嗜热菌木聚糖酶基因的克隆、表达及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖酶能够随机切割木聚糖主链骨架的β-1,4-糖苷键,产生木糖和低聚木糖或带有侧链的寡聚木糖,是木聚糖降解酶系中最关键的酶。由于木聚糖酶在造纸、食品、纺织、饲料等行业上都具有广泛的应用,科学家对不同来源的木聚糖酶进行了深入的研究。特别是来源于嗜热微生物的木聚糖酶具有许多独特的性质。所以,本研究的目的是筛选一些嗜热微生物,从这些菌株克隆木聚糖酶基因,并进行重组酶的高效表达。
     本研究从云南省保山市的一眼温泉的流淌物中分离到3株嗜热菌A4,A15和E2。通过16S rDNA序列比对鉴定,A4和A15菌株属于脂环酸芽孢杆菌Alicyclobacillus属,并命名为Alicyclobacillus sp. A4和Alicyclobacillus sp. A15;E2菌株属于厌氧芽孢杆菌Anoxybacillus属,并命名为Anoxybacillus sp. E2。研究发现,A4和A15菌株的最适生长温度为60℃,pH值为3.0;E2菌株的最适生长温度为60℃,pH范围在7.0-10.0,而且在pH 12.0也能生长。
     以筛选到的3株菌为材料,分别克隆到3个木聚糖酶基因。将三个基因分别构建了原核表达载体,在大肠杆菌中进行表达并研究了这些木聚糖酶的性质。来源于A4菌株的木聚糖酶XynA4-2最适温度为55℃、pH值为6.2。其不仅在50℃具有较好的稳定性,而且和商业葡聚糖酶共同作用下,能有效地降低麦芽浆的黏度和过滤速率。因此,在啤酒酿造中具有潜在的应用价值。
     来源于A15菌株的木聚糖酶XynA15最适温度为50℃,最适pH值为7.0,不仅在较广的温度范围(35-60℃)内具有较高的酶活,而且在50℃具有较好的热稳定性。XynA15在造纸、生物能源、饲料等领域具有潜在的应用价值。
     来源于E2菌株的木聚糖酶XynE2的最适温度为65℃,最适pH值为7.8,并且在60℃具有很好的热稳定性,处理1 h酶活基本没有变化。XynE2不仅在pH 6.6- 8.6具有90%以上的相对酶活,而且还有较广的pH稳定性(37℃, pH 4.6-12.0处理1 h保存80%以上的酶活)。这些性质使XynE2在造纸及纸浆上具有应用的潜能。
     本研究从高温环境中筛选到3株嗜热菌,分别克隆了3个木聚糖酶基因。对这些木聚糖酶基因进行异源表达,并进行酶学性质研究。研究表明,这些木聚糖酶具有潜在的应用价值。
Xylanase plays an important role in the xylanolytic enzyme system by randomly cleaving theβ-1,4-glycoside linkages in xylan backbone and generating xylose and oligoxylose units with various branched substitutions. Many studies have been conducted to explore xylanases from various sources due to their widespread applications in the paper, food, textile and animal feed industries. Xylanases from the thermophilic microorganisms have favorable properties, thus the researches on these xylanases have been attracting much attention all over the world. The objective of this study is to isolate some thermophilic microorganisms, obtain xylan-degrading enzymes from them, and achieve high-yield expression of the recombinant enzymes.
     In this study, three thermophilic strains were isolated from the outflow of a hot spring in Baoshan city, Yunnan province, China. These bacteria were named as A4, A15 and E2, respectively. Based on sequence comparison of the 16S ribosomal deoxyribonucleic acid (rDNA), A4 and A15 were classified into the genus Alicyclobacillus, and designated as Alicyclobacillus sp. A4 and Alicyclobacillus sp. A15, respectively. Strain E2 belonged to the genus Anoxybacillus and designated as Anoxybacillus sp. E2. Strain A4 and A15 showed the optimal growth at 60°C and pH 3.0, and the optimal growth of strain E2 occurred at 60°C and pH 7.0–10.0 (still survival at pH 12.0).
     Three xylanase genes were cloned from the strains described above and expressed in Escherichia coli BL (DE3), respectively. XynA4-2 from Alicyclobacillus sp. A4 exhibited maximum activity at pH 6.2 and 55°C. The enzyme was thermostable at 50°C. When combined with the commercial glucanase from Sunson, XynA4-2 could increase the filtration rate and reduce the viscosity of mash. These favorable properties make XynA4-2 a good candidate in the brewing industry.
     XynA15 from Alicyclobacillus sp. A15 showed the maximum activity at 50°C and pH 7.0, was highly active over a broad temperature range (35–60°C) and highly thermostable at 50°C. Thus XynA15 had potential for applications in the paper, biofuel, and animal feed industries.
     XynE2 from Anoxybacillus sp. E2 showed maximal activity at pH 7.8 and 65°C, and was thermostable at 60°C. The enzyme was highly active and stable over a broad pH range, showing more than 90% of maximal activity at pH 6.6–8.6 and retaining more than 80% of activity at pH 4.6–12.0, 37°C for 1 h, respectively. These favorable properties make XynE2 a good candidate in the pulp and paper industries.
     In summary, three thermophilic bacterial strains were isolated from a high-temperature environment, and xylanase genes were cloned from the genomic DNA of each strain. These genes were heterologously expressed and characterized. All recombinant enzymes showed favorable properties for potential applications.
引文
1 Podar M, Reysenbach AL. New opportunities revealed by biotechnological explorations of extremophiles[J]. Curr Opin Biotechnol,2006,Vol.17(3): 250-255
    2 Stetter KO. Extremophiles and their adaptation to hot environments[J]. FEBS Lett,1999,Vol.452(1-2):22-25
    3和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2001
    4丁彦蕊.嗜热菌耐热性与蛋白质序列、结构和功能关系的生物信息学研究[D].江南大学博士学位论文,2005
    5 Minuth T, Frey G, Lindner P, Rachel R, Stetter KO, Jaenicke R. Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro[J]. Eur J Biochem, 1998,Vol.258(2):837-845
    6任红妍.嗜热微生物[J].生物学通报,1995,Vol.30(3):18
    7 Wong KK, Tan LU, Saddler JN. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications[J]. Microbiol Rev,1988, Vol.52(3):305-317
    8 Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases[J]. FEMS Microbiol Rev,2005,Vol.29(1):3-23
    9 Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases[J]. FEMS Microbiol Rev,1999,Vol.23(4):411-456
    10孙迅,朱陶,朱启忠,孙宝聚.产胞外木聚糖酶放线菌的分离与筛选[J].微生物学杂志,1998,Vol(04)
    11许正宏,熊陶.低聚木糖的生产及应用研究进展[J].食品与发酵工业,2002,Vol (01):58-61
    12 Biely P, Vrsanska M, Tenkanen M, Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties[J]. J Biotechnol,1997, Vol.57(1-3):151-166
    13 Ihsanawati, Kumasaka T, Kaneko T, Morokuma C, Yatsunami R, Sato T, Nakamura S, Tanaka N. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8[J]. Proteins,2005,Vol.61(4):999-1009
    14 Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Jr., Warren RA. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families[J]. Microbiol Rev,1991,Vol.55(2):303-315
    15 McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis[J]. Curr Opin Struct Biol,1994,Vol.4(6):885-892
    16 Rye CS, Withers SG. Glycosidase mechanisms[J]. Current Opinion in Chemical Biology,2000,Vol.4(5):573-580
    17 Alzari PM, Souchon H, Dominguez R. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum[J]. Structure,1996,Vol.4(3):265-275
    18 Guerin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Beguin P, Alzari PM. Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate[J]. J Mol Biol,2002,Vol.316(5):1061-1069
    19 Fenel F, Leisola M, Janis J, Turunen O. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II[J]. J Biotechnol,2004,Vol.108(2):137-143
    20 Jeong MY, Kim S, Yun CW, Choi YJ, Cho SG. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236[J]. J Biotechnol,2007,Vol.127 (2):300-309
    21 Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds[J]. Protein Eng,1994,Vol.7(11): 1379-1386
    22 Georis J, de Lemos Esteves F, Lamotte-Brasseur J, Bougnet V, Devreese B, Giannotta F, Granier B, Frere JM. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study[J]. Protein Sci,2000, Vol.9(3):466-475
    23 Luthi E, Reif K, Jasmat NB, Bergquist PL. In vitro mutagenesis of a xylanase from the extreme thermophile Caldocellum saccharolyticum[J]. Appl Microbiol Biotechnol,1992,Vol.36(4):503-506
    24 Mrabet NT, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H, et al. Arginine residues as stabilizing elements in proteins[J]. Biochemistry, 1992,Vol.31(8):2239-2253
    25 Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs[J]. J Mol Biol,1997,Vol.269 (4):631-643
    26 Turunen O, Vuorio M, Fenel F, Leisola M. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH[J]. Protein Eng,2002,Vol.15(2):141-145
    27朱国萍,滕脉坤,王玉珍.脯氨酸对蛋白质热稳定性的贡献[J].生物工程进展,2000,Vol.20:48-50
    28 Ebanks R, Dupont M, Shareck F, Morosoli R, Kluepfel D, Dupont C. Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase[J]. J Ind Microbiol Biotechnol,2000,Vol.25(6):310-314
    29 Onysko KA. Biological bleaching of chemical pulps: a review[J]. Biotechnol Adv,1993,Vol.11(2):179-198
    30 Bajpai P, Bajpai PK. Biobleaching of kraft pulp[J]. Process Biochemistry, 1992,Vol.27(6):319-325
    31 Viikari L, Kantelinen A, Buchert J, Puls J. Enzymatic accessibility of xylans in lignocellulosic materials[J]. Applied Microbiology and Biotechnology,1994,Vol.41(1):124-129
    32 Tokuda H, Urata T, Nakanishi K. Hydrolysis of xylan by Aspergillus niger immobilized on non-woven fabrics[J]. Biosci Biotechnol Biochem,1997, Vol.61(4):583-587
    33 Viikari L, Kantelinen A, Sundquist J, Linko M. Xylanases in bleaching: from an idea to the industry[J]. FEMS Microbiology Reviews,1994,Vol.13 (2-3):335-350
    34 Gübitz GM, Lischnig T, Stebbing D, Saddler JN. Enzymatic removal of hemicellulose from dissolving pulps[J]. Biotechnology Letters,1997, Vol.19(5):491-495
    35 Annison G. The role of wheat non-starch polysaccharides in broiler nutrition[J]. Australian Journal of Agricultural Research,1993,Vol.44 (3):405-422
    36 Schwarz P, Han J. Arabinoxylan content of commercial beers[J]. American Society of Brewing Chemists (USA),1995,Vol.53:157-159
    37 Vi?tor RJ, Voragen AGJ, Angelino SAGF, Pilnik W. Non-starch polysaccharides in barley and malt: a mass balance of flour fractionation[J]. Journal of Cereal Science,1991,Vol.14(1):73-83
    38 Vi tor R, Angelino S, Voragen A. Composition of non-starch polysaccharidesin wort and spent grains from brewing trials with malt from a good malting quality barley and a feed barley[J]. Journal-Institute of Brewing,1993, Vol.99:243-243
    39 Harbak L, Thygesen HV. Safety evaluation of a xylanase expressed in Bacillus subtilis[J]. Food Chem Toxicol,2002,Vol.40(1):1-8
    40李宁.链霉菌来源的木聚糖降解酶相关基因的克隆及酶学性质研究[D].中国农业科学院博士学位论文,2009
    41 Celestino K, Cunha R, Felix C. Characterization of a beta-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry[J]. BMC Biochemistry,2006,Vol.7 (1):23
    42 Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP. The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-[beta]--glucanases on carboxymethylcellulose: a comparative evaluation of the three methods[J]. Enzyme and Microbial Technology,1998,Vol.23(6):350-359
    43 Wisotzkey JD, Jurtshuk P, Jr., Fox GE, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov[J]. Int J Syst Bacteriol,1992,Vol.42(2):263-269
    44 Albuquerque L, Rainey FA, Chung AP, Sunna A, Nobre MF, Grote R, Antranikian G, da Costa MS. Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of Sao Miguel in the Azores[J]. Int J Syst Evol Microbiol,2000,Vol.50(2):451-457
    45 Goto K, Tanimoto Y, Tamura T, Mochida K, Arai D, Asahara M, Suzuki M, Tanaka H, Inagaki K. Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan[J]. Extremophiles,2002,Vol.6(4):333-340
    46 Groenewald WH, Gouws PA, Witthuhn RC. Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa[J]. Food Microbiology,2009,Vol.26(1):71-76
    47 Eckert K, Zielinski F, Lo Leggio L, Schneider E. Gene cloning, sequencing,and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009[J]. Appl Microbiol Biotechnol,2002,Vol.60 (4):428-436
    48 Eckert K, Schneider E. A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases[J]. Eur J Biochem,2003,Vol.270(17):3593-3602
    49 Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, La Cara F. A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius[J]. Protein Pept Lett,2008,Vol.15(9):1017-1021
    50 Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Feng Y, Yao B. Extremely acidic beta-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus sp. A4 with high protease resistance and potential as a pig feed additive[J]. J Agric Food Chem,2010,Vol.58(3):1970-1975
    51 Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Luo C, Yao B. A novel family 9β-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry[J]. Applied Microbiology and Biotechnology,2010, DOI 10.1007/s00253-010-2452-3
    52 Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B. A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability[J]. J Ind Microbiol Biotechnol, 2010,Vol.37(2):187-194
    53 van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EW, Stams AJ, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SW. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus[J]. Appl Environ Microbiol,2008,Vol.74(21):6720-6729
    54 Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions[J]. Applied Microbiology and Biotechnology,2009,Vol.83(1):99-107
    55 Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry[J]. Enzyme andMicrobial Technology,2010, DOI 10.1016/j.enzmictec.2010.02.003
    56 Shulami S, Gat O, Sonenshein AL, Shoham Y. The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6[J]. J Bacteriol,1999, Vol.181(12):3695-3704
    57 Tabernero C, Sanchez-Torres J, Perez P, Santamaria RI. Cloning and DNA sequencing of xyaA, a gene encoding an endo-beta-1,4-xylanase from an alkalophilic Bacillus strain (N137)[J]. Appl Environ Microbiol,1995,Vol. 61(6):2420-2424
    58 Baba T, Shinke R, Nanmori T. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21[J]. Appl Environ Microbiol,1994,Vol.60(7):2252-2258
    59 Fukumura M, Sakka K, Shimada K, Ohmiya K. Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product[J]. Biosci Biotechnol Biochem,1995,Vol.59(1):40-46
    60 Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics,1995,Vol.25(3):674-681
    61 Lee CC, Kibblewhite-Accinelli RE, Smith MR, Wagschal K, Orts WJ, Wong DW. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme[J]. Curr Microbiol,2008,Vol.57(4):301-305
    62 Chang P, Tsai W-S, Tsai C-L, Tseng M-J. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus[J]. Biochemical and Biophysical Research Communications,2004,Vol.319(3): 1017-1025
    63 Monis PT, Giglio S, Saint CP. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Anal Biochem,2005,Vol.340(1):24-34
    64 Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus[J]. Acta Crystallogr D Biol Crystallogr, 2007,Vol.63(8):845-859
    65 Gallardo O, Diaz P, Pastor FI. Characterization of a Paenibacilluscell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases[J]. Appl Microbiol Biotechnol,2003, Vol.61(3):226-233
    66 Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov[J]. Int J Syst Evol Microbiol,2000,Vol.50(6):2109-2117
    67 Pikuta E, Cleland D, Tang J. Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus[J]. Int J Syst Evol Microbiol,2003,Vol.53(5): 1561-1562
    68 Belduz AO, Dulger S, Demirbag Z. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium[J]. Int J Syst Evol Microbiol,2003,Vol.53(5):1315-1320
    69 De Clerck E, Rodriguez-Diaz M, Vanhoutte T, Heyrman J, Logan NA, De Vos P. Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches[J]. Int J Syst Evol Microbiol, 2004,Vol.54(3):941-946
    70 Yumoto I, Hirota K, Kawahara T, Nodasaka Y, Okuyama H, Matsuyama H, Yokota Y, Nakajima K, Hoshino T. Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka[J]. Int J Syst Evol Microbiol,2004,Vol.54 (4):1239-1242
    71 Derekova A, Sjoholm C, Mandeva R, Kambourova M. Anoxybacillus rupiensis sp. Nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria)[J]. Extremophiles,2007,Vol.11(4):577-583
    72 Ertunga NS, Colak A, Belduz AO, Canakci S, Karaoglu H, Sandalli C. Cloning, expression, purification and characterization of fructose-1,6-bisphosphate aldolase from Anoxybacillus gonensis G2[J]. J Biochem,2007,Vol.141(6):817-825
    73 Colak A, Sisik D, Saglam N, Guner S, Canakci S, Belduz AO. Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2[J]. Bioresour Technol,2005,Vol.96(5):625-631
    74 Wu S, Liu B, Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in EastPacific[J]. Appl Microbiol Biotechnol,2006,Vol.72(6):1210-1216
    75 Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1[J]. Appl Environ Microbiol,1993,Vol.59(7):2311-2316
    76 Blanco A, Vidal T, Colom JF, Pastor FI. Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23[J]. Appl Environ Microbiol,1995,Vol.61(12):4468-4470
    77 Huang J, Wang G, Xiao L. Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli[J]. Bioresour Technol,2006,Vol.97(6):802-808
    78 Jalal A, Rashid N, Rasool N, Akhtar M. Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5[J]. J Biosci Bioeng,2009,Vol.107(4):360-365
    79 Khasin A, Alchanati I, Shoham Y. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6[J]. Appl Environ Microbiol,1993,Vol.59(6):1725-1730
    80 Lee C, Wong D, Robertson G. Cloning and characterization of the Xyn11A gene from Lentinula edodes[J]. The Protein Journal,2005,Vol.24(1):21-26
    81 Levasseur A, Asther M, Record E. Overproduction and characterization of xylanase B from Aspergillus niger[J]. Can J Microbiol,2005,Vol.51 (2):177-183
    82 Bajpai P. Application of enzymes in the pulp and paper industry[J]. Biotechnol Prog,1999,Vol.15(2):147-157
    83 Georis J, Giannotta F, De Buyl E, Granier B, Frère J-M. Purification and properties of three endo-[beta]-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps[J]. Enzyme and Microbial Technology,2000,Vol.26 (2-4):178-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700