锌镍电池电极材料氧化锌纳米化与表面包覆及其电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌镍二次电池具有高能量密度、高功率密度、低成本和无污染等优点,是一种新型高性能绿色二次电池,在电动工具和便携式电子产品等方面具有广泛应用前景。锌镍电池未产业化的主要问题是循环寿命较低,原因是锌枝晶生长和锌电极变形。过去,研究工作主要集中在电解液添加剂、锌电极添加剂、隔膜筛选等领域。然而锌枝晶和锌电极变形等问题与ZnO的物理化学性质有密切关系,是ZnO/Zn在碱性电解液中的溶解和Zn在反复充放电过程中的电沉积所导致的。因此,对ZnO结构性质的研究也是提高锌镍电池电化学性能的一个重要途径。本文提出对ZnO纳米化和表面包覆来改善锌镍电池的循环寿命,制备了ZnO纳米线和纳米铋基化合物表面包覆的ZnO,并系统研究了两者的电化学性能和ZnO纳米线的微观形态衍变过程。
     采用ZnCl_2和Na_2CO_3水热反应合成了直径50-80 nm,长径比大于100的结晶良好的ZnO纳米线。对ZnO纳米线进行恒流充放电测试,结果表明,ZnO纳米线具有较好的循环稳定性,较高的放电中值电压和较低的充电中值电压。经过75个充放电循环,ZnO纳米线的放电容量仍保持在605 mAh g~(-1),容量衰退率仅8.2%,而普通ZnO只有172 mAh g~(-1),表现出明显改善的电化学性能。电化学性能的改善与ZnO纳米线的纳米效应和形态效应有关。循环伏安测试也说明了ZnO纳米线比普通ZnO具有更高的电化学活性。通过研究ZnO纳米线的微观形态衍变过程,可以发现在循环充放电过程中ZnO纳米线的形态未发生本质改变,只是变短变粗,近似成纳米棒的形状。这是由于较长的氧化锌纳米线在充放电循环过程中部分溶解断裂成纳米棒,纳米棒表面高活性导致外延生长形成的。同时纳米线一般是横卧在锌电极的内部和表面,其晶体自身最快生长方向<0001>和液相浓差极化诱导产生的最快生长方向(一般为垂直锌电极表面的方向)相垂直或倾斜,因而抑制了锌枝晶生长。此外,在充放电循环中,活性材料仍保持为纳米尺度使其仍具有纳米材料所具有的较高的电化学活性和充放电性能。
     通过Bi(NO_3)_3水解反应制备了含量从3.6 wt.%到14.8 wt.%的纳米铋基化合物表面包覆的ZnO,XRD和TEM发现氧化锌表面被直径约50 nm的颗粒(Bi_2O_3和BiO)包覆。表面包覆后,ZnO的循环稳定性,放电容量和平均利用率都有明显改善。其中含Bi 9.3 wt%的表面包覆ZnO放电容量增加了132 mAh g~(-1),平均利用率提高了27 %,表现出较高的电化学活性。电化学性能的改善是因为铋在ZnO表面包覆降低了其与电解液的接触面积,减缓了ZnO在电解液中的溶解,保持了ZnO的电化学活性。表面包覆物纳米铋基化合物在初始循环后即被还原为金属铋,并始终以金属铋的形式包覆在氧化锌表面,能提高锌电极电导率,促进锌酸盐均匀沉积。因此,相对ZnO和Bi_2O_3的物理混合,纳米铋基化合物对ZnO表面包覆是有效利用锌电极添加剂,改善其电化学性能的有效方法。
Zinc/Nickel (Zn/Ni) secondary battery has attractive advantages of high energy and power densities, low cost and no toxicity, is a new promising power source and has wide application for electric tools and new portable devices. However, widespread commercialization of the Zn/Ni battery has been prevented due to the serious problems such as Zn dendritic growth and shape change. By far, most researches on this field have focused on additives to the electrolytes or the zinc electrode, selection of stable separators and other techniques. Nevertheless, problems such as Zn dendritic growth and shape change have close relations with physical and chemical properties of ZnO, which results from dissolution of ZnO in alkalinity electrolyte and deposition of zincate during the charge/discharge cycles. Therefore, studying the structure and properties of ZnO is an effective method to enhance the electrochemistry performance of Zn/Ni secondary battery. This dissertation puts forward material design and surface modification of ZnO to improve cycle life of Zn/Ni battery. ZnO nanowires and surface-modified ZnO with nanosized Bi compounds are prepared, electrochemistry performance of them used as zinc electrode active material are investigated and the shape evolution of ZnO nanowires is discussed.
     ZnO nanowires were fabricated by a low temperature hydrothermal approach of ZnCl_2 and Na2CO3, and have diameters of 50-80 nm, lengths of 5-8 um and the length-diameter ratios of about 100. The electrochemical performance of ZnO nanowires were studied by the constant current charge-discharge test and the cyclic voltammetry test. The results of constant current charge-discharge test revealed that ZnO nanowires had better cycle stability, higher discharge midpoint voltage and lower charge midpoint voltage than the conventional ZnO. The discharge capacity of ZnO nanowires still remained 605 mAh g~(-1) until the 75th cycle, while that of conventional ZnO was only 172 mAh g~(-1). The fading rate of ZnO nanowires was only 8.2 % and displayed the ameliorative electrochemistry performance. The improved electrochemistry performance had relations with nanometer size effect and shape effect of zinc oxide. The cyclic voltammetry test also showed the ZnO nanowires had the higher electrochemistry activities compared to the conventional ZnO. By analysing the successional variation process of ZnO nanowires’microscopic shape, we found that the morphology of ZnO nanowires did not essentially change, only shortened and thickened, and turned into nanorods. This was the reason that part of long ZnO nanowires dissolved and ruptured to broke nanorods in the charging /discharging process, and high surface activeness of nanorods caused the epitaxial growth.What’s more, ZnO nanowires was parallel to Zinc electrode interior and surface, so the rapidest growth direction determined by the crystal growth habit was vertical or inclined to the accelerated growth direction induced by concentration polarization which was aroused by liquid-side mass transfer. The two growth modes competed and inhibited mutually, at last the zinc dendrite was impeded effectively. ZnO nanowires were nanomaterials after the certain charging and discharging cycles, so they still had higher electrochemistry activeness.
     Surface-modified ZnO with nanosized Bi2O3/BiO compounds was prepared by the hydrolyzation reaction of Bi(NO3)3. The characteristics of surface-coated ZnO were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the results revealed that some nanoparticles with about 50 nm in diameter were modified on ZnO. The constant current charge-discharge test and cyclic voltammetry of the ZnO electrode showed that bismuth modifying on the surface of ZnO enhanced the cycle stability of the electrode, maintained the electrochemical activity of ZnO, and increased the discharge capacity and average utilization respectively. In comparison with the untreated ZnO, discharge capacity and average utilization of ZnO coated by 9.3 wt.% Bi increased 132 mAh g~(-1) and 27 %. The enhancement in the electrochemical performance was owing to the fact that Bi modified on ZnO decreased the contact area of active materials with the electrolyte, therefore, slowed the dissolution of ZnO in the electrolyte and maintained the electrochemical activity of ZnO. Nanosized bismith compounds were deoxidized to the metal bismith after the initial charge/discharge cycles, then bismith compounds kept the form of metallic Bi to modify on the surface of ZnO, which could raise the zinc electrode conductivity, promote zincate to deposit evenly and suppresse the zinc electrode corrosion. Compared with conventional mechanical mixture between ZnO and Bi2O3, surface modification with nanosized Bi compounds is one efficiency method to improve electrochemical performance of ZnO .
引文
[1]闫志刚,唐民洪,张绍辉,电动自行车用铅酸动力电池的发展状况[J],蓄电池, 2002, 3(1): 97-102.
    [2] Bogdanovic B, Hartwig T H, Spliethoff B. The development, testing and optimization of energy storage materials based on the MgH2 - Mg system[J]. Int. J. Hydrogen Energy, 1993, 18 (7) : 575-589.
    [3]郭炳煜,锂离子电池[M],长沙:中南大学出版社,2002,383-389.
    [4]陈专.燃料电池电动汽车商业化存在的问题[J].上海汽车,2009,4(2):7-9.
    [5]邓润荣,方春,刘勇标,吴前麒,陈力中.锌镍电池的研制与开发[J].电池,2004,34(1):50-52.
    [6] Beck F, Ruetschi P, Rechargeable batteries with aqueous electrolytes[J]. Electrochim. Acta , 2000, 45 (15-16): 2467-2482.
    [7]王家捷,穆举国,茹海涛,锌镍动力电池的发展和应用[J].电池工业,2006,11 (3):194-196.
    [8] Geng M, Northwood D O, Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. Int. J. Hydrogen Energy, 2003, 28 (6): 633-636.
    [9] McLarnon F R, Cairns E J, The secondary alkaline zinc electrode[J]. J. Electrochem. Soc, 1991, 138 (2): 645-663.
    [10] Bronoel G, Millot A, Tassin N, Development of Ni-Zn cells[J]. J. Power Sources, 1991, 34 (3): 243-255.
    [11] Jindra J, Sealed nickel-zinc cells[J]. J. Power Sources, 1992, 37 (3): 297-313.
    [12] McLarnon F R, Cairns. E J. The secondary alkaline zinc electrode[J], J. Electrochem. Soc, 1991, 138 (2): 645-663.
    [13] Lewis H, Jackson P, Salkind A, Danko T, Bell R, Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes[J], J. Power Sources, 2001, 96 (1): 128-132.
    [14] Kiohimoto N, Bogauchi T. Sealed secondary alkaline zinc batteries[P], Japan Patent: 06 267 587, 1994.
    [15] Nakagawa H, Bogauchi T, Kishimoto. Long cycle life sealed secondary alkaline zinc batteries[P], Japan Patent: 06 283 194, 1994.
    [16] Jindral J. Sealed Ni-Zn cells, 1996-1998[J]. J. Power Sources, 2000, 88(2):202-205
    [17] Eisenberg, Morris. Electrolyte for zinc anode batteries and method of making same[P], U. S. Patent: 4 224 391, 1980.
    [18] Eisenberg, Morris, Alkaline galvanic cells[P], U. S. Patent :5 215 836 ,1993.
    [19] Adler T C, McLarnon F R, Cairns E J. Low-zinc-solubility electrolyte for use in zinc/nickel oxide cells[J], J. Electrochem. Soc, 1993,140 (2): 289-293.
    [20] Striebel K A, McLarnon F R, Cairns E J. Laboratory-scale evaluation of secondary alkaline zinc batteries for electric vehicles[J], J. Power Sources, 1994, 47(1-2): 1-11.
    [21] Charkey, Allen, Sealed zinc secondary battery and zinc electrode therefore[P], U. S. Patent: 5 460 899, 1995.
    [22] Charkey, Allen, Coates, K. Dwaine, Calcium-zincate electrode for alkaline batteries and method for making same[P], U. S. Patent: 5 863 676,1999.
    [23]黄朝明,沈沂,庄飚.电动车用锌镍电池的性能特征[J],电池工业, 2000,5 (2): 77-81.
    [24] Gagnon E G. Effect of Ten Weight percent KOH electrolyte on the durability of zinc/nickel oxide cells containing zinc electrodes with calcium hydroxide[J], J. Electrochem. Soc, 1991, 138 (11): 3173-3176.
    [25] Jindra J. Progress in sealed Ni-Zn cells, 1991-1995[J], J. Power Sources, 1997, 66 (1-2): 15-25.
    [26] Karpinski A P, Makovetski B, Russell S J, Serenyi J R, Williams D C. Silver-zinc: status of technology and applications[J], J. Power Sources, 1999, 80 (1-2): 53-60.
    [27] Dzieciuch M A, Gupta N, Wroblowa H S. Rechargeable cells with modified MnO2 cathodes[J], J. Electrochem. Soc, 1988, 135 (10): 2415-2418.
    [28]刘会茹,王燕燕,赵地顺.锌锰电池研究新进展[J],河北化工, 2000, 4: 4-6.
    [29] Goldstein J, Brown I, Koretz B. New developments in the electric fuel Ltd. zinc/air system[J], J. Power Sources, 1999, 80 (1-2): 171-179.
    [30] Deiss E, Holzer F, Haas O. Modeling of an electrically rechargeable alkaline Zn-air battery[J], Electrochim. Acta , 2002, 47 (25): 3995-4010.
    [31]王建明,钱亚东,张莉,张鉴清,曹楚南.可充锌电极存在的问题及解决途径[J].电池,1999, 29(2):76-80.
    [32] Einerhand R, Visscher W, Goeij J M, et al. Zinc electrode shape change (Ⅱ) process and mechanism[J], J Electrochem Soc, 1991, 138 (1): 7–171.
    [33] Adler T C, Mclamon F R, Cairns E J. Low zinc solubility electrolytes for use in zinc/nickel oxide cells[J], J Electrochem Soc, 1993,140 (2): 289– 293.
    [34] Choi K W, Bennion D N, Newman J. Engineering analysis of shape change in zinc secondary electrodes[J], J. Electrochem. Soc, 1976,123 (11): 1616-1627.
    [35] McBreen J. Zinc electrode shape change in secondary cells[J], J. Electrochem. Soc, 1972, 119 (12): 1620-1628.
    [36] Einerhand R E F, Vissche W r, Goeij J J M, Barendrecht E, Zinc electrode shape change.Ⅱ, process and mechanism[J]. J. Electrochem. Soc, 1991,138(1): 7-17.
    [37] Yu J X, Yang H X, Ai X P, Zhu X M. A study of calcium zincate as negative electrode materials for secondary batteries[J], J. Power Sources, 2001,103 (1): 93-97.
    [38] Gagnon E G. Effects of KOH concentration on the shape change and cycle life of Zn/NiOOH cells[J], J. Electrochem. Soc, 1986,133 (10): 1989-1995.
    [39] Coates D, Ferreira E, Charkey A. An improved nickel/zinc battery for ventricular assist systems[J]. J. Power Sources, 1997, 65 (1-2): 109-115.
    [40] Wang Y M. Effect of KOH concentration on the formation and decomposition kinetics of calcium zincate[J], J. Electrochem. Soc, 1990, 137 (9): 2800-2803.
    [41] Wang Y. M., Wainwright G. Formation and decomposition kinetic studies of calcium zincate in 20 w/o KOH[J], J. Electrochem. Soc, 1986, 133 (9): 1869-1872.
    [42] McBreen J, Gannon E. Electrochemistry of metal oxide additives in pasted zinc electrodes[J]. Electrochim. Acta, 1981, 26 (10): 1439-1446.
    [43] McBreen J, Gannon E. The effect of additives on current distribution in pasted zinc electrodes[J], J. Electrochem. Soc, 1983, 130 (10): 1980-1982.
    [44] Shivkumar R, Paruthimal Kalaignan G, Vasudevan T. Studies with porous zinc electrodes with additives for secondary alkaline batteries[J]. J. Power Sources, 1998, 75 (1): 90-100.
    [45] Shivkumar R, Paruthimal Kalaignan G, T Vasudevan. Effect of additives on zinc electrodes in alkaline battery systems[J]. J. Power Sources, 1995, 55(1): 53-62.
    [46] Palagyi T Z. Investigation on the silver-zinc storage battery with radioactive Ag110isotope[J], J. Electrochem. Soc, 1961, 108 (3): 201-203.
    [47] Goodkin J, Trenton. Zinc electrode[P], U. S. Patent: 3 493 434, 1970.
    [48] Hanpson N A, Mcnail A J S. The electrochemistry of porous zinc IV. The faradaic impedance of plain and polymer-bonded porous electrodes in KOH solutions[J], J. Power Sources, 1985, 15 (2-3): 61-76.
    [49] Mansfeld F, Gilman S. The effect of lead ions on the dissolution and deposition characteristics of a zinc single crystal in 6 N KOH [J], J. Electrochem. Soc, 1970, 117 (5): 588-592.
    [50] Mansfeld F, Gilman S. The effect of tin and tetrathylammonium ions on the characteristics of zinc deposition on a zinc single crystal in aqueous KOH [J], J. Electrochem. Soc, 1970, 117 (9): 1154-1155.
    [51] Sato Y, Makoto T, Hiroaki A, et al. Gas evolution behavior of Zn alloy powder in KOH solution[J], J. Power Sources, 1992, 38 (3): 317-325.
    [52] Yano M, Fujitani S, Nishio K, Akai Y, Kurimura M. Effect of additives in zinc alloy powder on suppressing hydrogen evolution[J], J. Power Sources, 1998, 74 (1): 129-134.
    [53] Yano M, Fujitani S, Nishio K, Akai Y, Kurimura M. Storage characteristics of mercury-free alkaline manganese batteries[J], J. Appl. Electrochem, 1998, 28 (11): 1221-1225.
    [54]高翠琴,王志勇,周运鸿.碱性电池中锌电极添加剂的研究[J],电池工业, 1999, 4 (2): 47-50.
    [55]曾利辉,杨占红,桑商斌,赵玉彬,王学文.电解液添加剂对密封锌镍电池的影响[J].电源技术,2007, 131(1): 45-48.
    [56] Hampson N A, Shaw P E, Taylor R. Anodic behaviour of zinc in potassium hydroxide solution. PT. 2. horizontal anodes in electrolytes containing Zn[J], Brit Corrosion J., 1969, 4 (4): 207-211.
    [57] Szpak S, Gabriel C J. The Zn-KOH system: the solution-precipitation path for anodic ZnO formation[J], J. Electrochem. Soc., 1979, 126 (11): 1914-1923.
    [58] Gun Ko Y L, Flerov V N, Mikhalenko M G, Shishov V L. Characteristics of anodic oxidation of zinc in alkaline solutions under intensified process conditions[J], J. Appl. Chem., USSR (Engl. Transl.), 1986,59 (1): 182.
    [59] Han T A, Tu J P, Wu J B, Li Y, Yuan Y F. Electrochemical properties of biphase Ni(OH)2electrodes for secondary rechargeable Ni/MH batteries [J]. J. Electrochem. Soc, 2006, 153 (4): A738-A742.
    [60] Wu H M, Tu J P, Yuan Y F, Li Y, Zhang W K, H. Huang. Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries [J]. Physica B: Physics of Condensed Matter, 2005, 369 (1-4): 221-226.
    [61] Ma M, Tu J P, Yuan Y F, Wang X L, Li K F, Mao F, Zeng Z Y. Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries [J]. J. Power Sources, 2008, 179: 395-400.
    [62] Yuan Y F, Tu J P, Wu H M , Yang Y Z, Shi DQ, Zhao X B. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni-Zn batteries [J]. Electrochim. Acta, 2006, 51: 3632-3636.
    [63] Suresh P, Shukla A K, Munichandraiah N. Capacity stabilization of layered Li0.9Mn0.9Ni0.1O2 cathode material by employing ZnO coating[J]. Mater. Lett. 2005, 59 (8-9): 953-958.
    [64] Feng F, Northwood D O. Effect of surface modification on the performance of negative electrodes in Ni/MH batteries[J]. Int. J. Hydrogen Energy, 2004, 29 (9): 955-960.
    [65]费锡明,汪继红.锌镍电池研究进展[J].电池, 2002, 32 (6): 76-80.
    [66]高翠琴,王志勇,周运鸿,李莉莎,王明五.碱性电池中锌电极添加剂的研究[J].电池工业, 1999, 4 (2): 47-50.
    [67] Huang H, Zhang L, Zhang W K, Gan Y P, Shao H. Preparation and electrochemical properties of ZnO/conductive-ceramic nanocomposite as anode material for Ni/Zn rechargeable battery [J]. J. Power Sources, 2008, 184(2): 663-667.
    [68] Wang J M, Zhang L, Zhang C, Zhang J Q. Effcets of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions [J]. J. Power Sources, 2001, 102 (1-2): 139-143.
    [69] Yang H X, Cao Y L, Ai X P, Xiao L F. Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives [J]. J. Power Sources, 2004, 128 (1): 97-101.
    [70] Zheng Y, Wang J M, Chen H, Zhang J Q, Cao C N. Effects of barium on the performance of secondary alkaline zinc electrode [J]. Mater. Chem. Phys, 2004, 84 (1): 99-106.
    [71]胡俊,杨占红,赵玉彬,王学文.电解液无机添加剂对密封锌镍电池的影响[J].电源技术, 2009, 33 (4): 287-290.
    [72]. Iwakura C, H. Murakami, S. Nohara, N. Furukawa, H. Inoue. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte [J]. J. Power Sources, 2005, 152(1): 291-294.
    [73] Zhu J L, Y.H. Zhou, C.Q. Gao. Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution [J]. J. Power Sources, 1998, 72: 231-235.
    [74] Lin C C, Li Y Y. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate [J]. Materials Chemistry and Physics, 2009, 113: 334-337.
    [75] W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203 (1-2) (1999) 186-196.
    [76]周绍民等.金属电沉积?原理与研究方法[M],上海:上海科学技术出版社, 1987.
    [77]韩金铎,金山,景燕,等.尖晶石LiMn2O4的改性研究[J].无机化学学报, 2005, 2 (21): 237-240.
    [78] Yuan Y F, Tu J P, Wu H M, et al. Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells [J]. J. Power Sources , 2007, 165 (2): 905-910.
    [79] Yuan Y F, Tu J P, Gao S Y, et al. Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process [J]. Appl. Surf. Sci., 2008, 254 (16): 5080-5084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700