,Grimandi G,et al.In vitro influence of apatite-granule specific area on human growth hormone loading and release[J].Biomed Mater Res,1998,40(4):606-613.
    [77].Nenad Ignjatovic,Dragan Uskokovic.Synthesis and application of hydroxyapatite/polylactide composite biomaterial[J].Applied Surface Science,2004,238:314-319.
    [78].Xianmo Deng,Jianyuan Hao,Chan C E Zheng Wang.Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals[J].Biomaterials,2001,22:2867-2873.
    [79].Brown W E,Chow L C.Resptorative cement pastes.US Pat.4518430,1985-3-21.
    [80].F Q Zu,A G Zhu,L J Guo,X B Qin,H Yang,W J Shan,Observation of an anomalous discontinuous liquid structure change with temperature[J].Phys Rev Lett,89(2002) 125505-4.
    [81].Akemi Yasukawa,Hiromi Takase,et al.Preparation of calcium hydroxyapatite using amides polyhedron[J].1994,13(22):3071-3078.
    [82].沈卫,顾燕芳,刘昌胜.CPC固化过程中浆体的微结构[J].华东理工大学学报,1997,23(5):575-579.
    [83].Laurence CC.Development of setting calcium phosphate cements[J].The Cement Memorial Issue of the ceramic society of Japan,1991,99(10):954-964.
    [84].戴红莲,陈芳,闫玉华.α-TCP骨水泥水化产物及其影响因素[J].武汉工业大学学报,1996,18(1):43-46.
    [85].Nasser S.Prevention and treatment of sepsis in total hip replacement surgery[J].Orthopedic Clinics of North America,1992,23(2):265-277.
    [86].Otsuka M,Sawada Y,Matsuda T,et al.Antibiotic delivery system using bioactive bone cement consisting of bis-GMA-TEGDMA resin and bioactive glass ceramics[J].Biomaterials,1997,18(23):1559-1564.
    [87].黄粤,刘昌胜,邵慧芳,刘壮峻.妥布霉素对CPC性能的影响[J].中国生物医学工程学报,2002,21(5):417-429.
    [88].关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,82页.
    [89].Wei J,Li Y-B.Tissue engineering sca fold material of nano-apatite crystals and polyamide composite[J].Eur Polymer,2004,40:509-515.
    [90].Higuchi T.Mechanism of sustained action medication:Theoretical analysis of rate of release of solid dructe dispersed in solid matrices[J].Pharm Sci,1963,52(1):1145.
    [91].Chandrasekaran SK,Paul DR.Dissolution controlled transport from dispersed matrixes[J].Pharm Sci,1982,71(12):1339.
    [92].Ritger PL,Peppas NA.A simple equation for description of Solute release.1.Fickian and non Fickian release from non-swellabled devices in the form of slabs,spheres,cylinders and discs[J].Controlled Release,1987,5(1):23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700