高产纤维素酶枯草芽孢杆菌的筛选、应用及其产酶条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膳食纤维(Dietary fiber, DF)具有多种生理功能,被誉为人体的“第七大营养素”。其中的可溶性成分SDF (Soluble Dietary fiber, SDF),拥有比不溶性成分IDF (Insoluble Dietary fiber, IDF)更优的生理活性,具有较高应用价值和重要的研究意义。豆渣在我国产量巨大,其富含的纤维素类物质是SDF的理想来源。但是豆渣中天然的SDF较少,因此,必须进行一定的技术处理,以提高豆渣SDF的含量与得率。当前,以发酵技术和酶技术为代表的生物技术,被认为是最有发展潜力的技术手段之一,而菌种和酶类的选择与确定,则尤为重要。枯草芽孢杆菌(Bacillus subtilis)的诸多优点,使其成为产酶和应用菌种的首选。
     为此,本论文研究了高产纤维素酶枯草芽孢杆菌菌株的筛选、发酵豆渣制备SDF的应用及其产纤维素酶的条件,研究结果如下:
     1、从自然界筛选获得一株产纤维素活力较高的枯草芽孢杆菌,并根据实验中的编号顺序,命名为BS-05。在筛选的自然条件下,该菌株产纤维素酶活力较高,羧甲基纤维素酶活力(Sodium carboxymethylcellulose activity, CMCA)和滤纸酶活力(Filter Paper Activity, FPA)分别为57.27 U/ml和58.97 U/ml。
     2、应用菌株BS-05发酵豆渣,并联用均质技术,制备了高含量的豆渣SDF。豆渣经发酵与均质处理后,SDF的得率提高约4倍。并且,与未发酵的豆渣SDF相比,发酵获得的SDF颗粒变小,结构变松散,其溶解性与持水力等理化性质都有不同程度的改善。
     3、研究获得了菌株BS-05产纤维素酶的最佳条件。其产酶培养基组成是:CMC-Na 2%、蛋白胨2%、酵母粉2%、NaCl 0.5%, K2HPO4 0.1%, MgSO4·7H2O0.02%;最优的培养条件是:培养温度37℃、培养基初始pH7、接种量5%、培养时间48h和产酶培养基装液量为60/250ml。在上述条件下,该菌株发酵产纤维素酶的活力最高,CMCA与FPA分别达195.46 U/ml和174.52 U/ml,分别为优化前的3.41倍和2.96倍。
     4、研究获得了菌株BS-05所产纤维素酶的部分酶学特性。研究结果显示,该酶的最适pH值为pH6-7,在该pH范围内保持60min,酶活稳定;最适温度为55℃,在65℃以下保持30min,仍有较高酶活。这为该酶的推广提供了应用参数。
Owing to a variety of physiological functions, Dietary fiber (DF) was praised as "the seventh largest nutrient" of the human body, one of its composition the soluble components (Soluble Dietary fiber, SDF), has a better physiological function than the other composition the insoluble components (Insoluble Dietary fiber, IDF), and has more important applications and research significance. Soybean dregs with its rich cellulose materials and large output in our country, become an ideal source of SDF. However, it has fewer natural SDF, therefore, a certain degree of technical processing in order to improve the SDF content and yield rate must be taken. At present, biotechnology represented by the fermentation technology and enzyme technology is considered one of the most potential technologies, while the choice and identification of bacteria and enzymes is particularly important. Bacillus subtilis, with a number of advantages, making it becomes the first choice of enzyme production and application strain.
     For above reasons, this paper studied the screening methods of the high-yielding cellulose Bacillus subtilis strain, and its applications of fermentation in preparing soybean dregs SDF,as well as this strain's cellulase production conditions, the results are as follows:
     1. From the natural, obtained a Bacillus subtilis strain with high cellulose-producing activity, and named as BS-05 according to the order of experimental number. In the natural selection conditions, the strain has high produced cellulase activity, Sodium Carboxymethylcellulose Activity (CMCA) and the Filter Paper Activity (FPA) were 57.27 U/ml and 58.97 U/ml.
     2. Used the BS-05 strains in fermented soybean dregs, and in conjunction with the homogenization technique, obtained the soybean dregs SDF. After fermentation and homogenization, the yield of the soybean dregs SDF was increased to nearly 4-fold, and the particles become smaller, structure become looser, solubility and water holding capacity and other physical and chemical properties have different degrees of improvement.
     3. Obtained the best conditions for cellulase production of strain BS-05. Its enzyme production medium composition is:CMC-Na 2%, peptone 2%, yeast extract 2%, NaCl 0.5%, K2HPO4 0.1%, MgSO4·7H2O 0.02%; The optimal culture conditions are:culture temperature 37℃, culture base the initial pH7, inoculum size 5%, incubation time 48h and fermentation medium of liquid volume of 60ml. In the above-mentioned conditions, the strain has highest produced cellulase activity CMCA and the FPA respectively reached at 195.46 U/ml and 174.52 U/ml, is 3.41-fold and 2.96-fold before optimization.
     4. Obtained some enzyme properties of the cellulase produced by this strain were studied. The result is that:the optimum pH value of the cellulose is 6-7, the activity was stable after maintain 60min under this pH, and the optimum temperature is 55℃, there is still a high activity after maintain 30min at below 65℃. This research may provides parameters for the extension and application of the cellulose produced by BS-05.
引文
[1]Umikalsom M. S., Ariff A. B., et al. Production of cellulase by a wild strain of chaetomium globosum using delignified oil palm empty-fruit-bunch fiber as substrate[J]. Appl. Microbiol Biotechno,1997(47):590~595.
    [2]Hari Krishna S., Sekhar Rao K. C. et al. Studies on the Production and application of cellulase from Trichoderma reesei QM-9414[J]. Bioprocess. Eng.,2000(22):467~470.
    [3]宋颖琦,刘睿倩,杨谦,等.纤维素降解菌的筛选及其降解特性的研究[J],哈尔滨工业大学学报,2002,34(2):197-200.
    [4]吴丹.高产纤维素酶菌株的分离鉴定、诱变选育及产酶条件研究[D].南昌大学,2007.
    [5]谢碧霞,李安平等.膳食纤维[M],北京,科技出版社,2006,1-42.
    [6]Cowling EB. Structural featuers of cellulose that influence its susceptibility to enzymatic hydrolysis. Advances in enzymatic hyolrolysis of cellulose and related materials[M]. Reese ET. Pergamon Press, Nes York,1963:1~32.
    [7]Jurasek, L. Colvin. J and Whitaker, D. R. Microbiological aspeots of the formation and degradation of cellulosic fiber[J]. Advances on Applied Microbiology,1967,9:131~170.
    [8]谢占玲,吴润.纤维素酶的研究进展[J].草业科学,2004,21(4):72-76.
    [9]刘小杰,何国庆,陈启和.康宁木霉ZJ5纤维素酶发酵培养基的优化[J],浙江大学学报(工学版),2003,37(5):623-628.
    [10]陈耀宁,曾光明,黄国和,等.培养条件对一株木霉产纤维素酶过程影响的研究[J],微生物学杂志,2005,25(3):5-9.
    [11]阎泊旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学和生物物理进展,1999,26(3):233-237.
    [12]Wood T. M, McCrae S I. Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser,1979,181:181~209.
    [13]Singh A, Hayashi K, Microbial cellulases:Protein architecture, molecular properties and biosynthesis[J]. Adv. Appl. Microbiol,1995,40:44.
    [14]孟雷,陈冠军,王怡,等.纤维素酶的多型性[J].纤维素科学与技术,2002,10(2):47-55.
    [15]Gilkes N, R., Hinrissat B Kilbum D. G., Miller R. C. Warren R. A. J. Domains in microbial β-1,4-glycanases:sequence conservation, function and enzyme families[J]. Microbiol. Rev,1991,55:303~315.
    [16]Gibbs M D, R A Reeves and G K Farington. Multidomin and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1 [J]. Microbiol,2000,40:333~340.
    [17]HimmelM. E. et al., Handbook on Biotechnol[M]. Taylor&Fancis,1996,143~161.
    [18]阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学,1995,7(5):22-26.
    [19]王镜岩,朱圣庚,许长法.生物化学[M].北京,高等教育出版社,2002,335-336.
    [20]Abdullah A M, Rench F D. Substrate specificity of Pullulanase[J]. Arch Biochem Biophys, 1970,137:483~493.
    [21]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32.
    [22]傅力,丁友防,张篪.纤维素酶测定方法的研究[J].新疆农业大学学报,2000,23(2):45-48.
    [23]张蔚,焦志民,李忠兴等.QB 2583-2003中华人民共和国轻工行业标准纤维素酶制剂[S].北京:中华人民共和国国家发展和改革委员会,2003.
    [24]周正红,贾宗剑,高孔荣.纤维素酶在食品发酵工业中的应用及前景(综述)[J].暨南大学学报(自然科学与医学版),1998,19(5):125-130.
    [25]徐斐,华泽钊,王璋.等.酶法全橙汁生产工艺的研究[J].食品工业,2002,2:4-6.
    [26]傅博强,谢明勇,等.纤维素酶法提取茶多糖[J],无锡轻工大学学报,2002,21(4):362-366.
    [27]明景熙.啤酒工业中可再生性资源的开发[J],中国酿造,2000,4:28-29.
    [28]杨玉华,刘德海,王子光,等.纤维素酶提高食醋产量的研究[J].食品与发酵工业,1999,25(4):67-68.
    [29]邱伟芬.酶制剂在面粉品质改良中的应用[J].食品科技,2002,3:28-31.
    [30]石军,李俊婷,田明雨.纤维素酶在畜牧业中的应用研究进展[J],饲料博览,2002,11:9-10.
    [31]戴四发,金光明,王立克,等.纤维素酶研究现状及其在畜牧业中的应用[J],安徽技术师范学院学报,2001,15(3):32-38.
    [32]马田田.纤维素酶用于中药提取的初步研究[J].中草药,1994,25(3):22-33.
    [33]Jose Cegarra. The state of the art in textile biotechnology[J]. Jannary of the Society of Dyers and Colourists,1996,112(11):326~329.
    [34]冯群策.浅谈酶在非接触印刷废纸脱墨中的应用[J].黑龙江造纸,2002,4:18-20.
    [35]李宗全,于红,傅英娟,等.纤维素酶木聚糖酶和淀粉酶用于混合办公废纸脱墨的研究[J],纤维素科学与技术,2002,10(2):1-7.
    [36]Romos L. P., Nazhad M. and Saddler J. N. Effect of enzymatic hydrolysis on the morphology and fine strcture of pretreated cellulosic residues[J], Enzyme Microb. Technol. 1993,15:821~831.
    [37]余永红.一株新型产纤维素酶菌株的鉴定、纤维素酶的分离纯化、性质分析和菌株应用[D].南昌大学.2006.
    [38]郑亚平,余晓斌.碳源对绿色木霉ZC产中性纤维素酶的影响[J],无锡轻工大学学报,2003,22(2):30-33.
    [39]蒋芳.纤维素酶产生菌的分离鉴定、系统发育分析及发酵条件与酶学性质研究[D].四川大学,2006.
    [40]李作美,王永斌.纤维素酶高产菌株选育研究进展[J],中国食物与营养,2009,9:45-47.
    [41]高凤菊,李春香.真菌与细菌纤维素酶研究进展[J].唐山师范学院学报,2005,27(2):7-10.
    [42]R.E.戈登,W.C.海恩斯,C.HN.帕格.芽孢杆菌属[M].蔡妙英,战立克,译.北京:农业出版社,1983:45.
    [43]刘波,刘文斌,王恬.芽孢杆菌在水产养殖中的应用[J].中国饲料,2004,21:22-24.
    [44]袁小平,王静,姚惠源.枯草芽孢杆菌内切木聚糖酶的纯化与性质研究[J].食品与发酵业,2004,30(8):55-59.
    [45]Amir Jalal, Naeem Rashid, Nouman Rasool等人.Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5 [J]. Journal of Bioscience and Bioengineering.2009, Vol.107 No.4:360~365.
    [46]June-Hyung Kim, In-Suk Park and Byung-Gee Kim. Development and characterization of membrane surface display system using molecular chaperon,prsA,of Bacillus subtilis [J]. Biochemical and Biophysical Research Communications.2005,334:1248~1253.
    [47]M.R. Swain, and R.C. Ray. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora [J]. Microbiological Research.2009,164:121~130.
    [48]祝小,耿秀蓉,潘康成,等.枯草芽孢杆菌Pab02产纤维素酶活性的研究[J].饲料研究.2007.No.1:61-63.
    [49]韩学易,陈惠,吴琦,等.产纤维素酶枯草芽孢杆菌C-36的产酶条件研究[J].四川农业大学学报.2006.24(2):178-181.
    [50]胥兵,陈惠,韩学易,等.枯草芽孢杆菌C-36纤维素酶的纯化及酶学性质[J].四川农业大学学报.2006.24(4):398-401.
    [51]胡欣荣.利用原生质体融合技术选育高纤维素酶活枯草芽袍杆菌的研究[D].西北大学,2006.
    [52]董彬,郑学玲,王凤成.酶对面粉烘焙品质影响[J].粮食与油脂,2005,1:3-6.
    [53]HE H, CHEN X,SUN C,et al. Preparation and Functional Evaluation of Oligopeptide Enriched Hydrolysate from Shrimp (Acetes Chinensis) Treated with Crude Protease from Bacillussp. SM98011[J]. Bio-resource Technol.,2005,96 (7):806-810.
    [54]Monica L E, Elizabeth A D J. Viability and stability of biological control agents on cotton and snap bean seeds[J]. Pest.Management.Science,2001,57(8):695-706.
    [55]Postma J., Montanari M., Van den Boogert P.H.J.F. Microbial enrichment to enhance the disease suppressive activity of compost[J].Eur.J.Soil Biol.,2003,39:157~163.
    [56]De Weger L.A., Van der Bij A.J., Dekkers L.C.,et al. Colonization of the rhizosphere of crop plants by plant-beneficial Pseudomonads[J].FEMS Microbiol.Ecol.,1995,17:221~228.
    [57]李佳,刘钟滨.植酸酶的研究进展及应用[J].同济大学学报(医学版),2004,25(6):541-544.
    [58]张扬,张同亮,陈德兆.纺织用酸性蛋白酶的性质及其在羊毛处理中的应用[J].纺织科技进展,2004,6:43-45.
    [59]王平,范雪荣,徐媛媛,等.棕色彩棉织物生物酶前处理工艺研究[J].纺织导报,2005,1:54-57.
    [60]KAMAL Kumar B, BALAKRISHNANH, RELEMV. Compatibility of Alkaline Xylanases from an Alkaliphilic Bacillus NCL (87-6-10) with Commercial Detergents and Proteases[J]. Micro-Biol. Biotechnol.,2004,31(2):83-87.
    [61]TANG XM, LAKAY FM, SHEN W,et al. Purification and Characterisation of an Alkaline Protease Used in Tannery Industry from Bacillus Licheniformis[J]. Bio-technol. Lett.,2004, 26(18):1421-1424.
    [62]张振山,叶素萍,李泉等.豆渣的处理与加工利用[J].食品科学,2004,25(10):400-405.
    [63]崔洪斌.大豆生物活性物质的开发与利用[M].北京.中国轻工业出版社,2001.
    [64](美)P.L.佩利著,赵和熙译.蛋白质食品营养的评价[M],北京,人民卫生出版社,]984:355.
    [65]李里特.大豆加工与利用[M].北京.化学工业出版社,2002,384-413.
    [66]丁玉萍,王雪丽,王学英.利用豆渣生产水解植物蛋白[J].食品工业科技,1997,4:24-25.
    [67]胡德亮,徐荣,郭常高.豆奶生产中下脚料的综合利用现状及趋势[J].食品工业,2001,4:41-43.
    [68]Lo G.. Nutritional and physical properties of dietary fiber from soybeans[J]. Cereal Foods World.1989.34(7):530~534.
    [69]Giovannucci E. Willett W C. Dietary factors and risk of colon cancer[J]. Ann Med. 1994(26):443~452.
    [70]Gray D S. The clinical uses of dietary fiber[J]. Am Fam Phys.1995.51:419~425.
    [71]R. A. Ai-Shagrawi. etc. Effects of alkaline hydrogen peroxide-treated fibers on nutrient digestibility blood sugar and lipid profile in rats[J]. Food Chemistry.1999,213~218.
    [72]K. E. Bach Knudsen. The nutritional significance of "dietary fiber" analysis [J]. Animal feed science and technology.2001(90):3~20.
    [73]王亚伟,李春亚,田学森,等.膳食纤维和低聚糖对糖尿病人血糖血脂的影响[J].郑州工程学院学报.2002,3:85-88.
    [74]姜录,胡飞.豆渣酸水解工艺条件的研究[J].食品研究与开发.2008.29(2):97-100.
    [75]姜爱莉,贺红军,孙承锋.大豆膳食纤维的提取工艺[J].食品工业.2004.1:46-47.
    [76]周德红,郑为完,祝团结,等.酶法水解豆渣制备水溶性膳食纤维及其作为微胶囊壁材的研究[J].食品与发酵工业,2005,31(5):55-57.
    [77]金茂国,孙伟.挤压对豆渣膳食纤维理化性质影响[J].粮食与饲料工业,1996,11:35-38.
    [78]郑冬梅,谢庆辉,张宏亮.豆渣膳食纤维提取工艺预处理条件的研究[J].食品科学,2005,26(9):340-346.
    [79]涂宗财,李金林,阮榕生,等.利用豆渣生产高活性膳食纤维的研究[J].食品科学,2006,27(7):144-147.
    [80]刘成梅,黎冬明,钟业俊,等.瞬时高压作用对豆渣膳食纤维(SDF)在生理条件下对Cu2+、Ca2+、Mg2+、Pb2+(?)的影响[J].食品科学,2006,27(8):340-346.
    [81]姜竹茂,陈新美,缪静.从豆渣中制取可溶性膳食纤维的研究[J].中国粮油学报,2001,16(3):52-56.
    [82]马毓霞,王勇,高阳.大豆膳食纤维多功能活化研究[J].粮油食品科技,2005,13(5):35-36.
    [83]涂宗财,李金林,汪菁琴,等.微生物发酵法研制高活性大豆膳食纤维的研究[J].食品工业科技.2005,26(5):49-51.
    [84]徐广超,姚惠源.豆渣水溶性膳食纤维制备工艺的研究[J].河南工业大学学报(自然科学版),2005,26(1):54-57.
    [85]郑淑霞,沈志扬,刘树滔,等.黑曲霉发酵粉中一种p-葡萄糖苷酶的分离纯化与表征[J],福州大学学报(自然科学版),2004,32(1),101-105.
    [86]顿宝庆,吴薇,王旭静,等.一株高纤维素酶活力纤维素分解菌的分离与鉴定[J].中国农业科技导报,2008.10(1):113-117.
    [87]R.E.布坎南,N.E.吉本斯等编,中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译,科学出版社,1984(8):729-734.
    [88]刘海波,王义强,陈介南,等.一株高产纤维素酶菌的筛选与鉴定[J],生物学杂志,2008,25(3):16-20.
    [89]杨革,陈营,王淑芳,等.微生物学实验教程[M],北京科学出版社,2004,143-150.
    [90]沈萍.微生物学[M].北京.高等教育出版社,2000,329-330.
    [91]McClenny N. Laboratory detection and identification of aspergillus species by microscopic observation and culture:the traditional approach[J]. Medical mycology.2005.vol.43 Suppl 1:125~128.
    [92]周德庆.微生物学教程(第二版)[M].高等教育出版社,北京,2002,151.
    [93]J.M.Fang, J.M.Lawther, etc. Fractionation and characterization of polysaccharides from abaca fiber[J], Carblhydrate Polymer,1998(3),15~31.
    [94]Krall, S. M.& McFeeters, R. F. Pectin hydrolysis:Eeffct of temperature, degree of methylation, pH, and calcium on hydrolysis rates[J]. Journal of Agricultural and Food Chemistry.1998,16:1311~1315.
    [95]柴巍中.膳食纤维主要分析方法及其在我国的应用[J],中国食物与营养,2003,8:36-38.
    [96]林德荣.可溶性膳食纤维提取、理化性质及其生理功能的研究[D].南昌大学,2008.
    [97]Edwin R. Morris. Assembly and rheology of Non-starch Polysacharides. Advanced dietary fiber technology[M]. Blackwell science Ltd. Edition offers.2001,30~33.
    [98]Barbara Olds Schneeman. Dietary fiber:physical and chemical properties, methods of analysis and physiological effects [J]. Food Technology,1986,2:104~110.
    [99]Pilar Ruperez, Fulgencio Saura-Calixto. Dietary fiber and physi-chemical properties of edible seaweeds [J]. Eur FoodRes Technol,2001,212:349~354.
    [100]MacConnell A A et al. Physical Characteristics of vegetable food stuffs that could influence bowel function [J]. J Sci Food Agric,1974,25:1457~1464.
    [101]田学森,王亚伟,申晓琳,等.影响麦麸膳食纤维得率的因素分析[J],食品工业科技,2003,24(1):77-79.
    [102]余永红,邓泽元,李静,等.面包串珠霉发酵对豆渣成分影响研究[J].食品科学,2005,26(19):147-149.
    [103]郑建仙.功能性膳食纤维[M].北京.化学工业出版社,2005.4-9.
    [104]李金全.水溶性膳食纤维在烤牛肉中的应用[J],肉类研究,2006,08:16-17.
    [105]王金华,李冬生.水溶性膳食纤维在冰淇淋中的应用研究[J],冷冻与速冻食品工业,2003,9(1):14-16.
    [106]石奇.2006.复合酶法提取大枣多糖的研究[J].西北大学.27-31.
    [107]沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特征研究[J].林产化学与工业,2002,22(1):47-51.
    [108]Chen C M, Gritzali M, Stafford D W. Nucleotide sequence and deduced primary structure of cellobiohydrolase 11 from Trichoderma reesei[J]. Bio technology,1987, (5):274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700