格氏试剂溶液中镁电沉积行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁是一种很有发展前景的高能量密度电池的负极材料,因此在有机溶液体系中进行金属镁电沉积的研究,对于高效新型镁一次和二次电池的开发,具有十分重要的意义。
     在本论文中,首先比较了三种市售格氏试剂电解液乙基溴化镁/四氢呋喃溶液(EtMgBr/THF)、乙基氯化镁/四氢呋喃溶液(EtMgCl/THF)和苯基氯化镁/四氢呋喃溶液(PhMgCl/THF)在三种不同阴极材料(平板纯铜基体,镀铜平板镍基体和镀铜泡沫镍基体)上镁的电沉积行为。发现在平板基体上都能得到均匀致密的镁镀层,但泡沫基体内部的镁沉积量很少。表明这三种格氏试剂溶液的深镀能力均较差。
     然后利用直角阴极法研究了加入支持电解质四丁基氯化铵(NBu_4Cl)对于格氏试剂电解液EtMgBr/THF深镀能力的影响。实验发现,L形铜片电极表面的镁电沉积面积和镁含量随着NBu_4Cl浓度的增大而不断增大,NBu_4Cl在EtMgBr/THF中的最佳浓度为0.6M。将0.6M NBu_4Cl加入EtMgBr/THF溶液中进行电沉积镁,实验发现,泡沫基体电沉积镁后的表面和内层均被镁镀层所覆盖,并且内层的镁含量提高到了60%左右。表明加入支持电解质NBu_4Cl可以有效改善EtMgBr/THF的深镀能力。
     最后利用直角阴极法研究了脉冲电沉积方法对于格氏试剂电解液EtMgBr/THF的深镀能力的影响,优选出最佳的脉冲电沉积参数,在泡沫基体上进行镁电沉积实验。实验发现,在平均电流密度0.0500A/cm~2,占空比80%,脉冲频率5Hz的脉冲电沉积实验条件下,泡沫基体的表面和内层均被镁镀层所覆盖,并且内层的镁含量提高到了60%左右。表明脉冲电沉积方法可以有效改善EtMgBr/THF的深镀能力。
Magnesium is a promising high energy density battery anode material, so it is of great significance to research the electrodeposition of metal magnesium in organic solution systems for the development of new efficient primary and secondary magnesium batterys.
     In this paper, firstly, three commercially available Grignard reagent electrolyte magnesium bromide / tetrahydrofuran solution (EtMgBr / THF), ethyl magnesium chloride / tetrahydrofuran solution (EtMgCl / THF) and phenyl magnesium chloride / tetrahydrofuran solution (PhMgCl / THF) was used to compare the electrodeposition behavior of magnesium on three differet cathode materials(planar pure copper substrate, planar plated-copper nickel substrate and foamed plated-copper nickel substrate).It is found that, on the planar substrate, uniform and compact magnesium coating can be get; but inside the planar substrate, the magnesium deposition is very few. It reveals that the deepening plating ability of these three Grignard reagent solutions is low.
     Secondly, rectangular cathode method was used to study the impact of supporting electrolyte tetrabutylammonium chloride (NBu_4Cl) to the deepening plating ability of Grignard reagent electrolyte EtMgBr / THF. It is found that the area and the component of magnesium electrodeposition on the L-shaped copper electrode surface increased with the concentration of the NBu_4Cl.The best concentration of NBu_4Cl was 0.6M. Then 0.6M NBu_4Cl was added to the EtMgBr / THF solution and the magnesium electrodeposition experiment was done on the formed substrate. The result shows that after the magnesium electrodeposition, the magnesium coating covered outside and inside the foamed substrate, and the component of the magnesium is increased to 60% inside the foamed substrate. It reveals that the deepening plating ability of EtMgBr / THF can be improved by adding NBu_4Cl supporting electrolyte to the solution.
     Finally, Rectangular cathode method was used to study the impact of pulse electrodeposition method to the deepening plating ability of Grignard reagent electrolyte EtMgBr / THF, and the best pulse electrodeposition parameters were optimized. Then the magnesium electrodeposition experiment was done on the formed substrate. The result shows that, under 0.0500 A/cm~2 average current density, 80% dutyfactor, 5Hz pulse frequency pulse electrodeposition conditions, the magnesium coating covered outside and inside the foamed substrate, and the component of the magnesium is increased to 60% inside the foamed substrate. It reveals that the deepening plating ability of EtMgBr / THF can be improved by pulsed electrodeposition method.
引文
[1]陈军,陶占良,苟兴龙,化学电源——原理、技术与应用,北京:化学工业出版社,2006,459
    [2]袁华堂,吴锋,武绪丽等,可充镁电池的研究和发展趋势,电池,32(1):14
    [3]张海朗,王文继,镁二次电池研究评述,现代化工,2002,22(11):13
    [4]于旭光,邱竹贤,镁工业生产及应用的现状和展望,材料与冶金学报,2003,2(3):191
    [5]师昌绪,李恒德,王淀佐等,加速我国金属镁工业发展的建议,材料导报,2001,15(4):5
    [6]袁望治,劳令耳,黄英才,镁固态电池,贵州工学院学报,1996,25(1):86~91
    [7] Besenhard J.O.,Winter M.,Advances in battery technology:Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries.Chemphyschem,2002,3:155~159
    [8]冯真真,镁二次电池材料制备及电化学性能研究:[博士学位论文],上海:上海交通大学,2008
    [9]彭成红,朱敏,镁电池研究进展,电池,2003,33(2):121~123
    [10]袁华堂,刘秀生,曹建胜,可充镁电池有机电解液的研究进展,电池,2004,34(2):138~140
    [11]Aurbach D.,Gofer Y.,Schechter A.,et al.A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes.J.Power Sources, 2001, 97~98:269~273.
    [12]Nelson JM, Evans WV,The electromotive force developed in cells containing nonaqueous liquids,J Am Chem Soc,1917,39:82~83
    [13]Gaddum LW,French HE,The electrolysis of Grignard solutions,J Am Chem Soc,1927, 49:1295~1299
    [14]Brenner A,Electrodeposition of metals from organic solutions,J Electrochem Soc,1956,103:652~656
    [15]Connor JH,Reid WE,Wood GB,Electrodeposition of metals from organic solutions,J Electrochem Soc,1957,104:38~41
    [16]Peled E,The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems:the solid electrolyte interphase model,J Electrochem Soc,1979,126:2047~2051
    [17]Brown OR,Mcuntyre R,The magnesium and magnesium amalgam electrodes in aprotic organic solvents:a kinetic study,Electrochimica Acta,1985,30:627~633
    [18]Genders JD,Pletcher D,Studies using microelectrodes of the Mg(Ⅱ)/Mg couple in tetrahydrofuran and propylene carbonate,J Electroanal Chem,1986,199:93~100
    [19]Gregory TD,Hoffman RJ,Winterton RC,Nonaqueous electrochemistry of magnesium,J Electrochem Soc,1990,137:775~780
    [20]Mayer A,Electrodeposition of aluminum,aluminum/magnesium alloys,and magnesium from organometallic electrolytes,J ElectrochemSoc, 1990,137:2806~2809
    [21]Lossius LP,Emmenegger F,Electrochimica Acta.Plating of magnesium from organic solvents,1996,41:445~447
    [22]Liebenow C,Reversibility of electrochemical magnesium deposition from Grignard solutions,J Appl Electrochem,1997,27:221~225
    [23]Lu Z.,Schechter A.,Moshkovich M.,et al,On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions,J.Electroanal.Chem.,1999,466:203~217
    [24]Aurbach D.,Moshkovich M.,Schechte A.,et al,.Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy,Electrochem.Solid State Lett.2000,3(1):31~34
    [25]Aurbach D.,Lu Z.,Schechter A.,Gofer Y.,et al,Prototype system for rechargeable magnesium batteries,Nature,2000,407:724~727
    [26]Gofer Y.,Chusid O.,Gizbar H.,et al,Improved Electrolyte Solutions for Rechargeable Magnesium Batteries,Electrochem.Solid-State Lett,2006,9(5):A257~A260
    [27]Aurbach D.,Suresh G.S.,Levi E.,et al.Progress in rechargeable magnesium battery technology,Adv.Mater,2007,19:4260~4267
    [28]Amir N.,Vestfrid Y.,Chusid O.,et al,Progress in nonaqueous magnesium electrochemistry,J.Power Sources,2007,174(2):1234~1240
    [29]Mizrahi O.,Amir N.,Pollak E.,et al,Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries,J.Electrochem.Soc.,2008,155(2):A103~A109
    [30]努丽燕娜,杨军,王久林等,离子液体作为镁电池新型电解质的研究,第十三次全国电化学会议论文摘要集(下集),广州:中国化学化电化学委员会,2005,108~109
    [31]努丽燕娜,杜国栋,冯真真等,碳酸乙烯醋添加剂对BMImBF4离子液体作为镁沉积一溶解电解液的改性研究,化学学报,2008,66(2):175~180
    [32]焦丽芳,袁华堂,可充镁电池有机电解液Mg(SnPh_3)_2的研究,化学通报,2005,9:714~717
    [33]左由兵,余祖孝,冯君艳,焦磷酸盐镀铜工艺研究,四川理工学院学报(自然科学版),2008,21(3):107~109
    [34]储荣邦,关春丽,储春娟,焦磷酸盐镀铜生产工艺(Ι),材料保护,2006,10:58~66
    [35]赵文光,实用电镀技术,哈尔滨:哈尔滨地图出版社,2005,53
    [36]孙松华,王军,曹华珍等,不同品质的焦磷酸盐对电镀铜的影响,电镀与涂饰,2009,28(2):8~15
    [37]温青,陈建培,无氰碱性镀铜工艺的研究进展,材料保护,2005,38(4):35~37
    [38]顾福林,焦磷酸盐镀铜液中正磷酸盐含量对镀层性能的影响,电镀与涂饰,2005,24(6):66~69
    [39]宋邦才,张军,闫洁,焦磷酸盐滚镀铜工艺研究与应用,石油化工腐蚀与防护,2005,22(4):35~37
    [40]郑伟伟,镁电极在不同电解质溶液中电化学性能初步研究:[硕士学位论文],天津:天津大学,2009
    [41]J.Kelber,S.Rudenja,C.Bjelkevig,Electrodeposition of copper on Ru(0001) in sulfuric acid solution:Growth kinetics and nucleation behavior,Electrochimica Acta,2006,51:3086~3090
    [42]Z.Gruba,M.Metiko-Hukovi,Nucleation of copper on an assembly of carbon microelectrodes,Materials Letters,2007,61:794~798
    [43]M.R.Majidi,K.Asadpour-Zeynali,B.Hafezi,Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode,Electrochimica Acta,2009,54:1119~1126
    [44]Samuel B.Emery,Jennifer L.Hubbley,Dipankar Roy, Voltammetric and amperometric analyses of electrochemical nucleation: electrodeposition of copper on nickel and tantalum,Journal of Electroanalytical Chemistry,2004,568:121~133
    [45]冯辉,张勇,张林森,电镀理论与工艺,北京:化学工业出版社,2008,10
    [46]冉鸣,铂微电极上铜的电化学成核机理,四川师范大学学报,1990,13(2):83~87
    [47]冉鸣,铜在玻璃碳电极上的电化学成核机理,四川师范大学学报,1988,2:117~119
    [48]程秀云,张振华,电镀技术,北京:化学工业出版社,2003,5
    [49]张宏祥,王为,电镀工艺学,天津:天津科学技术出版社,2002,47
    [50]安茂忠,电镀理论与技术,哈尔滨:哈尔滨工业大学出版社,2004,44
    [51]于永民,孙斌,脉冲电镀应用现状及对策分析,表面技术,2006,35(3):82~84
    [52]曾磊,徐赛生,集成电路铜互连线脉冲电镀研究,半导体技术,2006,5:330~333
    [53]朱瑞安,郭振常,脉冲电镀,北京:电子工业出版社,1987,15
    [54]刘勇,罗义辉,魏子栋,脉冲电镀的研究现状,电镀与精饰,2005,27(5):25~29
    [55]向国朴,脉冲电镀的原理与应用,天津:天津科学技术出版社,1989,1
    [56]朱松然,向国朴,毛振华,脉冲电镀基本概念和最佳参数的探讨,电镀与精饰,1986,4:5~7
    [57]张绍和,脉冲电镀Ni—W钻头电参数优选,探矿工程,1997,4:37~39
    [58]杨春莉,脉冲电镀参数对铀电沉积影响的正交实验研究,中国原子能科学研究院年报,2007,0:263~264
    [59]崔秋珍,概率论与数理统计,武汉:武汉理工大学出版社,2006,113
    [60]洪伟,吴承帧,试验设计与分析——原理、操作、案例,北京:中国林业出版社,2004,95~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700