水泥基复合材料对铬污染土壤的固化/稳定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬及其化合物在工业生产的各个领域广泛应用,由此产生了大量的铬污染土壤。铬污染土壤含有Cr(Ⅵ)和Cr(Ⅲ),尤其是Cr(Ⅵ),对环境危害极大,对铬污染土壤的治理,是环境保护的重大课题。在铬污染土壤处置的各种方法中,固化/稳定化方法是该领域的研究热点之一
     本文通过无侧限抗压强度与毒性检测试验,研究了硅酸盐水泥胶凝材料、辅助性胶凝材料及还原剂对铬污染土壤的固化或稳定化效果,并结合XRD、XPS、SEM、DTA等微观分析,探讨了相应的固化/稳定化机制。结果表明:
     ①硅酸盐水泥熟料和高铝水泥熟料对铬污染土壤均有明显的固化效果,随熟料掺量增加,固化体强度提高,总铬和Cr(Ⅵ)浸出浓度降低。高铝熟料的固化效果比硅酸盐熟料略差;
     ②土壤中单掺矿渣、铜渣和钢渣等辅助性胶凝材料,总铬和Cr(Ⅵ)浸出浓度降低;与单掺硅酸盐熟料相比,以适量的矿渣、铜渣和钢渣等量取代硅酸盐熟料,固化体强度有所降低,但幅度不大,而总铬和Cr(Ⅵ)浸出浓度,在低掺量时基本与单掺硅酸盐熟料一致,而高掺量时有所提高,三种辅助性胶凝材料钢渣优于铜渣,铜渣优于矿渣。说明在一定量下,可以用矿渣、铜渣和钢渣等辅助性胶凝材料取代硅酸盐熟料使用,从而降低处理成本;
     ③亚硫酸盐、硫化盐等还原剂对铬污染土壤中Cr(Ⅵ)的还原效果差,但亚铁盐效果良好。亚铁盐虽然显著降低Cr(Ⅵ)的浸出浓度,但随着养护龄期增长,其存在反弹现象;
     ④将亚铁盐与胶凝材料复掺使用,不仅可以获得较高的固化体强度,而且总铬和Cr(Ⅵ)浸出浓度很低,不随时间反弹。例如:复掺0.0075molFeCl2与30%熟料时,7d和28d的强度分别为16.2MPa和17.8MPa,7天Cr(Ⅵ)浓度为0.41mg/l,总铬为0.46mg/l,28天时Cr(Ⅵ)浓度为0.45mg/l,总铬为0.48mg/l,从7天到28天Cr(Ⅵ)浓度增加0.04mg/l,Cr(Ⅲ)降低0.02mg/l。复掺强度与单掺硅酸盐熟料相比保持一致,而总铬和Cr(Ⅵ)浸出浓度不仅低于1.5mg/l和0.5mg/l,且基本上不存在反弹;
     ⑤固化/稳定化作用主要取决于两个方面:一是其胶凝性,即其熟料水化产物对土壤颗粒的包裹和对孔隙的填充,从而阻止铬离子的渗出;二是其还原性,亚铁盐或辅助性胶凝材料中含有亚铁等还原性物质,使Cr(Ⅵ)被还原为不易移动的Cr(Ⅲ),降低Cr(Ⅵ)浸出浓度。
     通过本文的研究表明,利用胶凝材料、辅助性胶凝材料和还原剂复合,对铬污染土壤具有良好的效固化/稳定化效果,是一种具有潜力的资源化利用的途径。
Chromium and its compounds are widely used in industrial production, resulting in a large amount of chromium pollution. Chromium contaminated soil, one of the three kinds of sources of chromium, contains hexavalent chromium and trivalent chromium. The toxicity of chromium is mainly from hexavalent chromium, which is recognized as the one of the three carcinogenic metal and is harmful to human health. It is a major issue for environmental protection to deal with chromium pollution.
     In this paper, Solidification/stabilization (S/S) is used to deal with chromium contaminated soil. Through macro-performance of Cr(Ⅵ) and total Cr leaching concentration and unconfined compressive strength, cementitious materials such as Portland cement clinker, assistant cementitious materials such as slag, steel slag, and copper slag, and reductant are used to study S/S on chromium contaminated soil. Combining with micro-analysis of XRD, XPS, SEM, DTA, etc, mechanisms of S/S were discussed. The conclusions are obtained:
     ①Portland cement clinker and high alumina clinker have favorite S/S effect on chromium contaminated soil. The unconfined compressive strength and the total Cr and Cr(Ⅵ) leaching concentration of the solidified are improved and decreased respectively with increasing of dosage of clinker. Portland cement clinker has better S/S effect than high alumina clinker.
     ②Singly doping assistant cementitous materials, the total Cr and Cr(Ⅵ) leaching concentration of the solidified are decreased. Compared to singly doping cementitious materials, certain slag, steel slag or copper slag is used to replace the Portland cement clinker. At the same time, strength is decreased, but the range is a little. The total Cr and Cr(Ⅵ) leaching concentration keep the same as singly doping Portland cement clinker at low dosage. When increasing dosage, the stabilization effect of steel slag is first. Copper slag is better than slag. Thereby certain replacement is a ideal means to reduce the cost.
     ③Some reductant such as sulfite, sulfide have poor effect on reducing Cr(Ⅵ) leaching concentration. However ferrous salts still significantly reduce the Cr(Ⅵ) leaching concentration. But it is rebind with time.
     ④Mixing of ferrous salt and cementitious materials, strength is increased and The total Cr and Cr(Ⅵ) leaching concentration are decreased, and it's no rebind with time. For example, mixing with 0.0075mol FeC12 and 30% clinker, strength of the solidified are 16.2MPa and 17,8MPa respectively at 7d and 28d. At 7d the total Cr and Cr(Ⅵ) leaching concentration are 0.41mg/l and 0.46mg/l respectively. At 28 the total Cr and Cr(Ⅵ) leaching concentration are 0.45mg/l and 0.46mg/l respectively. From 7d to 28d,the Cr(Ⅵ) leaching concentration are increased by 0.04mg/l and the Cr(Ⅲ) leaching concentration are decreased by 0.02mg/l. Mixing of ferrous salt and cementitious materials, the strength is the same as singly doping cementitious materials. The total Cr and Cr(Ⅵ) leaching concentration are only less than 1.5mg/l and 0.5mg/l and it is no rebound with time.
     ⑤The role of S/S mechanism depends mainly on two aspects:One is gelling, that is the clinker hydration products parcel the soil particles and the pore adsorb the Cr ions to prevent the exudation of Cr ions. The other is deoxidizing. There are reducing substances in ferrous salt or assistant cementitious materials, which reduce Cr(VI) toCr(Ⅲ)to reduce the Cr(Ⅵ) leaching concentration
     This study shows that mixing dosage of cementitious materials, supplementary cementitious materials and reductants play a important role in S/S of the chromium contaminated soil. It is a potential means to resource utilization.
引文
[1]杜良,王金生.铬渣毒性对环境的影响与产出量分析.安全与环境学报,2004,4(2):34-37.
    [2]Boddu V M, Abbun K, Talbot J L, Smith E D.2003. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent[J]. Environmental Science and Technology,37:4449-4456.
    [3]韩英魁.环保治理,刻不容缓[J].铬盐工业,2000(2):22-30.
    [4]柴立元,龙腾发,唐宁等.微生物治理碱性含铬废水的试验研究[J].中南大学学报:自然科学版,2005,36(5):816-820.
    [5]纪柱.铬污染土壤的修复[J].铬盐工业,2008(2):63-71.
    [6]Muller A K, Westergaard K, Christensen S, et al. The diversity and function of soil microbial communities exposed to different disturbances[J]. Microbial Ecology,2002,44(1):49-58.
    [7]Tokunaga T K, Wan J M, Hazen T C, et al. Distribution of chromium contamination and microbial activity in soil aggregates [J]. Journal of Environmental Quality,2003,32(2):541-549.
    [8]杨卫国,陈家军,陈大扬,黄云锋.铬渣的危害与解毒技术[J].中国环保产业,2008(1):48-50.
    [9]Sreeram K J. Some studies on recovery of chromium from chromite ore processing residue[J]. Indian Journal of Chemistry,2003,42A:2447-2454.
    [10]Hillier S. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J]. Science of the Total Environment,2003, 308(1-3):195-210.
    [11]Geelhoed J S. Identification and geochemical modeling of processes controlling leaching of Cr6+ and other major elements from chromite ore processing residue[J]. Geochemica et Cosmochimica Acta,2002,66(22):3927-3942.
    [12]Sarangi A. Krishnan C. Comparison of in vitro Cr(Ⅵ) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil [J]. Bioresource Technology, 2008(99):4130-4137.
    [13]李桂菊.铬在植物及土壤中的迁移与转化[J].中国皮革,2004,33(5):30-34.
    []4]Park S J, Jang Y S. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr (Ⅵ)[J]. Colloid and Interface Science,2002,249: 458-463.
    [15]夏家淇.土壤环境质量标准详解)[M].北京:中国环境科学出版社,1996:45-48.
    [16]Wang X, Brusseau M L. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodxtrin[J]. Environmental Science and Technology,1995,29:2632-2635.
    [17]Naidu R, Kookana R S, Sumner M E. Cadmium sorpfion and transport in variable charge soils[J]. Journal of Environmental Quality,1997,26:602-617.
    [18]Tessier A, Campbel P G C, Blsson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J]. Analytical Chemistry,1979, (51):844-851.
    [19]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-32.
    [20]P R Anderson, T H Christensen. Distribution coefficients of Cd,Co,Ni,and Zn in soils 1988(01):15-22.
    [21]Julita Markiewicz-Patkowska, Andrew Hursthouse, Hanna Przybyla-Kij. The interaction of heavy metals with urban soils:sorption behaviour of Cd,Cu,Cr,Pb and Zn with a typical mixed brownfield deposit. Environment International,2005 (04):513-521.
    [22]陈英旭,何增耀,吴建平.土壤中铬的形态及其转化.环境科学,1994,15(3):53-56.
    [23]Khan S A, Rehman U R, Khan M A. Adsorption of chromium(Ⅲ), chromium (Ⅵ) and silver(I) on benlonties[J]. Waste Management,1995,15(41):271-282.
    [24]刘云惠,魏显有,王秀敏.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000(01):16-20.
    [25]Gao S, Walker W J, Dahlgren R A. Simultaneous sorption of Cd,Cu,Ni,Zn.Pb,and Cr on soils treated with sewage sludge supernatant 1997(1-4):331-345.
    [26]Zachara J M, Mnsworth C C, Cowan C E,et al. Adsorption of chromic hy subsurface soil horizons[J]. Soil Science Society of America Journal,1989,53(2):418-428.
    [27]孙游云.铬对植物体生长生理的影响及其在植物体中的积累规律[J].环境污染与防治,2001,23(1):45-46.
    [28]韩阳,李雪梅,朱延姝.环境污染与植物功能[J].化学工业出版社,2005:70-90.
    [29]Laxman R S. More S. Reduction of hexavalent chromium by Streptomyces griseus [J]. Minerals Engineering,2002(15):831-837.
    [30]廖白基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989:152-158.
    [31]陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社,1996:126-163.
    [32]何宝燕,尹华,彭辉,叶锦韶,杨峰,秦华明,张娜.酵母菌吸附重金属铬的生理代谢机理及细胞形貌分析[J].环境科学,2007,28(1):194-198.
    [33]李天杰.土壤环境学[M].北京:高等教育出版社,1996:128.
    [34]朱建华,王莉莉.不同价态铬的毒性及其对人体影响[T].环境与开发,1997,13(3):46-48.
    [35]Gunartnam M, Grant M H. The role of glutathione reductase in the cytotoxicity of chromium in the isolated rat hepatocytes[J]. Chemico—Biological Interactions.2001,134:191-202.
    [36]王连生.环境健康化学[M].北京:科学出版社,1994:334.
    [37]常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件试验研究[J].环境保护科学,2007,33(1):877-879.
    [38]Hang-sik shin et al. leaching characteristics of heavy metals from solidified sludge under seawater conditions. Haz.waste Haz.Mater.1990,7(3):261-271.
    [39]J.Dale Ortego. Spectroscopic and leaching studies of solidified toxicmetals. Journal of Hazardous Materials,1990(24):137-144.
    [40]Pollard et al. Organic compounds in the cement-based stabilization/ solidification of hazardous mixed wastes-Mechanistic process consideration. Journal of Hazardous Materials,1991, 28:313-327.
    [41]Aijun et al. solidification/stabilization applied to species. Journal of environmental science and health,1997, A32(6):1731-1742.
    [42]Cote,P.L.et al. Application of a static leaching test to solidified hazardous waste, ASTM inter. Symp. Indus. Hazard.Solid Wastes.1983,3:7-10.
    [43]Jafar, Parsa et al. Stabilization/solidification of hazardous wastes using fly ash. Journal of Environmental Engineering.1996,10:935-940.
    [44]Jesse, et al. A critical review of stabilization/solidification technology. Environmental Science and Technology,1998,28(4):397-462.
    [45]Juu-En Chang. et al. metals by Stabilization/solidification of sludges containing heavy using cement and waste pozzolans. Journal of environmental science and health,1999, A34(5): 1143-1160.
    [46]Mahalinghan,R. et al. Mixing alternatives for the polyester microencapsulation process for immobilization of hazardous residuals. Journal of Hazardous Materials,1981,5:77-91.
    [47]Meegoda.j.n. et al. Wast immobilization technologies[J]. Practice Periodical of Hazardous, Toxic & Radioactive Waste Management,1999,3(3):124-131.
    [48]魏志恒,金兰淑,曹卫星.初探不同环境条件对沸石吸附重金属离子性能的影响[J].环境污染与防治,2007,6(12):48—51.
    [49]陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、pH的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [50]陈林,谭欣.膨润土的改性对重金属离子吸附研究进展[J].现代化工,2002,22(3):88-90.
    [51]Henrik Green-Pedersen, Niels Pind. Preparation, characterization, and sorption properties for Ni(Ⅱ)of iron oxyhydroxide-montmorillonite[J]. Colloids and Surfaces A:pHysic0chemicaland Engineering Aspects,2000,168:133-145.
    [52]Trilochan Mishra, Kulamani Parida. A comparative study of textural, acidic and catalytic properties of chromia pillared montmorillonite and acid activated montmorillonite[J]. Applied Cataysis A:General,1998,166:123-133.
    [53]邵涛,姜春梅.膨润土对不同价态铬的吸附研究[J].环境科学研究,1999,12(6):47-49.
    [54]Wheeler P. Leach repellent[J]. Ground Engineering,1995,28:20-22.
    [55]Geelhoed J S, Meeussen J C L. Modeling of chromium behaviour and transport at sites contaminated with chromite ore processing residue:Implications for remediation methods[J]. Environmental Geochemistry and Health,2001,23:261-265.
    [56]廖敏,谢正苗,黄昌勇.重金属在土水系统中的迁移特征[J].土壤学报,1998,35(2):179-184.
    [57]Davis Andy, Olsen Roger L. The geochemistry of chromium migrafionand remediation in the subsurface[J]. Ground Water,1995,33(5):759-768.
    [58]Pichtel J, Pichtel T M. Comparison of solvents for ex-situ removal of chromium and lead from contaminated soil[J]. Environmental Engineering Science,1997,14(2):97-104.
    [59]Mckinley W S, Pratt R C, McpHillips L C. Cleaning up chromium [J]. Civil Engineering, 1992,62(3):69-71.
    [60]Wang P, Tsukasa M, Kohya K, Masanori S, Kiyoshi T, HisaoO. Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under an aerobic conditions[J]. Applied and Environmental Microbiology。1989(55):1665-1669.
    [61]周加祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备,2000(14):52-56.
    [62]Smith W L, Gadd G M. Reduction and precipitation of chromate by mixed culture sulpHate-reducing bacterial biofilms[J]. Journal of Applied Microbiology,2000,88:983-991.
    [63]汪频,李福德,刘大江.硫酸盐还原菌还原铬的研究[J].环境科学,1993,14(6):1-4.
    [64]Shen H, W ang Y T. Modeling hexavalent chromium reductionin Escherichia coli 33456[J]. Biotechnology and Bioengineering,1994,43(4):293-300.
    [65]Komori K, Rivas A, Toda K, Ohtake H. Biological removal of toxic chromium using an Enterobacter cloace strain that reduces chromate under anaerobic conditions[J]. Biotechnology and Bioengineering,1990,35:951-954.
    [66]Park C H, Keyhan M, Wielinga B. Fendorf S, Matin A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase[J]. Applied Environmental Microbiology,2000,66:1788-1795.
    [67]常学秀,施晓东,王焕校等.利用生物固定土壤重金属的机理及在农产品安全中的应用[J].生态学杂志,2003,22(5):88—93.
    [68]SttepHe. Bioremediation of chromium (Ⅵ)contamination solid residues[P]. US,5155042. 1992.
    [69]王凤花,罗小三,林爱军,李晓亮.土壤铬(VI)污染及微生物修复研究进展.2010 5(2):153-161.
    [70]Desjardin V, et al. Effect of microbial activity on the mobility of chromium in soils[J]. Waste Management,2002,22(2):195-200.
    [71]S.Wang, C.Vipulanandan Solidification/stabilization of Cr(VI) with cement Leachability and XRD analyses[J]. Cement and Concrete Research,2000(30):385-389.
    [72]Puzon G J, Petersen J N, Robe,s A G, Kramer D M, Xun L. A bacterial fiavin reductase system reduces chromate to a soluble chromium(Ⅲ)-NAD complex[J]. Biochemistry BiopHysics and Research Communications,2002,294:76-81.
    [73]韩怀芬,蒲凤莲,裘娟萍.生物法修复铬污染土壤的研究.能源环境保护,2003,17(2):7-9.
    [74]Wang.p et al. Isolation and characterization of an enterobacter-cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Applied and Environmental Microbiology, 1989,55:1665-1669.
    [75]Li Z H, Neremieks I. Removal of heavy metals from soils by using cation-selective membrane[J]. Environmental Science and Technology.1998,32(3):394-397.
    [76]Zhongming Li, Ji-Wei Yu, Ivars Neretnieks. Removal of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) from sand by electromigration. Journal of Hazardous Materials,1997(55):295-304.
    [77]Haran.B.S.et al. Development of a New Electrokinetic Technique for Decontamination of Hexavalent Chromium from Low Surface Charged Soils[J]. Environmental Progress,1996,15(3): 166-172.
    [78]Suhashi R M, Fujisawa S, Mitamura W, et al. Clean development mechanism projects and portfolio risks[J]. Energy Policy,2004(29):1579.
    [79]Ho S V, Sheridan P W, Hughes B M, et al. The Lasagna technology for in situ soil remediation.1 small field test[J]. Environ Sci Technol,1999,33(7):1086.
    [80]Puppala S K, Alshawabkeh A N, Acar Y B, et al. Enhanced electrokinetic remediation of high sorption capacity soil[J]. Haz Mat,1997,55:203.
    [81]Pazos M, SanromAn M A, Cameselle C. Improvement in eletrokinetic remediatioa of heavy metal spiked Kaolin with the polarity exchange technique[J]. ChemospHere,2006(62):817.
    [82]C.Lin, J.Chen, C.Lin, An NMR and XRD study of solidification/stabilization of chromium with Portland cement and b-C2S[J]. Journal of Hazardous Materials 48 (1996):137-147.
    [83]印永嘉主编.物理化学简明手册[M].高等教育出版社1988,217-218.
    [84]王建棋,吴克辉,冯大明编著.电子能谱学(XPS/XAES/UPS)引论[M].北京,国防工业出版社.1992,523-532.
    [85]史启祯主编.无机化学与化学分析[M].北京:高等教育出版社,1998:138-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700