嗜热β-半乳糖苷酶ST0773的表达探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-半乳糖苷酶可以催化糖苷类化合物的合成,解决乳糖不耐受症以及作为酶类药物,对新生儿消化不良等方面具有重要的作用。本文采用生物信息学方法推测来自嗜热古细菌Sulfolobus Tokodaii strain 7基因组中的ORF0773为编码β-半乳糖苷酶的基因,构建了ST0773的大肠杆菌工程菌并对其可溶表达进行了初步的探索。首先培养古细菌并提取其基因组,设计引物并成功扩增出
     ST0773基因,将其连接到pET-28b质粒上,转入E.coli BL21(DE3)中进行表达。然后分别在20℃、30℃和37℃条件下诱导目的蛋白表达,经SDS-PAGE检测,上清中目的蛋白表达量比较低,大部分以沉淀的形式存在。鉴于该酶氨基酸序列中含有12%的稀有密码子,我们将其转入E.coli BL21(DE3)CondonPlus-RIL宿主细胞中,进行不同温度和不同IPTG浓度的诱导表达,但是大部分目的蛋白仍然是以沉淀的形式存在,从沉淀蛋白电泳图来看,表达量有明显的提高。为克服包涵体的形成,构建了三种重组表达载体pET-15b-0773、pET-32a-0773和pHUE-0773,转入E.coli BL21(DE3)CondonPlus-RIL中诱导表达,发现目的蛋白绝大部分仍然是以沉淀的形式存在。结果表明,β-半乳糖苷酶ST0773在大肠杆菌中主要以包涵体形式表达,硫氧还蛋白融合表达和泛素融合表达也不能改善包涵体的形成。
Thermophilic archaea including sulfur-dependent archaea,reducing archaea andmethanogenic archaea live in hot springs,craters and other extreme environments.For the thermostable enzymes from thermophilic archaea have high temperaturetolerance,they have greater potential for industrial applications than normaltemperature enzyme. For this reason, thermostable enzymes are focused on day afterday.
     β-galactosidases (EC.3.2.1.23) belong to glycoside hydrolases family.Accordingto amino acid sequence and protein fold,they are divided into 115families.Glycoside hydrolases play important roles in the degradation andtransformation of glycosides.β-galactosidases hydrolyze glycosidic bondβ-D-(1→4)and also have transglycosylation activity on galacto-oligosaccharide.They are widelydistributed in animals,plants,bacteria,fungi and yeast.
     According to their activity,β-galactosidases are classified into GH-1、GH-2、GH-35 and GH-42.β-galactosidases from bacteria are mainly distributed in GH-2and GH-42,β-galactosidases from archaea are mainly distributed in GH-1 and GH-2.β-galactosidases from GH-2 and GH-42 have hydrolysis activity and hightransglycosylation activity.β-galactosidases play important roles in the production ofgalacto-oligosaccharide,medical,vegetables soften and mature,and environmentalengineering. Recent research work are focused on findring goodβ-galactosidase andhigh expressin ofβ-galactosidase.
     Thermophilic archaea Sulfolobus tokodaii strain 7 which optimally growsgrows at 80℃with pH 2.5-3.0.Japanese scientist had sequenced its whole genomeby shot gun method in 2001.Here we reported the characterization of ST0773 proteinexpressed from the ST0773 gene from Sulfolobus tokodaii strain 7.With thebioinformatics methods,we found it contains 1152 base pairs and it encodes 483 amino acids and a stop codon.The putative molecular mass and the isoelectric pointof the ST0773 are 44674.1Da and pH 6.28.All the four cysteines in this enzyme donot form disulfide bond. Protein sequence analysis showed that this protein containsno signal peptide and no transmembrane region,but four potential glycosylationsites.
     By the frequency of arginine codon usage and the ratio of (E+K)/(H+Q),wefound it belonged to a kind of thermophilic proteins.The observed structure domainand result from NCBI and Homologous Sequences Analysis indicated that theproduction of ST0773 belongs to glycoside hydrolases family 1 and contains of aconserved sequence IIVTENGIA.It showed 52% sequence homology withβ-galactosidase from Thermosphaera Aggregans.Structure obtained by homologymodeling showed that: ST0773 contained TIM barrel domain with the (β/α)8,theactive center residues (Glu-166,Glu-310 and Asn-247) were located in the corner ofβ-4,β-7 andβ-6.We obtained the gene ST0773 from the thermophiles SulfolobusTokodaii strain 7 with PCR,and then constructed the recombinant plasmid usingST0773 and pET-28b.The enzyme digested result,PCR result and sequencingshowed that we successfully constructed the recombinant plasmid.Then wetransfected the recombinant plasmid into the E.coli BL21 (DE3) host cells forprotein expression.The target protein could be overexpressed within E.coli under20℃、30℃、37℃for 6h,but most of the recombinant protein were expressed asprecipitation by SDS-PAGE analysis.And then we transfected the recombinantplasmid into E.coli BL21(DE3)-CondonPlus-RIL host cells for proteinexpression.The target protein could be overexpressed within E.coli under differenttemperatures and different concentration IPTG under 20℃,but most of therecombinant protein were also expressed as precipitation by SDS-PAGE analysis.Wethen constructed three expressed vectors(pET-15b-ST0773,pET-32a-ST0773,pHUEST0773)to improve the expression and realize soluble expression.Then wetransfected the recombinant plasmid into the E.coli BL21 (DE3) CodonPlus-RILhost cells for protein expression.The target protein could be overexpressed within E.coli under 20℃、30℃、37℃for 6h with 0.05mM IPTG,but most of the proteinwere also expressed as precipitation by SDS-PAGE analysis. But from expression ofprecipitation,fusion vector were more than non-fusion vector.Taking into account theconvenience of purification,we selected pHUE-ST0773 as expression vectorfinally,it lay the foundation for the next step enzymatic study.
引文
[1]和致中,彭谦,陈俊英,等.高温菌生物学[M].北京:科学出版社,2001.
    [2]Erauso G,Robb FT,Place AR,Sowers KR,et al.Archaea-A laboratory manual[M].New York:Cold Sping Harbor Laboratory press,1995.
    [3]Brierley JA. Contribution of chemolithoautotrophic bacteria to the acid thermalwaters of the geysir spring group in Yellowstone National Park[D].MontanaState University. Bozeman,MT,1966.
    [4]Brock TD, Brock KM, Belly RT, et al. Sulfolobus: a new genus ofsulfur-oxidizing bacteria living at low pH and high temperature[J] .ArchMicrobiol, 1972, 84:54?68.
    [5]ROTHER Michael,METCALF William W.Genetic technologies for Archaea[J].Current Opinion in Microbiology,2005 ,8 :745-751.
    [6]PARK,NA-YOUNG,et al.Enzymatic Characterization and Substrate Specificityof Thermostableβ-Glycosidase from Hyperthermophilic Archaea, Sulfolobusshibatae Expressed in E.coli[J].Microbiol.Biotechnol. 2007,17(3): 454–460.
    [7]Yutaka Kawarabayasi,Yumi Hino,Hiroshi Horikawa,Koji et al.Complete GenomeSequence of an Aerobic Thermoacidophilic Crenarchaeon,Sulfolobus tokodaiistrain7. [J].DNA Research 2001,8:123–140.
    [8]Suzuki,T, et al.Sulfolobus tokodaii sp.nov.a new member of the genus Sulfolobusisolated from Beppu hot springs, Japan[J].Extremophiles,2002, 6:39–44.
    [9]Kumarevel T,Nakano N,Ponnuraj K,et al.Crystal structure of glutamine receptorprotein from Sulfolobus tokodaii strain 7 in complex with its effectorL-glutamine: implications of effector binding in molecular association and DNAbinding[J]. Nucleic Acids Res. 2008,36(14):4808-20.
    [10]Sakuraba H,et al.Structure of l-aspartate oxidase from the hyperthermophilicarchaeon Sulfolobus tokodaii[J].Biochim Biophys Acta,2008,1784(3):563-71.
    [11]Suzuki K,et al.Crystallization and preliminary X-ray crystallographic study of aputative aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaiistrain 7[J].Acta Crystallogr Sect F Struct Biol Cryst Commun,2007,63:608-12.
    [12]Fujihashi M,Numoto N,Kobayashi Y,Mizushima A,et al.Crystal structure ofarchaeal photolyase from Sulfolobus tokodaii with two FAD molecules:implication of a novel light-harvesting cofactor[J],Mol Biol,2007,365(4):903-10.
    [13]Iwasaki T,Kounosu A,Ohmori D,Kumasaka T.Crystallization and preliminaryX-ray diffraction studies of a hyperthermophilic Rieske protein variant(SDX-triple) with an engineered rubredoxin-like mononuclear iron site[J],ActaCrys Sect F Struct Biol Cryst Commun,2006,62(10):993-5.
    [14]You DJ,et al.Crystallization and preliminary crystallographic analysis of type 1RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7[J],ActaCrystallogr Sect F Struct Biol Cryst Commun,2006, 62(8):781-4.
    [15]Oku Y,Ohtaki A,Kamitori S,Nakamura N,Yohda M,et al.Structure and directelectrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon,Sulfolobus tokodaii strain 7[J],Inorg Biochem,2004,98(7):1194-9.
    [16]Kumarevel T,Tanaka T,Umehara T,Yokoyama S.ST1710-DNA complex crystalstructure reveals the DNA binding mechanism of the MarR family of regulators.[J]Nucleic Acids Res,2009,37(14):4723-35.
    [17]Liu H,Rudolf J,Johnson KA,McMahon SA,et al.Structure of the DNA repairhelicase XPD[J],Cell,2008,133(5):801-12.
    [18]Bradford,M.M.A rapid and sensitive method for the quantitation of microframquantities of protein utilizing the principle of protein-dye binding[J].Analbiochem,1976,72:248-254.
    [19]Liu B,Wu L,Liu T,Hong Y,Shen Y,Ni J.A MOFRL family glycerate kinase fromthe thermophilic crenarchaeon, Sulfolobus tokodaii, with unique enzymaticproperties [J].Biotechnol Lett,2009,31(12):1937-41.
    [20]Satomura T,Kawakami R,Sakuraba H,et al.A novel flavin adenine dinucleotide(FAD) containing d-lactate dehydrogenase from the thermoacidophiliccrenarchaeota Sulfolobus tokodaii strain 7:purification,characterization andexpression in Escherichia coli[J].Biosci Bioeng,2008,106(1):16-21.
    [21]Ohshima T,Kawakami R,Kanai Y,Goda S,Sakuraba H.Gene expression andcharacterization of 2-keto-3-deoxygluconate kinase, a key enzyme in themodified Entner-Doudoroff pathway of the aerobic and acidophilichyperthermophile Sulfolobus tokodaii[J].Protein Expr Purif,2007,54(1):73-8.
    [22]Yosuke KoGA, Mami OHGA,et al.Identification of sn-Glycerol-1-phosphateDehydrogenase Activity from Genomic Information on a HyperthermophilicArchAe-on,Sulfolobus tokodaii Strain7[J].Biotechnol,2006,70(1):282-285.
    [23]Suzuki Y,et al.A novel thermostable esterase from the thermoacidophilicarchaeon Sulfolobus tokodaii strain 7[J].FEMS Microbiol Lett, 2004,236(1):97-102.
    [24]Zhang Z ,et al.Identification of an extremely thermostable enzyme with dualsugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilicarchaeon,Sulfolobus tokodaii strain 7[J].Biol Chem. 2005,280(10):9698-705.
    [25]Wei T,Zhang S,Zhu S,Sheng D, Ni J,Shen Y.Physical and functional interactionbetween archaeal single-stranded DNA-binding protein and the 5'-3' nucleaseNurA. [J].Biochem Biophys Res Commun,2008,367(3):523-9.
    [26]Kitaoka,M.and Fushinobu,S."Glycoside Hydrolase Family" in CAZypedia,available at URL http://www.cazypedia.org/accessed 30 March 2010.
    [27]Gebler J,et al.Stereoselective hydrolysis catalyzed by related beta-1,4-glucanasesand beta-1,4-xylanases[J].Biol Chem,1992 267(18):12559-61.
    [28]Henrissat B,Callebaut I,Fabrega S,Lehn P,Mornon JP,and Davies G.Conservedcatalytic machinery and the prediction of a common fold for several families ofglycosyl hydrolases[J].Proc Natl Acad Sci U S A,1995,92(15):7090-4.
    [29]Henrissat,B & Bairoch,A.Updating the sequence based classification of glycosylhydrolases[J].Biochem,1996,316:695–696.
    [30]http://www.cazy.org
    [31]胡莹,杨凌,杨胜利.糖苷酶序列分类法和作用机理的研究进展[J].药物生物技术,2006,13(1):066~070.
    [32]McIntosh LP,Hand G,Johnson PE,et al.The pKa of the general acid/basecarboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study ofbacillus circulans xylanase[J].Biochem,1996,35(31):9958-66.
    [33]McCarter JD and Withers SG.Mechanisms of enzymatic glycoside hydrolysis.[J].Curr Opin Struct Biol,1994,4(6):885-92.
    [34]Terwisscha van Scheltinga AC,et al Stereochemistry of chitin hydrolysis by aplant chitinase/lysozyme and X-ray structure of a complex with allosamidin:evidence for substrate assisted catalysis[J].Biochem,1995,34(48):15619-23.
    [35]Rajan SS,Yang X,Collart F, et al.Novel catalytic mechanism of glycosidehydrolysis based on the structure of an NAD+/Mn2+-dependent phospho-alphaglucosidasefrom Bacillus subtilis[J].Structure,2004,12(9):1619-29.
    [36]李玉强,等.β-半乳糖苷酶的研究与应用[J].中国食品添加剂,2001,(2):30-34.
    [37]孙玉梅,等.乳糖酶的应用及固定化食品工业科技,1995,(3):23~25.
    [38]Reyhan Gul-Guven,et al.Purification and some properties of aβ-galactosidasefrom the thermoacidophilic Alicyclobacillus acidocaldarius subsp.rittmanniiisolated from Antarctica[J].Enzyme and Microbial Technology,2007,40:1570–1577.
    [39]Jenkins,J,Leggio,L.L.,Harris,G.&Pickersgill,R..β-Glucosidase,β-galactosidase,family-Acellulases, family-F xylanases and 2 barley glycanases form asuperfamily of enzymes with 8-foldβ/a architecture and with 2 conservedglutamates near the carbo-xy terminal ends ofβstrand-4 andβstrand-7[J].FEBSLetters,1995,362:281–285.
    [40]P.P.& Brenchley,J.E.Characterization of a salt-tolerant family 42β-galactosidasefrom a psychrophilic antarctic Planococcus isolate[J].Appl Environ Microb,2000,66:2438–2444.
    [41]Van den Broek,L.A.M.,Hinz,S.W.A.,Beldman, G., Vincken, J. P., & Voragen, A.G.J.Bifidobacterium carbohydrases–Their role in breakdown and synthesis of(potential) prebiotics[J].Molecular Nutrition and Food Research,2008,52(1):146–163.
    [42]http://www.expasy.ch/cgi-bin/nicedoc.pl?PDOC00495 or PDOC00531 or PDOC00910
    [43]Chi,Y.I.Martinez-Cruz,L.A,Jancarik,J.Swanson,R.V,et al.Crystal structure of thebeta-glycosidase from the hyperthermophile Thermosphaera aggregans:insightsinto its activity and thermostability[J],FEBS Lett,1999,445:375-383.
    [44]Skalova,T.Dohnalek,J,Spiwok,V,Lipovova,P,et al.Cold-active beta-galactosidasefrom Arthrobacter sp.C2-2 forms compact 660 kDa hexamers:crystal structure at1.9A resolution[J].Mol Biol,2005,353:282-294.
    [45]L.Rojas,et al.Crystal Structures of beta-Galactosidase from Penicillium.sp. andits Complex with Galactose[J].Mol Biol 2004,343:1281–1292.
    [46]Hidaka,M,et al.Trimeric crystal structure of the glycoside hydrolase family 42beta-galactosidase from Thermus thermophilus A4 and the structure of itscomplex with galactose[J]. Molecular Biology,2002,322:79-91.
    [47]陈卫,张灏,葛佳佳,丁霄霖.高温乳糖酶基因在大肠杆菌中的高效表达[J].生物技术,2002,12(5):15-18
    [48]DUAN Wen juan,YANG Jiao yan,LI Zhuo fu, ZHANGWei,ZHANG Zhi fang.Expression ofβ-Galactosidase from Pyrococcus furiosus in E.coli and Analysisof Lactase Properties[J].Agricultural Science and Technology,2008,10(2):76-81.
    [49]Dietmar Haltrich,et al.Cloning and expression of theβ-galactosidase genes fromLactobacillus reuteri in Escherichia coli[J].Biotechnology,2007,129:581–591.
    [50]Ah-Reum Park & Deok-Kun Oh.Effects of galactose and glucose on thehydrolysis reaction of a thermostableβ-galactosidase from Caldicellulosiruptorsaccharolyticus[J].Appl Microbiol Biotechnol,2010,85:1427–1435.
    [51]Sang Kee Kanga,Kwang Keun Chob,et al Cloning,expression, and enzymecharacterization of thermostableβ-glycosidase from Thermus flavus AT-62[J].Enzyme and Microbial Technology,2005,37:655–662.
    [52]Shane O’Connell.Gary Walsh.A novel acid-stable,acid-activeβ-galactosidasepotentially suited to the alleviation of lactose intolerance[J].Appl MicrobiolBiotechnol,2010,86:517–524.
    [53]Yeong-Su Kim,Chang-Su Park,Deok-Kun Oh.Lactulose production from lactoseand fructose by a thermostableβ-galactosidase from Sulfolobus solfataricus[J].Enzyme Microb. Technol,2006,39:903–908.
    [54]Lam-Son Phan Tra?n,et al Isolation of aβ-Galactosidase Encoding Gene fromBacillus licheniformis:Purification and Characterization of the RecombinantEnzyme Expressed in Escherichia coli[J].Current Microbiology,1998, 37:39–43.
    [55]Tiezheng Yuan,Peilong Yang,et al.Heterologous expression of a gene encodinga thermostableβ-galactosidase from Alicyclobacillus acidocaldarius[J].Biotechnol Lett,2008,30:343–348
    [56]Yu Xia,Wei Chen,Xiaoyan Fu,et al.Construction of an integrative food-gradeexpression system for Bacillus subtilis[J].Food Research International,2005,38:251–6
    [57]ZHANG Hao,et al.Integration and Expression of a Thermostableβ-galactosidaseGene bgaB in Bacillus subtilis[J]Wuxi University of Light Industry,2003,22(6):1-4.
    [58]傅晓燕,陈卫,张灏.耐热β-半乳糖苷酶基因在枯草芽孢杆菌中的克隆和表达[J].中国酿造,2004,137:16-18.
    [59]Hye-JungKim,etal.Characterization of an acid-labile thermostableβ-galactosidase from Thermoplasma acidophilum[J]. Biotechnol Lett,2009,31:1457–1462.
    [60]Sang Kee Kang ,et al.Three forms of thermostable lactose-hydrolase fromThermus sp.IB-21:cloning, expression, and enzyme characterization[J].Biotechnology,2005,116:337–346.
    [61]Naomi OHTSU,et al.Thermostableβ-Galactosidase from an ExtremeThermophile,Thermus sp.A4:Enzyme Purification and Characterization, andGene Cloning and Sequencing[J]. Biosci.Biotechnol.Biochem, 1998,62(8):1539-1545.
    [62]Park AR, Kim HJ, Lee JK, Oh DK.Hydrolysis and Transglycosylation Activity of aThermostable Recombinant beta-Glycosidase from Sulfolobus acidocaldarius[J].Appl Biochem Biotechnol,2010,160(8):2236-47.
    [63]胡学智.功能性低聚糖及其制造概要[J].工业微生物,1997(1):30-39.
    [64]于国平,于广吉,等.酶法测定乳糖[J].中国乳品工业,1998,27:9-12.
    [65]张莉,等.β-半乳糖苷酶研究进展[J].东北农业大学学报,2009,40(7): 128-131.
    [66]傅晓艳.耐热β-半乳糖苷酶bgaB基因在枯草芽孢杆菌中的表达[D].江苏省:江南大学食品科学与工程学院,2005.
    [67]郑少鹏,田竟生,赵春礼,等.质粒PBSVTH的重组和在体外培养骨骼肌内的表达[J].解剖学报,1997,28(2):157-160.
    [68]Fukui T,et al.Suicide gene therapy for human oral seqamous cell carcinoma celllines with adeno-assciated virus vector[J].Oral Oncol 2001,37(3):211–215.
    [69]秦燕,宁正祥,胡新宇.β-半乳糖苷酶的应用研究进展[J].沈阳农业大学学报,2000,31(6):595-599.
    [70]汪川,张朝武,审校.β-半乳糖苷酶基因及其在基因学中的应用[J].预防医学情报杂志,2002,18(3):213-215.
    [71]WESTHEAD D R, PARISH H, TWYMAN R [M].生物信息学(中译本),北京:科学出版社,2004.
    [72] Marx Gomes Van der Linden .Savio Torres de Farias.Correlation betweencodon usage and thermostability .Extremophiles,2006,10:479–481.
    [73] Zhou Q F,et a.l High-level production of a novel antimicrobial peptide perinerinin Escherichia coli by fusion expression[J].Curr Microbio,2007,54(5):366~370.
    [74]Zheng L,Baumann U,and Reymond J.L.An efficient one-step site-directed andsite-saturation mutagenesis protocol[J].Nucleic Acids Research,2004,32,e115.
    [75]S?awomir Da?browski,et al.Cloning,Expression,and Purification of the His6-Tagged Thermostableβ-Galactosidase from Pyrococcus woesei in Escherichiacoli and Some Properties of the Isolated Enzyme[J].Protein Expression andPurification,2000,19:107–112.
    [76]Marta Wanarska, Józef Kur,et al.Thermostable Pyrococcus woeseiβ-Dgalactosidase—high level expression,purification and biochemical properties[J].Acta Biochimica Polonica,2005,52(4):781-787.
    [77]高仁钧,超嗜热酯酶APE1547的克隆、表达和稳定性机制研究[D].长春,吉林大学生命科学院,2003.
    [78]毕云枫,超嗜热酯酶APE1547中特殊位置氢键对酶学性质影响的研究[D].长春,吉林大学生命科学院,2007.
    [79]Hao WL, Jiang WZ,et al.Cloning and expression of the extracellular region ofhuman LIGHT gene in E.coli[J].Cellular & Molecular Immunology, 2009,25(12):1076-8.
    [80]Bang SK, Kang CS, Han MD, Bang IS.Expression of recombinant hybridpeptide hinnavin II/alpha-melanocyte-stimulating hormone in Escherichiacoli:purification and characterization [J].Microbiol,2010,48(1):24-9
    [81]Prasad Niraula N,et al.Identification and characterization of a NADHoxidoreductase involved in phenylacetic acid degradation pathway fromStreptomyces peucetius[J].Microbiol Res.,2010 Jan 27[Epub ahead of print].
    [82]Catanzariti AM, et al. An efficient system for high-level expression and easypurification of authentic recombinant proteins[J].Protein Sci.,2004 ,13(5):1331-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700