两类二次矩阵方程的数值求解方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次矩阵方程在物理学、材料学、工程学、控制理论和科学计算等诸多领域有着广泛而深刻的应用.对其解的存在性研究和相应的数值求解方法不但在理论上具有重要意义而且在实际应用中也非常有价值.尤其近十几年随着计算机的飞速发展,非线性矩阵方程的数值解在工程控制领域和计算数学领域都逐渐发展成为了一个非常热门的课题.本文主要研究来自于物理中质量一弹簧系统的一类单边二次矩阵方程的数值求解问题和来自粒子转移理论中的非对称代数Riccati矩阵方程数值求解问题.
     在第2章,我们研究来自于质量-弹簧系统的一类单边二次矩阵方程的数值求解问题.我们首先提出这一方程解存在的一个充分条件;其次根据方程系数矩阵的特点,我们提出一种保M-矩阵结构的加倍算法来计算方程的极端解;在适当的条件下,我们还证明该算法的单调收敛性和局部二次收敛性.我们的数值试验说明我们提出的算法要优于带精确线性搜索的牛顿法和伯努利迭代法.
     在第3章,我们研究用循环约化算法来求解过阻尼系统产生的单边二次矩阵方程.与现有的二次收敛循环约化算法不同,我们提出一种三次收敛的循环约化算法.在过阻尼条件下我们证明所提出算法的适定性和收敛性.数值试验表明该算法在方程接近于过阻尼系统的临界状态时将比原来的循环约化算法具有更快的收敛性.
     在第4章,我们继续研究循环约化算法的在临界状态过阻尼系统中的收敛性.Guo, Higham和Tisseur在假设临界过阻尼系统中按绝对值大小顺序排列的第n个特征值的部分重数(partial multiplicity)为2的条件下证明了循环约化算法的线性收敛性,而且算法产生的某些矩阵序列收敛于零矩阵.我们首先给出一个例子说明当上述假设条件不满足时,循环约化算法的收敛性与Guo等的收敛结论并不完全相同,即算法产生的相应的矩阵序列可以不收敛到零矩阵;其次在不需要对第n个的特征值部分重数做任何假设的条件下,我们对一类临界状态过阻尼系统证明循环约化算法的收敛性;最后通过数值试验验证本文的收敛性结果.
     在第5章,我们研究来自粒子转移理论中的非对称代数Riccati矩阵方程数值求解问题.我们重新考虑用牛顿法和不动点迭代法来求得这一方程具有物理意义的最小正解.通过注意到牛顿法子问题的特殊矩阵结构,我们基于分解的交替方向隐式(Factored Alternating Direction Implicit, FADI)迭代设计一种低记忆低复杂度的牛顿法.随后我们进一步将这一思想拓展到不动点迭代方法的子问题从而提出了两种低记忆低复杂度的不动点迭代法.同时我们还证明这些算法在迭代过程中系数矩阵特征值和迭代点列所具有的良好性质.数值试验表明我们提出的算法能非常有效的求得这一非对称代数Riccati矩阵方程的最小正解.尤其在中等规模和大规模问题中,低记忆低复杂度的牛顿法要优于Bai等提出的NBGS算法和Bini等提出的快速牛顿法.
     此博士论文得到了教育部重大项目(309023)和国家自然科学基金(11071087)的资助.
     此博士论文用LATEX2ε软件打印.
Quadratic matrix equation and its related problems arise from many fields, such as physics, mechanism, engineering, optimal control theory, scientific com-puting and so on. The study in the existence of the solutions and the numerical methods are very important from theoretical view point as well as applications. In recent ten years, numerical methods for solving the quadratic matrix equation had become a very hot topic in engineering and computational mathematics. In this thesis, we shall focus on the numerical methods for finding the solutions of two classes of quadratic matrix equations, the unilateral quadratic matrix equa-tion arising from damped-mass system and the nonsymmetric algebraic Riccati equation arising from transport theory of physics.
     In Chapter2, we are concerned with a unilateral quadratic matrix equation arising from the damped mass-spring system. We first give a sufficient condition for the existence of the solvents to the equation. We then develop a nonsingular M-matrix structure-preserving doubling algorithm (MSD) to calculate the extreme solvents of the equation. Under appropriate conditions, we establish the quadratic convergence of the proposed method. Numerical experiments show that the pro-posed MSD algorithm outperforms Newton's method with exact line searches and Bernoulli's method.
     In Chapter3, we review the cyclic reduction (CR) algorithm for the unilat-eral quadratic matrix equation arising from the overdamped mass-spring system. Unlike the original CR algorithm, we propose a cubic cyclic reduction (CCR) al-gorithm to calculate the extremal solutions of this equation. The CCR algorithm is well defined under the overdamped condition. We also establish its convergence. Our preliminary numerical results show that the CCR algorithm is more effective for finding the extremal solutions than the original CR algorithm especially for the problem near the critical case.
     In Chapter4, we study the convergence of the cyclic reduction method in the critical case of overdamped system. Guo, Higham and Tisseur has obtained the linear convergence of CR method under the assumption that the partial multiplic-ities of the n-th largest eigenvalue are all equal to2. Moreover, some generated matrix sequences converge to zero matrix. We will give an example to show the convergence of CR method is not the same with Guo et. al.'s result when their assumption on the partial multiplicities is not satisfied. In other words, the related matrix sequences may not necessary converge to zero matrix. We then prove the convergence of CR method for a class of overdamped system in the critical case without the assumption that the partial multiplicities of the n-th largest eigenvalue are all equal to2. The numerical example indicates that the convergence behavior of the CR algorithm is largely dictated by the theory we established.
     In Chapter5, we consider the nonsymmetric algebraic Riccati equation arising from transport theory. We look at Newton's method and the fixed-point meth-ods for finding the minimal positive solution of this matrix equation from a new view point. We first rewrite the subproblem of Newton's method into an equivalent form with some special structure. By the use of the particular structure of the sub-problems, we present a low memory and low complexity version Newton's method with a factored alternating-direction-implicit iteration. We then extend this idea to some fixed-point methods to develop two low memory fixed-point methods. We also show some nice properties for the eigenvalues of the coefficient matrices of the subproblems. We do some numerical experiments to test the proposed methods and compare their performances with the recently developed NBGS method and fast Newton method. The results show that the proposed methods are highly effi-cient to obtain the minimal positive solution. The low memory and low complexity Newton's method is particularly efficient for solving large scale Riccati equation arising from transport theory.
     This dissertation is supported by the major project of the Ministry of Edu-cation of China (309023) and the National Natural Science Foundation of China (11071087).
     This dissertation is typeset by software LATEX2ε.
引文
[1]Sylvester J J. On Hamilton's quadratic equation and the general unilateral equa-tion in matrices. Phil. Man.,1884,18:454-458. Reprinted in Sylvester,1973, 231-235.
    [2]Sylvester J J. On the trinomial unilateral quadratic equation in matrices of the second order. Quart. Journal of Mathmatics,1885,20:305-312. Reprinted in Sylvester,1973,272-277.
    [3]Higham N J. Computing real square roots of a real matrix, Linear Algebra and Its Applications,1987,88/89:405-530.
    [4]Eisenfeld J. Operator equations and nonlinear eigenparameter problems, Journal of Functional Analysis,1973,12:475-490.
    [5]Lancaster P, Rokne J G. Solutions of nonlinear operator equations, SIAM Journal on Numerical Analysis,1977,8:448-457.
    [6]Higham N J., Kim Y. Numerical ananlysis of a quadratic matrix equation, IMA. Journal of Numerical Analysis,2000,20:499-519.
    [7]Kim Y. Numerical methods for solving a quadratic matrix equation, PHD Thesis, University of Manchester,2000.
    [8]Meini B. Solving QBD problems:the cyclic reduction algorithm versus the invari-ant subspace method, Advances in Performance Analysis,1998,1:215-225.
    [9]Meini B. The matrix square root from a nuw fuctional perspective:theoremtical results and computational issues, SIAM Journal on Matrix Analysis and Applica-tions,2004,26:362-376.
    [10]Latouche G, Ramaswami V. Introduction to Matrix Analytic Methods in Stochas-tic Modeling, SIAM, Philadelphia, PA,1999.
    [11]Bini D A, Latouche G, Meini B. Numerical Methods for Structured Markov Chains, Oxford University Press, Oxford,2005.
    [12]Kailath T, Sayed A. Fast Reliable Methods for Matrices with Structure:Fast algo-rithms for structured problems with applications to Markov chains and queueing models, SIAM Philadelphia, PA,1999,211-243.
    [13]He C, Meini B, Rhee, N H. A shifted cyclic reduction algorithm for quasi-birth-death problems, SIAM Journal on Matrix Analysis and Applications,2001,23: 673-691.
    [14]Bini D A, Meini B, Ramaswami V. Analyzing M/G/1 paradigms through QBDs: the role of the block structure in computing the matrix G, Proceedings of the Third Conference on Matrix Analytic Methods, Notable Publications,2000,73-86.
    [15]Bini D A, Meini B. On the solution of a nonlinear matrix equation arsing in queueing problems, SIAM Journal on Matrix Analysis and Applications 1996,17: 906-926.
    [16]Cinlar E. Introduction to Stochastic Processes, Prentice Hall, Englewood Cliffs, N.J.,1975.
    [17]Ramaswami V. A stable recursion for the steady state vector in Markov chains of M/G/1 type, Communications of Satistics and Stochastic Models,1988,4:183-188.
    [18]Higham N J. Newton's method for the matrix square root, Mathematics of Com-putation,1986,46:537-549.
    [19]Higham N J. Stable iterations for the matrix square root, Numerical Algorithms, 1997,15:227-242.
    [20]Higham N J, Mackey D S, Mackey N, Tisseur F. Functions preserving matrix groups and iterations for the matrix square root, SIAM Journal on Matrix Analysis and Applications,2005,26:849-877.
    [21]Bai Z, Guo X, Yin J. On two iteration methods for the quadratic matrix equations, International Journal of Numerical Analysis and Modeling,2005,2:114-122.
    [22]Guo C. On a quadratic matrix equation associated with an M-matrix, IMA Journal of Numeircal Analysis,2003,23:11-27.
    [23]Rogers L C G. Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Annals of Applied Probability,1994,4:390-413.
    [24]Rogers L C G, Shi Z. Computing the invariant law of a fluid model, Journal of Applied Probability,1994,31:885-896.
    [25]Williams D. A "potential-theoretic" note on the quadratic Wiener-Hopf equation for Q-matrices, Lecture Notes in Mathematics,1982,920:91-94, Springer-Verlag Seminar on Probability XVI, Berlin.
    [26]Davis G J. Numerical solution of a quadratic matrix equation, SIAM Journal on Scientific and Statistical Computing,1981,2:164-175.
    [27]Dennis J E Jr, Traub J F, Weber R P. The algebraic theory of matrix polynomials, SIAM Journal on Numerical Analysis,1976,13:831-845.
    [28]Higham N J, Kim Y, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM Journal on Matrix Analysis and Applications,2001, 23:303-316.
    [29]Lancaster P. Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.
    [30]Smith. H A, Singh R K, Sorensen D C. Formulation and solution of the non-linear damped eigenvalue problem for skeletal systems, International Journal for Numerical Methods in Engineering,1995,38:3071-3085.
    [31]Zheng Z, Ren G, Wang W. A reduction method for large scale unsymmetric eigen-value problems in structural dynamics, Journal of Sound and Vibration,1997,199: 253-268.
    [32]Qian J, Lin W. A numerical method for quadratic eigenvalue problems of gyro-scopic systems, Journal of Sound and Vibration,2007,306:284-296.
    [33]Cai Y, Kuo Y, Lin W, Xu S, Solutions to a quadratic inverse eigenvalue problem, Linear Algebra and its Applications,2009,430:1590-1606.
    [34]Hwang T, Lin W, Qian J. Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains, SIAM Journal on Matrix Analysis and Applications,2009,30:1566-1592.
    [35]Guo C, Lin W. Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm, SIAM Journal on Matrix Analysis and Applica-tions,2010,31:2784-2801.
    [36]Moor B De, David J. Total linear least squares and the algebraic Riccati equation, Systems and Control Letters,1992,18:329-337.
    [37]Clancey K F, Gohberg I. Factorization of matrix functions and singular integral operators, Operator Theory:Advances and Applications,3., Birkhauser Verlag, Basel-Boston,1981.
    [38]Bernstein D S, Haddad W M. LQG control with an H-∞ performance bound:a Riccati equation approach, IEEE Transactions on Automatic Control,1989,34: 293-305.
    [39]Roberts D J. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, International Journal of Control,1980,32:677-687.
    [40]Bittanti S, Laub A J, Willems J C. The Riccati Equation, Springer-Verlag, Berlin, 1991.
    [41]Lancaster P, Rodman L. Algebraic Riccati Equations, The Clarendon Press, New York,1995.
    [42]Laub A J. A Schur method for solving algevraic Riccati equations. IEEE Tansac-tion on Auomatics and Control,1979,24:913-921.
    [43]Van Dooren P M, A generalized eigenvalue approach for solving Riccati equations, SIAM Journal on Scientific and Statistical Computing,1981,2:121-135.
    [44]Guo C. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices, SIAM Journal on Matrix Analysis and Applications,2001,23: 225-242.
    [45]Juang J. Existence of algebraic matrix Riccati equations arising in transport the-ory, Linear Algebra and its Applications,1995,230:89-100.
    [46]Juang J, Lin W. Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM Journal on Matrix Analysis and Applications 1998,20:228-243.
    [47]Francis B A, Doyle J C. Linear control theory with an optimality criterion, SIAM Journal on Control and Optimization,1987,25:815-844.
    [48]Glover K, Limebeer D J N, Doyle J C, Kasenally E M, Safonov M G. A character-ization of all solutions to the fourblock general distance problem, SIAM Journal on Control and Optimization,1991,39:283-324.
    [49]Ionescu V, Weiss M. Two Riccati formulae for the discrete-time-control problem, International Journal of Control.1993,57:141-195.
    [50]Chu K, Fan H, Lin W, Wang C. Structure-preserving algorithm periodic descrete-time algebraic Riccati equations, International Journal of Control.2004,77:767-788.
    [51]Chu K, Fan H, Lin W. Structure-preserving doubling algorithm for continuous-time algebraic Riccati equation, Linear Algebra and its Applications,2005,396: 55-88.
    [52]Davis G J. Algorithm 598:an algorithm to compute solvents of matrix AX2+ BX+C=0, ACM Transactions on Mathematical Software,1983,9:246-254.
    [53]Willner K, Wagner N, Hanss M. A Krylov based method for quadratic matrix equations, Angewandte und experimentelle Mechanik-Ein Querschnitt. Der An-dere Verlag, Tnning, Lbeck und Marburg,2006,283-303.
    [54]郭晓霞,若干非线性矩阵方程的理论与算法,中国科学院博士毕业论文,2005.
    [55]Higham N J, Tisseur F, Van Dooren P. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, Linear Algebra and its Appli-cations,2002,351/352:455-474.
    [56]Higham N J, Mackey S, Tisseur F. Definite matrix polynomials and their lineariza-tion by definite pencils, SIAM Journal on Matrix Analysis and Applications,2009, 31:478-502.
    [57]Guo C, Lancaster P. Algorithms for hyperbolic quadratic eigenvalue problems, Mathematics of Computation,2005,74:1777-1791.
    [58]Guo C, Higham N J, Tisseur F. Detecting and solving hyperbolic quadratic eigen-value problems, SIAM Journal on Matrix Analysis and Applications,2009,30: 1593-1613.
    [59]Markus A S. Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, RI, USA,1988.
    [60]Mehrmann V, Xu G. Explicit solutions for a Riccati equation from transport the-ory, SIAM Journal on Matrix Analysis and Applications,2009,31:1339-1357.
    [61]Shimizu A, Aoki K. Application of Invariant Embedding to Reactor Physics, Aca-demic Press, New York,1972.
    [62]Nelson P. Convergence of a certain monotone iteration in the reflection matrix for a nonmultiplying half-space, Transport Theory and Statistical Physics,1984,13: 97-106.
    [63]Guo C, Laub A J. On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM Journal on Matrix Analysis and Applications,2000,22: 376-391.
    [64]Guo X, Lin W, Xu S. A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation, Numerical Mathematics,2006,103:393-412.
    [65]Bai Z, Guo X, Xu S. Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations, Numerical Linear Algebra and Applications,2006,13:655-674.
    [66]Gao Y, Bai Z. On inexact Newton methods based on doubling iteration scheme for nonsymmetric algebraic Riccati equations, Numerical Linear Algebra with Ap-plications,2010, electronic version, doi:10.1002/nla.727.
    [67]Lu L. Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM Journal on Matrix Analysis and Ap-plications,2005,26:679-685.
    [68]Lu L. Newton iterations for a nonsymmetric algebraic Riccati equation, Numerical Linear Algebra with Applications,2005,12:191-200.
    [69]Lin Y, Bao L, Wei Y. A modified Newton method for solving non-symmetric algebraic Riccati equations arising in transport theory, IMA Journal of Numerical Analysis,2008,28:215-224.
    [70]Bai Z, Gao Y, Lu L. Fast iterative schemes for nonsymmetric algebraic Riccati equations arising from transport theory, SIAM Journal on Scientific Computing, 2008,30:804-818.
    [71]Bini D A, Iannazzo B, Poloni F. A fast Newton's method for a nonsymmetric algebraic Riccati equation, SIAM Journal on Matrix Analysis and Applications, 2008,30:276-290.
    [72]Bini D A, Meini B, Poloni F. Fast solution of a certain Riccati equation through Cauchy-like matrices, Electronic Transaction on Numerical Analysis,2009,33: 84-104.
    [73]Guo C. Convergence rate of an iterative method for a nonlinear matrix equation, SIAM Journal on Matrix Analysis and Applications,2001,23:295-302.
    [74]Varga R. Matrix Iterative Analysis, (2nd Edition), Springer-Verlag Berlin, Heidel-berg,2000.
    [75]Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York,1979.
    [76]Golub G H, Van Loan C F. Matrix Computations, (3rd Edition), Johns Hopkins University Press, Baltimore, MD,1996.
    [77]Li J, White J. Low-rank solution of Lyapunov equations, SIAM Journal on Matrix Analysis and Applications,2002,24:260-280.
    [78]Tisseur F. Backward error and condition of polynomial eigenvalue problems, Linear Algebra and its Applications 2000,309:339-361.
    [79]王松桂,吴密霞,贾忠贞.矩阵不等式(第二版).北京:科学出版社,2006.
    [80]Jones W, Thron W. Continued Fractions:Analytic Theory and Applications, En-cyclopedia of Mathematics and Its Applications, Vol 2, Addison-Wesley, Reading, 1980.
    [81]苏仰锋,张开军,刘明李,二次矩阵方程最大最小解存在的充分条件,复旦大学学报(自然科学版),2004:43:303-306.
    [82]Lin W, Xu S. Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM Journal on Matrix Analysis and Appli-cations,2006,28:26-39.
    [83]Gardiner J D, Laub A J, Amato J J, Moler C B. Solution of the Sylvester matrix equation AXBT+CXDT= E, ACM Transactions on Mathematical Software, 1992,18:223-231.
    [84]Gardiner J D, Laub A J, Amato J J, Moler C B. Algorithm 705:A FORTRAN-77 software package for solving the Sylvester matrix equation AXBT+CXDT= E, ACM Transactions on Mathematical Software,1992,18:232-238.
    [85]Tisseur F, Meerbergen K. The quadratic eigenvalue problems, SIAM Review,2001, 43:235-286.
    [86]Bini D A, Gemignani L, Meini B. Computations with infinite Toeplitz matrices and polynomials, Linear Algebra and its Applications,2002,343/344:21-61.
    [87]Meini B. Efficient computation of the extreme solutions of X+A*X-1A= Q and X-A*X-1A= Q, Mathematics of Computaion,2002,239:1189-1204.
    [88]Horn R A, Johnson C R. Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [89]Wu C. On some ordering properties of the generalized inverses of Nongeative def-inite matrices, Linear Algebra and its Applications,1980,32:49-60.
    [90]Gohberg I, Lancaster P, Rodman L. Matrix Polynomials, Academic Press, New York,1982.
    [91]Lancaster P. Isospectral vibrating systems, part 1:the spectral method, Linear Algebra and its Applications,2005,409:51-69.
    [92]Lancaster P. Inverse spectral problems for semisimple damped vibrating systems, SIAM Journal on Matrix Analysis and Applications,2007,29:279-301.
    [93]Chiang C, Chu K, Guo C, Huang T, Lin W, Xu S. Convergence analysis of the dou-bling algorithm for several nonlinear matrix equations in the critical case, SIAM Journal on Matrix Analysis and Applications,2009,31:227-247.
    [94]Guo C, Iannazzo B, Meini B. On the doubling algorithm for a (shifted) non-symmetric algebraic Riccati equations, SIAM Journal on Matrix Analysis and Applications,2007,29:1083-1100.
    [95]Huang T, Lin W. Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations, Linear Algebra and its Applications,2009, 430:1452-1478.
    [96]Juang J, Lin H, Nelson P. Global existence, aymptotics and uniqueness for the reflection kernel of the angularly shifted transport equation, Mathematical Models and Methods in Applied Sciences,1995,5:239-251.
    [97]Juang J, Chen I. Iterative solution for a certain class of algebraic matrix Riccati equations arising in transport theory, Transport Theory and Statistical Physics, 1993,22:65-80.
    [98]Juang J, Lin Z. Convergence of an iterative technique for algebraci matrix Riccati euqations and applications to transport theory, Transport Theory and Statistical Physics,1992,21:87-100.
    [99]Gohberg I, Kailath T, Olshevsky V. Fast Gaussian elimination with partial pivot-ing for matrices with displacement structure, Mathematics of Computation,1995, 64:1557-1576.
    [100]Bao L, Lin Y, Wei Y. A modified simple iterative method for nonsymmetric al-gebraic Riccati equations arising in transport theory, Applied Mathematics and Computation,2006,181:1499-1504.
    [101]Bini D A, Gemignani L, Pan V Y. Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations, Numerical Mathematics, 2005,100:373-408.
    [102]Benner P, Li R, Truhar N. On the ADI method for Sylvester equations, Journal of Computational and Applied Mathematics,2009,233:1035-1045.
    [103]Chandrasekaran S, Gu M, Sun X, Xia J, Zhu J. A superfast algorithm for Toeplitz systems of linear equations, SIAM Journal on Matrix Analysis and Application, 2007,29:1247-1266.
    [104]Martinsson P G, Rokhlin V, Tygert V. A fast algorithm for the inversion of general Toeplitz matrices, Computers and Mathematics with Applications,2005,50:741-752.
    [105]Benner P, Saak J. A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations, Technical Report, January,2010.
    [106]Guo C, Higham N J. Iterative solution of a nonsymmetric algebraic Riccati equa-tion, SIAM Journal on Matrix Analysis and Applications,2007,29:396-412.
    [107]Benner P, Mena H, Saak J. On the parameter selection problem in the Newton-ADI iteration for large-scale Riccati equations, Electronic Transaction on Numerical Analysis,2008,29:136-149.
    [108]Wachspress E L. Optimum alternating-direction-implicit iteration parameters for a model problem, Journal of the Society for Industrial and Applied Mathematics, 1962,10:339-350.
    [109]Wachspress E L. The ADI Model Problem, Windsor, CA,1995.
    [110]Wachspress E L. ADI iteration parameters for solving Lyapunov and Sylvester equations, Technical Report, March,2009.
    [111]Penzl T. A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM Journal on Scientific Computing,2000,21:1401-1418.
    [112]Guo C, Lin W. Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory, Linear Algebra and its Applications,2010,432:283-291.
    [113]Akhiezer N I. Elements of the theory of elliptic functions, American Mathematical Society, Providence, RI,1990.
    [114]Li R. Solving secular equations stably and efficiently, Technical Report, Depart-ment of Mathematics, University of California, Berkeley, CA, LAPACK Working Note 89,1993.
    [115]Greenbaum A. Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA,1997.
    [116]Saad Y. Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,1996.
    [117]Kelley C T. Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, PA,1995.
    [118]Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables, SIAM, Philadelphia, PA,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700