啁啾光纤光栅特性分析及压杆调谐技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是利用掺杂光纤的光敏效应,在光纤的纤芯中因激光曝光、离子注入、电弧放电或激光热效应刻写等因素形成的一类折射率周期性调制结构,是一种新型光纤光子器件。光纤光栅具有与光纤完全兼容、反射特性好、附加损耗小、体积小、成本低等特点,同时对外界温度、应力、应变的变化具有较好的响应特性,因此在光纤通信和光纤传感领域已经并将继续得到广泛应用。在实际的应用中也需要根据滤波器的要求设计出合适的光纤光栅器件,这涉及到光栅的参数重构理论。
     本文以啁啾光纤光栅的特性为核心,对啁啾光纤光栅的切趾、参数重构、调谐技术进行了理论和实验研究,主要内容有:
     1.简要介绍了光纤光栅的发展历史、光纤材料的光敏性、光纤光栅的分类,对光纤光栅的写入技术进行了总结。
     2.介绍了光纤光栅常用的理论分析方法,在折射率调制模型的基础上,利用光场对本征模的展开式以及本征模的正交关系,推导出光纤光栅的耦合模方程。在给定的边界条件下,得出了均匀布拉格光栅的反射特性公式,分析了光栅长度、折射率调制深度对反射特性的影响;对于啁啾光纤光栅,利用矩阵传输法将整个光栅离散为多个均匀布拉格光栅的级联从而得到啁啾光栅的反射特性,对光栅长度、啁啾系数、折射率调制深度等因素的影响进行了详细分析。
     3.针对对称切趾严重降低反射带宽的问题,仿真分析了非对称切趾在展宽带宽和抑制时延波动方面的优势。以啁啾光纤光栅为例,讨论了在光栅两端进行不同比例的切趾时反射带宽和时延纹波的变化情况,通过仿真提出了一个相对合理的切趾比例值。综合来看,需要在反射带宽和群时延纹波之间根据实际需要进行折衷考虑。长波长端30%切趾、短波长端20%切趾是个比较合适的方案。
     4.对光纤光栅参数重构的相关理论进行了介绍,给出了离散层析算法的基本原理和步骤。通过耦合模方程和矩阵传输法有效近似得到了耦合系数与光栅折射率分布之间的关系以及离散层析算法的迭代公式。运用此算法对无色散FBG滤波器和用于色散补偿的CFBG滤波器进行了仿真。此外将算法应用于斜边滤波器的设计,重构了三角光谱光纤光栅,得到了有效的结果。
     5.提出了一种新的压杆调谐机构,利用该机构可以实现波长调谐和带宽调谐。压杆的推进量由步进电机精确控制,将光纤光栅粘贴在压杆的中点处,获得了中心波长在35.43nm(1532.94nm-1568.37nm)范围内的双向调谐。将光纤光栅粘贴在压杆的四分之一处,通过压应变和拉应变可以实现12.6nm的带宽调谐。
     最后一章总结概括了论文的主要工作以及下一步需要继续研究的方向。
As a new kind of optical device, the fiber grating is a fiber structure that the refractive index of the core is modulated periodically. Based on the photosensitivity of Ge-doped fiber, fiber gratings can be fabricated by successive laser exposure of single mode fiber to UV light beam, excimer laser, femtosecond laser, CO2 laser. Also, they can be inscribed by ion implantation technique, arc discharge method, HF etching technique. Because of the excellent characteristics, such as good compatibility to fiber, fine reflectivity performance, low insertion loss, small volume, low cost and high sensitivity to the changes of environmental temperature, stress and strain, fiber gratings have been and will be used in fiber communication and fiber sensing domain extensively. In actual applications, we always need to design proper fiber grating devices to meet the special demands of filters, which is related to fiber grating synthesis algorithm.
     The thesis pays more attention to the characteristics of chirped fiber Bragg gratings. Apodization technique, parameters reconstruction algorithm and grating tuning technique of chirped fiber grating are theoretically and experimentally studied.
     The main contents are as follows:
     1. The development history of fiber gratings, photosensitivity of fiber materials and the sorts of grating are briefly introduced. And write techniques of fiber grating are summarized in chapter 1.
     2. Common analysis theories of fiber gratings is introduced. Based on index modulation model, the coupled mode equations are derived by eigenmode expansion of light field. By the given boundary conditions, the reflectivity formula of uniform fiber Bragg grating is obtained. The influences of grating length and index modulation depth on uniform Bragg grating are analyzed. Reflection characteristics of chirped fiber Bragg grating are described by transfer matrix method which divides the grating into many uniform gratings. The influences of grating length, chirp parameter and index modulation depth on chirped fiber grating are demonstrated in detail in chapter 2.
     3. Symmetric apodization of fiber grating can seriously reduce the bandwidth of reflection spectrum. In chapter 3, we show the advantages of asymmetric apodization of fiber grating in broadening reflection bandwidth and reducing time delay ripples. We take chirped fiber Bragg grating as an example to discuss the changes of reflection bandwidth and time delay ripples when the two ends of grating have different apodization ratios. A reasonable apodization ratio is presented after sufficient simulations. To sum up, we should take a compromise consideration between reflection bandwidth and time delay ripples in apodization design process. 30% apodization on long wavelength end and 20% apodization on short wavelength end is a proper scheme when design a CFBG for dispersion compensation.
     4. Theories of fiber grating parameters reconstruction are introduced. Especially, basic principles and computation steps of discrete layer peeling algorithm are demonstrated. We get the relationship of coupling coefficients and fiber index distribution by taking an effective approximation of coupled mode equation and transfer matrix. Finally, we apply this algorithm to synthesizing three kinds of special fiber grating filters, dispersionless FBG filter, CFBG filter for dispersion compensation and triangular spectrum FBG. Results show its effectiveness in synthesizing process.
     5. A new grating tuning mechanism is presented. Based on elastic compression bar, the mechanism can realize both wavelength tuning and bandwidth tuning. By attaching the fiber grating to the middle of the compression bar, the center wavelength tunes 35.43nm bidirectionally. When attached it to the quarter part of bar, 12.6nm bandwidth tuning is realized.
     In the end, we summarize the main work of the thesis and predict the direction for further study.
引文
[1]饶云江,王义平,朱涛,光栅光栅原理及应用,科学出版社,2006年8月第一版.
    [2]K.O.Hill,Y.Fujii,D.C.Johnson,et al,Photosensitivity in optical fiber waveguide:Application to reflection filter fabrication,Appl.Phys.Lett.,1978,32(10):647-649.
    [3]G.Meltz,W.W.Morey,N.J.Doran,Formation of Bragg gratings in optical fibers by a transverse holographic method,Opt.Lett.,1989,14(5):823-825.
    [4]K.O.Hill,B.Malo,F.Bilodeau,et al,Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,Appl.Phys.Lett.,1993,62:1035-1037.
    [5]A.Yariv,Coupled-mode theory for guided-wave optics,IEEE J.Quantum Electron.,1973,QE-9(9):919-933.
    [6]H.Kogelnik,Filter response of nonuniform almost-periodic structures,Bell syst.Tech.J.,1976,55(1):109-126.
    [7]L.A.Weller-Brophy,D.G.Hall,Analysis ofwaveguide gratings:application of Rouard's method,J.Opt.Soc.Am.B,1985,2(6):863-871.
    [8]L.A.Weller-Brophy,D.G.Hall,Analysis of waveguide gratings:a comparison of the results of Rouard's method and coupled-mode theory,J.Opt.Soc.Am.A,1987,4(1):60-65.
    [9]T.Erdogan,Cladding-mode resonances in short-and long-period fiber grating filters,J.Opt.Soc.Am.A,1997,14(8):1760-1773.
    [10]T.Erdogan,Fiber Grating Spectra,J.Lightwave Technol.,1997,15(8):1277-1294.
    [11]I.Bennion,J.A.R.Williams,L.Zhang,et al,UV-written in-fiber Bragg gratings,Opt.Quantum Electron.,1996,28(2):93-135.
    [12]D. L. Williames, B. J. Ainscie, J. R. Armitage, et al, Enhanced UV photosensitivity in boron codoped germanosilicate fibers. Electron. Lett., 1993,29: 45-47.
    
    [13]P. J. Lemaire, R. M. Atkins, V. Mizrahi, et al, High pressure H_2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO_2 doped optical fibers, Electron. Lett., 1993,29(13): 1191-1193.
    
    [14]D. P. Hand, P. St. J. Russell, Photoinduced refractive-index changes in germanosilicate fibers, Opt. Lett., 1990,15(2): 102-104.
    [15]D. L. Williams, S. T. Davey, R. Kashyap, et al, Direct observation of UV induce bleaching of 240nm absorption band in photosensitive germanosilicate glass fibers, Electron. Lett., 1992, 28(4): 369-371.
    [16]B. Poumellec, F. Kherbouche, The photorefractive Bragg gratings in the fibers for telecommunications, J. de Physique III 6,1996, (6): 1595-1624.
    [17]Reid D. C. J., Ragdale C. M., Bennion I., et al, Phase-shifted moire grating fiber resonators, Electron Lett, 1990,26(1): 10-12.
    [18]M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al, Long period fiber grating as band-rejection filters, IEEE J. Lightwave Technol, 1996, 14(1): 58-65.
    [19]B. Malo, K. O. Hill, F. Bilodeau, et al, Point-by-point fabrication of micro-Bragg grating in photosensitive fiber using single excimer pulse refractive index modification techniques, Electron. Lett., 1993, 29(18): 1668-1669.
    [20]G. Meltz, W. W. Morey, W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett., 1989, 14(15): 823-825.
    [21]B. J. Eggleton, P. A. Krug, L. Poladian, Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings, Opt. Lett., 1994,19(12): 877-879.
    [22]H. G. Limberger, P. Y. Fonjallaz, P. Lambelet, et al, Optical low-coherence reflectometry characterization of efficient Bragg gratings in optical fiber, Proc.SPIE, 1993,2044:272-283.
    [23]李川,张以谟,赵永贵等,光纤光栅:原理、技术与传感应用,科学出版社,2005年10第一版.
    [24]J.J.Shi,Y.Shi,Steep skirt fiber Bragg grating fabrication using a new apodized phase mask,Electron.Lett.,1997,33(22):1895-1896.
    [25]吴强,余重秀,王葵如等,光纤光栅切趾技术,光子技术,2004,2(4):71-76.
    [26]J.Zhao,An object-oriented Simulation Program for Fiber Bragg Gratings,MS thesis,Rand Afrikaans University,Republic of South Africa,2001.
    [27]K.Ennser,M.N.Zervas,R.I.Laming,Optimization of apodized linearly chirped fiber gratings for optical communications,IEEE J.Quantum Electron.,1998,34(5):770-778.
    [28]D.Pastor,J.Capmany,D.Ortega,et al,Design of apodized linearly chirped fiber gratings for dispersion compensation,J.Lightwave Technol.,1996,14(11):2581-2588.
    [29]R.Kashyap,M.L.Rocha,On the group delay characteristics of chirped fiber Bragg gratings,Opt.Commun.,1998,153:19-22.
    [30]王琳,延凤平,李一凡等,非对称切趾对啁啾光纤光栅特性优化的分析,光学学报,2007,27(4):587-592.
    [31]刘艳,郑凯,谭中伟等,非对称单侧曝光切趾使啁啾光纤光栅获得优化性能,物理学报,2006,55(11):5859-5865.
    [32]K.A.Winick,J.E.Roman,Design of corrugated waveguide filters by Fourier Transform techniques,IEEE J.Quantum Electron.,1990,26:1918-1929.
    [33]E.Peral,J.Capmany,J.Marti,Iterative solution to the Gel'fan-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings,IEEE J.Quantum Electron.,1996,32:2078-2084.
    [34]M.A.Muriel,J.Azana,A.Carballar,Fiber grating synthesis by use of time frequency representation,Opt.Lett.,1998,23:1526-1528.
    [35]J.Azana,M.A.Muriel,L.R.Chen,Fiber Bragg grating period reconstruction using time-frequency signal analysis and application to distributed sensing,IEEE/OSAJ.Lightwave Technol.,2001,19:646-654.
    [36]R.Feced,M.N.Zervas,M.A.Muriel,An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings.IEEE J.Quantum Electron.,1999,35:1105-1115.
    [37]I.M.Gel'fand and B.M.Levitan,On a determination of a differential equation from its spectral function,Amer.Math.Soc.Trasl.,1955,2(1):253-304.
    [38]G.L.Lamb,Elements of soliton theory,New York:Wiley,1980.
    [39]A.M.Bruckstein,B.C.Levy,T.Kailath,Differential methods in inverse scattering,SIAM J.Appl.Math.,1995,45(2):312-335.
    [40]P.V.Frangos,D.L.Jaggard,A numerical solution to the Zakharov-Shabat inverse scattering problem,IEEE Trans.Antennas Propagat.,1991,39:74-79.
    [41]B.Gopinath,M.M.Sondhi,Inversion of the telegraph equation and the synthesis of nonuniform lines,Proc.IEEE,1971,59:383-392.
    [42]P.V.Frangos,D.L.Jaggard,The reconstruction of stratified dielectric profiles using successive approximations,IEEE Trans.Antennas Propagat.,1987,35:1267-1272.
    [43]E.Peral,J.Capmany,J.Marti,Design of fiber grating dispersion compensators using a novel iterative solution to the Gel'fan-Levitan-Marchenko coupled equations,Electron.Lett.,1996,32(10):918-919.
    [44]L.Poladian,Simple grating synthesis algorithm,Opt.Lett.,2000,25:787-789.
    [45]J.Skaar,L.Wang,T.Erdogan,On the Synthesis of Fiber Bragg Gratings by Layer Peeling,IEEE J.Quantum Electron.,2001,37(2):165-173.
    [46]J.Skaar,Ole H.Waagaard,Design and Characterization of Finite-Length Fiber Gratings,IEEE J.Quantum Electron.,,2003,39(10):1238-1245.
    [47]B.Liu,Z.R.Tong,S.H.Chen,et al,A novel method of edge filter linear demodulation using long period grating in fiber sensor system,Acta Optica Sinica,2003,23(Supplement):857-858.
    [48]R.Huang,Y.Zhou,H.Cai,et al,A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,Opt.Commun.,2004,229:197-201.
    [49]张东生,光纤光栅的谱形控制及其应用研究,南开大学博士论文,2004.
    [50]C.D.Butter,G.B.Hocker,Fiber optics strain gauge,Applied Optics,1978,17(18):2867-2869.
    [51]S.Magne,S.Rougeault,M.Vilela,et al,State-of-strain evaluation with fiber Bragg grating rosettes:application to discrimination between strain and temperature effects in fiber sensors,Appl.Opt.,1997,36(36):9437-9447.
    [52]G.A.Ball,W.W.Morey,Continuously tunable single mode erbium fiber laser,Opt.Lett.1992,17(6):420-422.
    [53]黄永清,刘凯,郭威等,采用压电陶瓷的电调谐光纤光栅器件,北京邮电大学学报,1999,22(2):11-15.
    [54]J.L.Arce-Diego,R.Lopez,J.M.Lopez-higuera,et al,Fiber Bragg grating as an optical filter tuned by a magnetic field,Opt.Lett.,1997,22(9):603-605.
    [55]赵岭,蔡海文,李琳,夏江珍等,光纤光栅电磁调谐技术的研究,中国激光,2002,29(4):313-316.
    [56]周建华,任国荣,杨健君等,磁场调谐的啁啾光纤光栅延迟线,电子科技大学学报,2009,38(1):152-156.
    [57]J.Lauzon,S.Thibault,J.Martin,et al,Implementation and characterization of fiber Bragg grating linearly chirped by a temperature gradient,Opt.Lett.,1994,19(23):2027-2029.
    [58]B.Guan,H.Y.Tam,H.Chan,et al,Temperature-tuned erbium-doped fiber ring laser with polymer-coated fiber grating,Opt.Commun.,2002,202:331-334.
    [59]关柏鸥,葛春风,余有龙等,基于温度梯度的光纤光栅啁啾调谐,光子学报,1998,27(10):936-938.
    [60]罗跃纲,高凌霞,刘贯立等,材料力学,科学出版社,2004年7月第一版.
    [61]J.Zhou,X.Dong,Z.Shi,Tunable chirped fiber Bragg grating based on the D-shaped fiber,Opt.Commun.,2009,281:2077-2082.
    [62]秦子雄,曾庆科,项阳等,大调谐范围的等强度梁光纤光栅波长调节器,光学学报,2001,21(12):1421-1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700