两种酸性耐热α-淀粉酶的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-淀粉酶(1,4-α-D-葡萄糖苷葡萄糖苷水解酶,EC3.2.1.1)能够以淀粉为底物,从淀粉内部水解1,4-α-D-葡萄糖苷键,广泛应用在淀粉糖生产、发酵、纺织、造纸等许多行业,具有巨大的经济价值。本研究尝试利用巴斯德毕赤酵母Pichia pastoris作为生物反应器表达两种极具应用潜力的极端α-淀粉酶,并研究了重组α-淀粉酶的酶学性质。
     从嗜酸耐热的酸热脂环酸杆菌Alicyclobacillus acidocaldarius中克隆到一种α-淀粉酶的基因amy,基因amy全长3903bp,编码1301个氨基酸,理论分子量约140kD。基因amy被分别克隆到质粒表达载体pET-22b(+)和pPIC9α,并分别在大肠杆菌Escherichia coli BL21(DE3)利巴斯德毕赤酵母P. pastoris GS115中得到表达,表达产物具有淀粉酶的活性。
     纯化酵母中表达的重组α-淀粉酶rAMY,并研究了它的酶学性质。以可溶性淀粉为底物,rAMY作用最适pH3.2,在pH2.5-4.6范围内,酶活性保留50%以上,它的最适温度65℃,在70℃下处理30分钟,酶活性维持50%以上。重组α-淀粉酶rAMY基本保留了天然酶蛋白的耐热性和嗜酸性特点。
     根据对α-淀粉酶AMY的氨基酸序列分析和同源建模,去除基因amy的+1~+1174bp和+3288~3903bp的核酸序列,获得全长2115bp的基因片断amy',amy'编码705个氨基酸,理论分子量约79kD。amy'被克隆到质粒表达载体pET-22b(+),并在大肠杆菌E. coli BL21(DE3)获得表达,表达产物具有淀粉酶的活性,证明该截断肽链包含能折叠形成α-淀粉酶催化结构域所需的氨基酸序列。
     来源于嗜热球菌Thermococcus sp.的酸性高温α-淀粉酶BD5063理论分子量约49kD,不存在潜在N-连接糖基化位点,编码基因BD5063全长1299bp。根据巴斯德毕赤酵母高效表达基因的密码子使用偏好性,对BD5063进行密码子优化并全基因合成获得新基因BD5063r。巴斯德毕赤酵母能高效表达基因BD5063r,表达量达剑60mg/L,表达产物rBD5063水解可溶性淀粉主要产物是单糖和低聚寡糖,结合活性染色结果证明rBD5063具有α-淀粉酶的活性。
     纯化rBD5063,获得纯度大于90%的样品,并研究了rBD5063酶学性质。以可溶性淀粉为底物,rBD5063作用最适pH5.0,在pH3.5~10.0范围内处理30分钟,酶活性保留50%以上;作用最适温度100-110℃,在90℃下酶活性半衰期约30分钟。低浓度Ca~(2+)对激活rBD5063活性和维持稳定性是必需的,而且在一定浓度范围内Ca~(2+)浓度对活性影响不显著,Mg~(2+)、SDS利Trition X-100都能够部分抑制rBD5063活性,Cu~(2+)和EDTA严重抑制rBD5063活性。
     研究了rBD5063的多组分情况,表达产物包括三种分子量分别是64、57、44kD的活性组分,在通常情况下主要以大分子量活性多聚体的形式存在。rBD5063不存在N-连接的糖基化,但是存在O-连接的糖基化现象,O-连接对rBD5063的热稳定性和最适温度没有显著影响。
     本研究利用巴斯德毕赤酵母成功表达两种不同来源和性质的酸性耐热α-淀粉酶,通过对这两种α-淀粉酶异源表达情况分析,证实了巴斯德毕赤酵母作为表达极端α-淀粉酶的生物反应器的可行性。
Alpha-amylases (1,4-alpha-D-glucan-glucanohydrolase, EC 3.2.1.1) hydrolyze alpha-1,4-linkages in starch. The action of alpha-amylases on starch leads to a rapid decrease of the starch solution viscosity. Alpha-amylases are widely applied in numerous areas, such as in starch saccharification, fermentation, spin, paper. Thus any research on alpha-amylase is particularly significant in both industorial production and scientific investigation. In this project, in order to explore the way of using P. pastoris as bioreactor to express extremophilic alpha-amylases, two non-coincident acidothermophilic alpha-amylases were expressed in Escherichia coli and Pichia pastoris, respectively, and then characterization of the recombinant alpha-amylases were described.Alpha-amylase AMY from the Gram-positive Alicyclobacillus acidocaldarius is one kind of acidothermophilic enzyme, with the optimal temperature and pH of 75℃ and 3. The nucleotide sequence of the gene amy was cloned by PCR. The gene amy was 3903bp long, comprising one open reading frame encoding a polypeptide of 1301amino acids. The calculated molecular weight of AMY was about 140kD. The gene amy was expressed in E. coli BL21(DE3) and P. pastoris GS115 respectively, and both of the recombinant proteins had bioactivity.rAMY expressed in P. pastoris was further purified and characterized. The apparent molecular weight of rAMY was about 160kD according to SDS-PAGE. When rAMY hydrolyzed soluble starch, the optimal pH value was 3.2, which is the same as that of the native enzyme. However, the optimum of temperature was 65℃, a little lower than that of the native enzyme. Above 50% of relative activity remained after incubation for 30 minutes at 70 ℃. Anyway rAMY expressed in P. pastoris is acidothermophilic.Based on analysis of AMY amino acid sequence and homology model of its catalytic domain, the middle segment of the gene amy, which ranged from +1174 bp to +3288 bp, was cloned by PCR. The truncated gene amy' encoded 705 amino acids with the calculated molecular weight of 79kD. amy' was expressed in E. coli BL21(DE3) induced by 1mmol/L IPTG, and the expressed enzyme also retained α-amylase activity. So the truncated peptide AMY' should include essential amino acid sequences which can fold catalytic domain.Acidohermophlic alpha-amylase BD5063 is found in Thermococcus sp.. The encoding gene BD5063 was reconstructed for the optimal expression in P. pastoris. Modification was based on unequal usage of synonymous codon of high-level expressed genes in P. pastoris. The gene BD5063r consisted of 1299bp, encoding 433 amino acids with the calculated molecular mass 49kD. The recombinant a-amylase rBD5063 was secreted by P. pastoris up to a yield of 60mg/L. TLC results for the various hydrolysis products of soluble starch showed that rBD5063 cleaved alpha-1,4-glucosidic linkages, and most products were glucose, maltose, and other oligosaccharides.rBD5063 was purified and characterized. When rBD5063 hydrolyzed soluble starch, the optimal
    pH was 5.0 and more than 50% of its maximal activity remained after treatment in the buffers ranged from pH 3.5-10.0 for 30 minutes. The optimum temperature was 100-110°C, and the half-life at 90°C, pH 5.0 was 30 minutes. Low content of Ca + is enough to activate and stabilize its activity, and even up to 20mmol/L, Ca2+ only affected its activity slightly. Mg2+, SDS and Trition X-100 partially inhibited its activity, while Cu2+ and EDTA thoroughly inhibited its activity.Most rBD5063 was inclined to aggregate into bioactive polymers form, which would be disaggregated into three bioactive proteins with molecular weight of 64, 57, 44kD, respectively. rBD5063 is not modified by N-linked glycosyiation but by O-linked glycosyiation. The O-linked glycosyiation had little influence on thermostability and the optimal temperature of rBD5063.In conclusion, two acidothermophilic alpha-amylases were high-level expressed in P. pastoris. Those recombinant alpha-amylases expressed in P. pastoris held essential characterization of native alpha-amylases. As a result, P. pastoris has been of great value as the bioreactor to produce extremophilic alpha-amylases.
引文
1. Markovitz A., Klein H. P., and Fischer E. H., Purification, crystallization, and properties of the alpha-amylase of Pseudomonas saccharophila. Biochim. Biophys. Acta 1956;19(2):267-273.
    2. Antje C. α-amylse;In: Antje C (ed): Springer Handbook of Enzymes. New York, Springer-Verlag Berlin Heidelberg New York, 2003, 1-39.
    3. Janecek S., Alpha-Amylase family: molecular biology and evolution. Prog. Biophys. Mol. Biol. 1997;67(1):67-97.
    4. Uchino F., A thermophilic and unusually acidophilic amylase produced by a thermophilic acidophilic Bacillus sp. Agric. Biol. Chem. 1982;(13):291-297.
    5. Buonocore V., Caporale C., De Rosa M. et al., Stable, inducible thermoacidophilic alpha-amylase from Bacillus acidocaldarius. J. Bacteriol. 1976;128(2):515-521.
    6. Kanno M., A Bacillus acidocaldarius α-amylase that is highly stable to heat under acidic conditions. Agric. Biol. Chem. 1986;50:23-31.
    7. Boyer E. W., Ingle M. B., and Mercer G. D., Isolation and charactearization of unusual bacterial amylases. Starch 1979;166-171.
    8. Bealin-Kelly F. J., Kelly C. T., and Fogarty W. M., The alpha-amylase of the caldoactive bacterium Bacillus caldovelox. Biochem. Soc. Trans. 1990;18(2):310-311.
    9. Trisanti A., Ruth M., Kazuo I. et al., Three different types of alpha-amylases from Aspergillus awamori KT-11:their purifications, properties, and Specificities. Biosci. Biotechnol Biochem. 1998;62(7):1351-1357.
    10. Matsubara T., Ben Ammar Y., Anindyawati T. et al., Molecular cloning and determination of the nucleotide sequence of raw starch digesting alpha-amylase from Aspergillus awamori KT-11. J. Biochem. Mol. Biol. 2004;37(4):429-438.
    11. Jensen B., Olsen Jorgen, Physicochemical properties of a purified alpha-amylase from the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb. Technol. 1992;14(2): 112-116.
    12. Ravis M., Ramesh M., Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and response to heat. J. Biosci. 1996;21(5):653-672.
    13. Resham S. Bhella, Illimar Altosaar, Purification and some properties of the extracellular alpha-amylase from Aspergillus awamori. Can. J. Microbiol. 1984;31:149-153.
    14. Stamford T. L., Stamford N. P., Coelho L. C. et al., Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour. Technol. 2001;76(2):137-141.
    15. Toshio T., Eiji Ishimoto, Yuichi Shimonura et al., Purification and some properties of raw starch-binding amylase of Clostridium butyricum T-7 isolated from mesophilic methane sludge. Agric. Biol. Chem. 1987;51(2):399-405.
    16. Tigersterom R. G. V., Stelmachuk S., Purification and partial characterization of an amylase from Lysobacter brunescens. J. Gen. Microbiol. 1987;133:3437-3443.
    17. Eric P. Beers, Stanley H. Duke, Characterization of alpha-amylase from shoots and cotyledons of pea(Pisum sativum L. ) seedlings. Plant Physiol 1989;92(8): 1154-1163.
    18. Gogoi B. K., Bezbaruah R. L., Pillai K. R. et al., Production, purification and characterization of an alpha-amylase produced by Saccharomycopsis fibuligera. J. Appl. Bacteriol. 1987;63:373-379.
    19. Aquino A. C., Jorge J. A., Terenzi H. F. et al., Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum. Appl. Microbiol Biotechnol 2003;61(4):323-328.
    20. Iefuji H., Chino M., Kato M. et al., Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem. J. 1996;318 (Pt 3):989-996.
    21. Kenneth A. L., Bradley R. Davis, Henry C. Krutzsch et al., The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 1993;32(15):24394-24401.
    22. Kenneth A. L., Asada K., Uemori H. et al., alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 1993;32(15):24402-24407.
    23. Lynn M. H., Catherine T. K., and William M. Fogarty, Purification and Properties of the raw starch-degrading alpha-amylase of Bacillus sp. IMD434. Biotechnol Lett. 1999;21:111-115.
    24. Yoshiyuki T., An amylase producing maltotriose from Bacillus subtilis. Agric. Biol. Chem. 1985;49(4):1091-1097.
    25. Yoshiyuki T., An amylase producing maltotetraose and maltopentaose from Bacillus circulans. Agric. Biol. Chem. 1983;47(10):2193-2199.
    26. Sribir Sen, Chakrabarty S. L., Amylase from Lactobacillus cellobiosus D-39 isolated from vegetable wastes: purification and characterization. J. Appl. Bacteriol. 1986;60:419-423.
    27. Chakraborty K., Bhattacharyya B. K., and Sen S. K., Purification and characterization of a thermostable alpha-amylase from Bacillus stearothermophilus. Folia Microbiol (Praha) 2000;45(3):207-210.
    28. Obi S. K. C., Odibo F. J. C., Some properties of a highly thermostable alpha-amylase from a Thermoactinomyces sp. Can. J. Microbiol 1984;30:780-785.
    29. Jana M., Chattopadhyay D. J., and Patil G. N., Thermostable, high salt-tolerant amylase from Bacillus megaterium VUMB-109. Acta Microbiol Immunol. Hung. 1997;44(3):281-289.
    30. Morgan F. J., Priest F. G., Characterization of a thermostable alpha-amylase from Bacillus licheniformis NCIB6346. J. Appl. Bacteriol. 1981;50:107-114.
    31. Yuuki T., Nomura T., Tezuka H. et al., Complete nucleotide sequence ofa gene coding for heat-and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. (Tokyo) 1985;98(5):1147-1156.
    32. Malhotra R., Noorwez S. M., and Satyanarayana T., Production and partial characterization of thermostable and calcium-independent alpha-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol 2000;31(5):378-384.
    33. Narang S., Satyanarayana T., Thermostable alpha-amylase production by an extreme thermophile Bacillus thermooleovorans. Lett. Appl. Microbiol 2001;32(1):31-35.
    34. Igarashi K., Hatada Y., Hagihara H. et al., Enzymatic properties of a novel liquefying alpha-amylase from an alkaliphilic Bacillus isolate and entire nueleotide and amino acid sequences. Appl. Environ. Microbiol. 1998;64(9):3282-3289.
    35. Gines M. J., Dove M. J., and Seligy V. L., Aspergillus oryzae has two nearly identical Taka-amylase genes, each containing eight introns. Gene 1989;79(1):107-117.
    36. Setsuzo T., Yuzuru Iimura, Katsuya Gomi et al., Cloning and nucleotide Squence of the genomic Taka-amylase A gene ofAspergillus oryzae. Agric. Biol. Chem. 1989;53(3):593-599.
    37. Tsukagoshi N., Furukawa M., Nagaba H. et al., Isolation of a cDNA encoding Aspergillus oryzae Taka-amylase A: evidence for multiple related genes. Gene 1989;84(2):319-327.
    38. Richardson T. H., Tan X., Frey G. et al., A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J. Biol. Chem. 2002;277(29):26501-26507.
    39. Jorgensen S., Vorgias C. E., and Antranikian G., Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 1997;272(26): 16335-16342.
    40. Dong G., Vieille C., and Zeikus J. G., Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 1997;63(9):3577-3584.
    41. Virolle M. J., Long C. M., Chang S. et al., Cloning, characterisation and regulation of an alpha-amylase gene from Streptomyces venezuelae. Gene 1988;74(2):321-334.
    42. Rydberg E. H., Sidhu G., Vo H.C. et al., Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichiapastoris. Protein Sci. 1999;8(3):635-643.
    43. Rydberg E. H., Li C., Maurus R. et al., Mechanistic analyses of catalysis in human pancreatic alpha-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 2002;41(13):4492-4502.
    44. Takase K., Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus alpha-amylase. Eur. J. Biochem. 1993;211(3):899-902.
    45. Machius M., Wiegand G., and Huber R., Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J. Mol. Biol. 1995;246(4):545-559.
    46. Hwang K. Y., Song H. K., Chang C. et al., Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution. Mol. Cells 1997;7(2):251-258.
    47. Matsuura Y., Kusunoki M., Harada W. et al., Molecular structure of Taka-amylase A. I. Backbone chain folding at 3 A resolution. J. Biochem. (Tokyo) 1980;87(5):1555-1558.
    48. Ramasubbu N., Ragunath C., Mishra P. J. et al., Human salivary alpha-amylase Trp58 situated at subsite -2 is critical for enzyme activity. Eur. J. Biochem. 2004;271 (12):2517-2529.
    49. Mori H., Bak-Jensen K. S., and Svensson B., Barley alpha-amylase Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the beta—>alpha loop 2 of the catalytic (beta/alpha)_(8-barrel and is critical for activity and substrate specificity. )Eur. J. Biochem. 2002;269(22):5377-5390.
    50. Mori H., Bak-Jensen K. S., Gottschalk T. E. et al., Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1. Eur. J. Biochem. 2001;268(24):6545-6558.
    51. Rivera M. H., Lopez-Munguia A., Soberon X. et al., Alpha-amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng 2003;16(7): 505-514.
    52. Ishikawa K., Matsui I., Honda K. et al., Multi-functional roles of a histidine residue in human pancreatic alpha-amylase. Biochem. Biophys. Res. Commun. 1992;183(1):286-291.
    53. Ishikawa K., Matsui I., Kobayashi S. et al., Substrate recognition at the binding site in mammalian pancreatic alpha-amylases. Biochemistry 1993;32(24):6259-6265.
    54. Vihinen M., Ollikka P., Niskanen J. et al., Site-directed mutagenesis ofa thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J. Biochem. (Tokyo) 1990;107(2):267-272.
    55. Takase K., Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor. Biochemistry 1994;33(25):7925-7930.
    56. Matsui I., Svensson B., Improved activity and modulated action pattern obtained by random mutagenesis at the fourth beta-alpha loop involved in substrate binding to the catalytic (beta/alpha)_(8-barrel domain of barley alpha-amylse 1. )J. Biol. Chem. 1997;272(36):22456-22463.
    57. Rodenburg K. W., Juge N., Guo X. J. et al., Domain B protruding at the third beta strand of the alpha/beta barrel in barley alpha-amylase confers distinct isozyme-specific properties. Eur. J. Biochem. 1994;221(1):277-284.
    58. Juge N., Rodenburg K. W., Guo X. J. et al., Isozyme hybrids within the protruding third loop domain of the barley alpha-amylase (beta/alpha)_(8.barrel. Implication for BASI sensitivity and substrate affinity. )FEBS Lett. 1995;363(3):299-303.
    59. Terashima M., Kubo A., Suzawa M. et al., The roles of the N-linked carbohydrate chain of rice alpha-amylase in thermostability and enzyme kinetics. Eur. J. Biochem. 1994;226(1):249-254.
    60. Vihinen M., Peltonen T., Iitia A. et al., C-terminal truncations ofa thermostable Bacillus stearothermophilus alpha-amylase. Protein Eng 1994;7(10): 1255-1259.
    61. Lo H. F., Lin L. L., Chiang W. Y. et al., Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. Arch. Microbiol 2002;178(2): 115-123.
    62. Rodenburg K. W., Vallee F., Juge N. et al., Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Eur. J. Biochem. 2000;267(4): 1019-1029.
    63. Yokota T., Tonozuka T., Kamitori S. et al., The deletion of amino-terminal domain in Thermoactinomyces vulgaris R-47 alpha-amylases: effects of domain N on activity, specificity, stability and dimerization. Biosci. Biotechnol Biochem. 2001;65(2):401-408.
    64. Mathupala S. P., Lowe S. E., Podkovyrov S. M. et al., Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J. Biol. Chem. 1993;268(22): 16332-16344.
    65. Abe A., Tonozuka T., Sakano Y. et al., Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 2004;335(3):811-822.
    66. Ohtaki A., Mizuno M., Tonozuka T. et al., Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition mechanism. J. Biol. Chem. 2004;279(30):31033-31040.
    67. Mizuno M., Tonozuka T., Uechi A. et al., The crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase Ⅱ (TVA Ⅱ) complexed with transglycosylated product. Eur. J. Biochem. 2004;271(12):2530-2538.
    68. Koivula T. T., Hemila H., Pakkanen R. et al., Cloning and sequencing ofa gene encoding acidophilic amylase from Bacillus acidocaldarius. J. Gen. Microbiol. 1993;139 (Pt 10):2399-2407.
    69. Schwermann B., Pfau K., Liliensiek B. et al., Purification, properties and structural aspects of a thermoacidophilic alpha-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur. J. Biochem. 1994;226(3):981-991.
    70. Tonozuka T., Ohtsuka M., Mogi S. et al., A neopullulanase-type alpha-amylase gene from Thermoactinomyces vulgaris R-47. Biosci. Biotechnol. Biochem. 1993;57(3):395-401.
    71. Canganella F., Andrade C. M., and Antranikian G., Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl. Microbiol Biotechnol 1994;42:239-245.
    72. Brown S. H., Kelly R. M., Characterization ofamylolytic enzymes, having both α-1, 4 and α-1, 6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 1993;59:2614-2621.
    73. Melasniemi H., Characterization of alpha-amylase and pullulanase activities of Clostridium thermohydrosulfuricum. Evidence for a novel thermostable amylase. Biochem. J. 1987;246(1):193-197.
    74. Lin F. P., Leu K. L., Cloning, expression, and characterization of thermostable region of amylopullulanase gene from Thermoanaerobacter ethanolicus 39E. Appl. Biochem. Biotechnol 2002;97(1):33-44.
    75. Brunswick J. M., Kelly C. T., and Fogarty W. M., The amylopullulanase of Bacillus sp. DSM 405. Appl. Microbiol Biotechnol 1999;51(2):170-175.
    76. Rudiger A., Jorgensen P. L., and Antranikian G., Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl. Environ. Microbiol. 1995;61(2):567-575.
    77. Lee S. P., Morikawa M., Takagi M. et al., Cloning of the aapTgene and characterization of its product, alpha-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl. Environ. Microbiol. 1994;60(10):3764-3773.
    78. Claire V., Gregory J. Z., Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 2001;65(1): 1-43.
    79. Suzuki Y., Ito N,, Yuuki T. et al., Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 1989;264(32):18933-18938.
    80. Suvd D., Fujimoto Z., Takase K. et al., Crystal structure of Bacillus stearothermophilus alpha-amylase: possible factors determining the thermostability. J. Biochem. (Tokyo) 2001;129(3):461-468.
    81. Declerck N., Machius M., Joyet P. et al., Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng 2003;16(4):287-293.
    82. Igarashi K., Hatada Y., Ikawa K. et al., Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem. Biophys. Res. Commun. 1998;248(2):372-377.
    83. Declerck N., Joyet P., Trosset J. Y. et al., Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: multiple amino acid replacements and molecular modelling. Protein Eng 1995;8(10):1029-1037.
    84. Joyet P., Declerck N., and Gaillardin C., Hyperthermostable variants of a highly thermostable alpha-amylase. Biotechnology (N. Y. ) 1992;10(12): 1579-1583.
    85. Declerck N., Machius M., Wiegand G. et al., Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 2000;301 (4): 1041-1057.
    86. Fitter J., Herrmann R., Dencher N. A. et al., Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: mechanisms of thermal adaptation. Biochemistry 2001;40(35): 10723-10731.
    87. Stephens M. A., Ortlepp S. A., Ollington J. F. et al., Nucleotide sequence of the 5' region of the Bacillus licheniformis alpha-amylase gene: comparison with the B. amyloliquefaciens gene. J. Bacteriol. 1984;158(1):369-372.
    88. Doyon Y., Home W., Daull P. et al., Effect of C-domain N-glycosylation and deletion on rat pancreatic alpha-amylase secretion and activity. Biochem. J. 2002;362(Pt 1):259-264.
    89. Graber M., Combes D., Effect ofpolyols on fungal alpha-amylase thermostablity. Enzyme Microb. Technol. 1989;11(10):673-677.
    90. Feller G., Bussy O., Houssier C. et al., Structural and functional aspects of chloride binding to Alteromonas haloplanctis alpha-amylase. J. Biol. Chem. 1996;271 (39):23836-23841.
    91. Numao S., Maurus R., Sidhu G. et al., Probing the role of the chloride ion in the mechanism of human pancreatic alpha-amylase. Biochemistry 2002;41(1):215-225.
    92. Aghajari N., Feller G., Gerday C. et al., Structural basis of alpha-amylase activation by chloride. Protein Sci. 2002;11(6): 1435-1441.
    93. Juge N., Andersen J. S., Tull D. et al., Overexpression, purification, and characterization of recombinant barley α-amylases 1 and 2 secreted by the methylotrophic yeast Pichiapastoris. Protein Expr. Purif. 1996;8(2):204-214.
    94. Tull D., Gottschalk T. E., Svendsen I. et al., Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic Bacillus alpha-amylase produced in Pichia pastoris. Protein Expr. Purif. 2001;21(1): 13-23.
    95. Paifer E., Margolles E., Cremata J. et al., Efficient expression and secretion of recombinant α-amylase in Pichia pastoris using two different signal sequences. Yeast 1994;10(11): 1415-1419.
    96. Shiosaki K., Takata K., Omichi K. et al., Identification of a novel alpha-amylase by expression of a newly cloned human amy3 cDNA in yeast. Gene 1990;89(2):253-258.
    97. Sogaard M., Svensson B., Expression of cDNAs encoding barley alpha-amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene 1990;94(2): 173-179.
    98. Janse B. J., Pretorius I. S., One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, glucoamylase and pullulanase. Appl. Microbiol. Biotechnol. 1995;42(6):878-883.
    99. Shibuya I., Tsuchiya K., Tamura G. et al., Overproduction of an alpha-amylase/glucoamylase fusion protein in Aspergillus oryzae using a high expression vector. Biosci. Biotechnol. Biochem. 1992;56(10): 1674-1675.
    100. Pichia Protocols:Methods in Molecular Biology: 1st edition ed, San Diego, Humana Press, 1998.
    101. Mick F. T., Jeff J. Clare, and Mike A R.: Protein expression: a practical approach. 1st edition ed, New York, Oxford University Press, 1999.
    102. Sreekrishna K., Potenz R. H., Cruze J. A. et al., High level expression ofheterologous proteins in methylotrophic yeast Pichia pastoris. J. Basic Microbiol 1988;28(4):265-278.
    103. Sreekrishna K., Nelles L., Potenz R. et al., High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry 1989;28(9):4117-4125.
    104. Clare J. J., Rayment F. B., Ballantine S. P. et al., High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N. Y. ) 1991;9(5):455-460.
    105. Hasslacher M., Schall M., Hayn M. et al., High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 1997;11(1):61-71.
    106. Montesino R., Garcia R., Quintero O. et al., Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 1998;14(2): 197-207.
    107. Tokunaga M., Kato S., Kawamura-Watabe A. et al., Characterization of deletion mutations in the carboxy-terminal peptide-binding domain of the Kar2 protein in Saccharomyces cerevisiae. Yeast 1998;14(14): 1285-1295.
    108. Clare J. J., Romanos M. A., Rayment F. B. et al., Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 1991;105(2):205-212.
    109. Gehrke S. H., Uhden L. H., and McBride J. F., Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J. Control Release 1998;55(1):21-33.
    110. Matzke J., Schwermann B., and Bakker E. P., Acidostable and acidophilic proteins: the example of the alpha-amylase from Alicyclobacillus acidocaldarius. Comp Biochem. Physiol A Physiol 1997;118(3):475-479.
    111. Katoh S., Terashima M., and Shiomi N., Utilization of antipeptide antibodies as affinity ligands in immunoaffinity purification. J. Chromatogr. B Biomed. Sci. Appl. 1998;715(1): 147-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700