古菌Sulfolobus sofaltaricus P2嗜热嗜酸淀粉酶基因的克隆和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐热淀粉酶是现在工业生产中一个很重要的酶制剂,因其热稳定好、水解淀粉效率高,而广泛地应用在食品、制药等行业。目前工业上大规模使用的耐热淀粉酶大部分来自芽孢杆菌,主要是地衣芽孢杆菌。但地衣芽孢杆菌耐高温α-淀粉酶其最适pH为6.0左右,液化完成后进行糖化时所用的糖化酶最适pH为4.5,需要进行pH值的调整。这样不但增加了生产成本,而且造成后续处理设备的增加,排出的废水由于盐浓度的增加,还会造成处理困难和处理成本的上升。因此寻找和糖化酶最适pH相一致的耐高温α-淀粉酶对改进淀粉转化工艺有重要意义。
     Sulfolobus sofaltaricus P2属于极端嗜热古菌,最适生长温度为80℃,最适pH为3.0-4.5。它的基因组全序列的测定已于2001年完成,其中有一编码α-淀粉酶的基因。通过PCR扩增,获得了该菌的α-淀粉酶基因sspa。将该基因插入表达载体pET29a中,构建重组表达载体pET29a-sspa,经IPTG诱导在E.coli BL21(DE3)得到了表达,但是活性较低。通过软件SMART分析,sspa基因的功能域为7-447位氨基酸。所以将sspa基因进行了部分切除,使酶活有了提高。
     另外选择大肠杆菌和枯草芽孢杆菌的穿梭表达载体pP43NMK,构建重组表达载体pP43NMK-sspa,实现α-淀粉酶基因sspa在在枯草芽孢杆菌中的分泌表达,但表达量非常低。分析表明可能是该基因中含有大量枯草芽孢杆菌的稀有密码子所致,因此使用重叠延伸PCR的方法,对该基因中的4个稀有密码子进行定点突变,最终提高了在枯草芽孢杆菌中的表达量。
Thermostableα-amylase is one of the most important enzyme in industry, which iswidely used in food and pharmacy for its heat-resistant and efficient starch hydrolyzing. Atpresent mostα-amylase used in industry in large scale is from Bacillus licheniformis. Butthe optimal pH ofα-amylase from Bacillus licheniformis is 6.0, which was used inindustry in large scale. But the optimal pH of glucosidase is 4.5, which was used in thefollowing saccharification process. So before the following technics, product of starchhydrolyzation must be adjusted pH, which enhanced the producing cost and producedwaste water not easily to be treated. Accordingly finding hyperthermophilic and acidophilicα-amylase is very important.
     Sulfolobus solfataricus P2 is a hyperthermophilic and acidophilic archaeon living optimallyat 80℃and pH3.0-4.5. The its genomic DNAwas sequenced in 2001, which contains aα-amylase gene.α-amylase gene of Sulfolobus solfataricus P2(sspa) was got by PCR andcloned into expression vector pET29a. The recombinant plasmid pET29a- sspa wastransformed into E.coli BL21(DE3). Induced by IPTG, theα-amylase gene was expressed.But the expressedα-amylase had low activity. By analysing the domain of theα-amylasewith SMART software. It found that the functional domain of sspa is from 7 to 447 aminoacid. After exciseing part sequences, the rest sequences of sspa was cloned and expressedonce again in E.coli BL21(DE3). Theα-amylase activity was largely enhanced.
     The shuttle vector pP43NMK was chosen to constructed the recombinant secretingexpression plasmid pP43NMK-sspa, and expressed in B. subtilis1A771. But expressionlevel was very low, which could be due to rare codons present in sspa. After site-directedmutagenesis expression level was largely enhanced.
引文
白坤,于德贵,周冬颖.α—淀粉酶的性质及其液化作用[J].中国酿造.1995,5:1-5
    谷军.α—淀粉酶的生产与应用[J].生物技术.1994,4(3):1-5
    陈陶声.酶制剂的生产技术[M].上海科学技术出版社.1994
    华南理工学院 等.酒精与白酒工艺学[M].北京:轻工业出版社,1980,44-45
    胡学智,凌晨,候琴芳等.高温α—淀粉酶生产菌种选育的研究[J].微生物报.1991,31(4):267-273
    姜锡瑞等.酶制剂应用手册[M].北京:中国轻工出版社,1999
    蒋如璋,耿运琪,倪津等.地衣芽孢杆菌热稳定α—淀粉酶基因的分子克隆及其在枯草芽孢杆菌中的表达[J].遗传学报.1987,14(5):323-331
    江西食品发酵工业科学研究所.酶制剂生产和在食品工业上的应用[M].轻工业出版社.1977
    孔显良,王俊英,江洪涛等.地衣芽孢杆菌胞外耐高温α—淀粉酶的研究[J].微生物学报.1993,33(4):274-279
    李冬颖,刘坤,马明等.α—淀粉酶基因在D—核糖生产菌中的表达[J].南开大学学报(自然科学).2001,34(1):1-4
    郦惠燕,绍靖宇.嗜热菌的耐热分子机制[J].生命科学.2000,12:30-33
    林剑,郑舒文,孙利芹.温度和pH值对耐高温α—淀粉酶活力的影响[J].中国食品添加剂.2003,5:65-67
    林耀建,林影,吴晓英.极端微生物的研究概况[J].工业微生物.2000,30(3):53-55
    刘莉,陈炜,金城.芝田硫化叶菌新型α—淀粉酶基因在大肠杆菌的克隆和表达[J].微生物学报.2000,40(3):323-326
    刘仲敏,曾辉,何新民等.耐高温α—淀粉酶的研制开发及酶学特性的研究[J].食品工业科技.1999,20(4):18-20
    罗贵民等.酶工程[M].北京:化学工业出版社,2002,337
    马向东,康海霞,黄春华等.枯草芽孢杆菌α—淀粉酶基因的克隆及表达[J].河南农业大学学报.2000,34(4):223-226
    彭志英等.食品酶学导论[M].轻工业出版社.2002
    任大明,何超刚,钱祖卫等.嗜热脂肪芽孢杆菌α—淀粉酶基因的克隆和表达[J].生物工程学报.1987,3(3):197-202
    王镜岩.生物化学(第三版)[M].北京:高等教育出版社.2002
    沈微,王正祥,刘吉泉等.古细菌Pyrococcus furiosus嗜热α—淀粉酶基因在大肠杆菌中的表达.[J].食品与发酵工业.2003,29(3):10-14;
    沈微,华国强,王正祥等.古细菌Pyrococcus furiosus嗜热α—淀粉酶基因在酿酒酵母中的表达.[J].微生物学通报.2003,30(3):22-25
    石宣明,刘淑珍,黄玉碧.嗜热酶耐热机制的研究进展[J].科学技术与工程.2004.4(9):804-808
    史永昶,姜涌明.五种α-淀粉酶测活方法的比较研究.微生物学通报.1996,20(6):371-373.
    王柏婧,冯雁等.嗜热酶的特性及其应用[J].微生物学报.2002.42(2):259-262
    王磊,周新宇,唐上华等.耐高温α—淀粉酶基因在枯草芽孢杆菌染色体上的整合、扩增及表达的研究[J].工业微生物.1998,28(1):7-12
    翁醒华.酶工程与酶制剂[M].化学工业出版社.1992
    杨俊豪,胡学智.地衣芽孢杆菌A.4041耐高温α—淀粉酶的研究[J].微生物学通报.1990,17(5):286-289
    章克昌等.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,1995,42—43
    张礼星.耐高温α—淀粉酶的研究概况[J].江苏食品与发酵,1996,3:29-31
    张丽苹,徐研.酸性α—淀粉酶生产菌株的选育的初步研究.工业微生物.2002,32(4):11-14
    张丽苹,徐岩,金建中.酸性α—淀粉酶的研究与应用[J].酿酒.2002,29(3):19-22
    张树政.酶制剂工业[M].科学出版社.1998
    赵荧,董庆初,马鹤文.地衣芽孢杆菌A.4041耐高温α-淀粉酶热稳定性及构象研究[J].高等学校化学学报.1998,19(6):921-923
    赵荧,费小芳,郑玉娟等.耐高温α-淀粉酶结合Ca~(2+)的研究[J].高等学校学报.1998,19(8):1267-1270
    赵荧,刘红岩,宫正宇.地衣芽孢杆菌A.4041耐高温α-淀粉酶的纯化及性质[J].吉林大学自然科学学报.1997,3(3):85-88
    诸葛健 王正祥编著:工业微生物实验技术手册[M].北京:中国轻工业出版社,1994:682-683
    邹俊,马建华,毕汝昌.淀粉酶的同源性研究[J].生物生理学报.1997,13(4):536-540 Ahern T J, Klibanov A M. 1985. 228: 1280-1284
    Anagnostopoulus C, Spizizen J. Requirements for transformation in Bacillus subtilis [J]. J Bacteriol,1961, 81: 741-746.
    Andrew Shaw, Richard Bott, Anthony G Day. Protein engineering of a-amylase for low pH performance[J].Curr. Opin. Biotechnol. 1999,10(4):349-352
    Brown SH, Costantino HR, Kelly RM. Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol, 1990, 56: 1985-95.
    Canganella F, Andrade CM, Antranikian G, et al. Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new fervidobacterium species. Appl Microbiol Biotechnol, 1994, 42: 239-245
    Chang S, Gary O, Ho D, et al. Expression of eukaryotic genes in Bacillus subtilis using signals of penP. In A. T. 1982.159-169
    Chung YC, Kobayashi T, Kanai H, et al. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol, 1995, 61: 1502-1506.
    Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures.Biochem J. 1996,317 (Pt 1):1-11.
    De Vendittis E, Bocchini V. Protein-encoding genes in the sulfothermophilic archaea Sulfolobus and Pyrococcus. Gene, 1996,176(1-2): 27-33
    Dong G, Vieille C, Savchenko A, et al. Cloning, sequencing, and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol, 1997, 63(9): 3569-3576.
    Facchiano A M . Colonna G. Ragone R. Protein Eng, 1998; 11(9): 753-760 Frillingos S, Linden A, Niehaus F, et al. Cloning and expression of a-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J Appl Microbiol, 2000, 88(3):495-503.
    Grant H. J., Oliver R, Peter AS. et al, Transterm: a database of mRNAs and translational control elements[J]. Nucleic Acids Res. 2002, 30: 310-311.
    Janecek S, Leveque E, Belarbi A, et al. Close evolutionary relatedness of a-amylases from Archaea and plants. J Mol Evol, 1999, 48(4): 421-426.
    Jones RA, Jermiin LS, Easteal S, et al. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. J Appl Microbiol, 1999, 86(1): 93-107.
    Jorgensen S, Vorgias CE, Antranikian G. Cloning, sequencing, characterization, and expression of an extracellular a-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem, 1997, 272(26): 16335-16442.
    Jutta Matzke, Birgit Schwermann, Evert P.Bakker. Acidostable and acidophilic proteins: the example of the a-amylase from Alicyclobacillus acidocaldarius[J].Comp. Biochem. Physiol. 1997,118A(3): 475-479
    Karl Kandler, Lawrence C. Katz, Julie A. Kauer. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nature Neuroscience .1998. 1: 119 - 123
    Kobayashi T, Kanai H, Aono R, et al. Cloning, expression, and nucleotide sequence of the a-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol, 1994, 176(16): 5131-5134.
    Kobayashi K, Kato M, Miura Y, et al. Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in Sulfolobales. Biosci Biotechnol Biochem, 1996, 60(10): 1720-1723.
    Koch R, Spreinat A, Lemke K, et al. Purification and properties of a hyperthermoactive a-amylase from the acheaobacterium Pyrococcus woesei. Arch Microbiol, 1991, 155: 572-578
    Koch R, Zablowski P, Spreinat A et al. Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett, 1990, 71: 21-26.
    Kumar H D, Swati S. Modern Concepts of Microbiology, second revised. New Delhi: Vikas Publishing House Pvt Ltd, 2001
    Kumar S, Tsai C J, Nussinov R. Protein Eng, 2000; 13(3): 179-191
    Kyrpides N.C., Woese C.R. Univesally conserved translation initiation factors[J]. Proc. Natl. Acad. Sci.1998.95:224-228
    Laderman KA, Asada K, Uemori T, et al. a-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem, 1993, 268(32): 24402-22407
    Laderman KA, Davis BR, Krutzsch HC, et al. The purification and characterization of an extremely thermostable a-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Bio chem., 1993, 268: 24394-244401.
    Lee JT, Kanai H, Kobayashi T, et al. Cloning nucleotide sequence, and hyperexpression of a-amylase gene from an archaeon Thermococcus profundus. J Ferment. Bioeng, 1996, 82: 224-232.
    Leveque E, Haye B, Belarbi A. Cloning and expression of an a-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol Lett, 2000,186(1): 67-71.
    Leveque E, Jenecek S, Haye B et al. Thermophilic archael amylolitic enzymes. Enzyme and Microbial Technol,2000,26:3-14
    Michael W, Adams W. FEMS Microbilo Rev. 1994. 15: 251-277.
    Mikarni S,Iwano K,Shiinoli S,et al..Purification and some properties of acid-stable a-amylase from shochu kojl(Aspergillus kawahii). Agric Biol Chem. 1987,51(9):2495-2501
    M.Kanno.A Bacillus acidocaldarius a-amylase that is highly stable to heat under acidic conditions. Agric Biol Chem. 1986,50:23
    Rintaro Saito, Masaru Tomits. Computer analyses of complete genomes suggest that some arehaebacteria employ both eukaryoticmd eubacterial mechanisms in translation initiation[J]. Gene. 1999. 238: 79-83.
    Shigeru Morimura,Wen Xue Zhang,et al. Genetic Engineering of white Shochu-Koji to achieve Higher Levels of Acid-Stable a-amylase and Glucoamylase and other Properties when used for Sshochu Making on a Laboratory Scale. The Institute of Brewing. 1999,105(5):300
    Tachibana Y, Mendez Leclere M, Fujiwara S, et al. Cloning and expression of the a-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1. and characterization of the enzyme. J Ferment Bioeng, 1996, 82:224-232
    Takashi Kuriki, Hiroki Kaneko, Jiro Shimada et al.. Characteristics of twoa-amylase and structural implication [J].Appl. and Envi. Micr. .1999,65(10):4652-4658
    Woese,C.R. et al. Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int. J. Syst. Bacteriol. 1997.27:44-57.
    Woese,C.R., S Winker , RR Gutell . Architecture of Ribosomal RNA: Constraints on the Sequence of "Tetra-Loops". Proceedings of the National Academy of Sciences.1990. 87: 8467-8471
    Yoo Y J, Hong J, Hatch R T. Comparison of a-amylase activities from different assay methods , Biotechnol Bioengineer. 1987, 30: 147—151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700