表面增强红外光谱在铂族电极上的拓展及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学是研究电和化学反应相互关系的科学,它主要研究电能与化学能相互转化的过程。探明电极/电解液界面的基本物理化学性质是认识、控制和利用电化学过程的基础。电催化是表面电化学研究的重要方面,其研究热点包括燃料电池相关的CO、甲醇等催化氧化反应,以及环保相关的NO催化还原反应等。由此,对具有高催化活性的Pt族金属电极表面上的吸附结构与反应过程进行多角度和多层次的详尽分析研究,将具有重要的科学意义和应用前景。
     近三十年来,为了从分子水平上深化对电化学界面的认识,各类谱学技术和扫描探针技术被引入到原位(in-situ)电化学研究中,使电化学研究从宏观向微观、由统计平均向分子水平不断发展;以此同时,时间分辨的动力学研究也进入亚微秒的水平。在这些现场方法中,表面增强振动光谱尤其是表面增强拉曼光谱(SERS)的贡献巨大,特别是近十年由于高性能拉曼谱仪的逐渐普及以及特殊纳米结构金属表面的涌现,电化学SERS被广泛应用于电极/电解质界面结构和性质的研究。以此相对比,比它晚出现的表面增强红外光谱(SEIRAS)由于其表面增强因子远小于SERS,一直没有受到广泛的关注而发展较慢,无论是其技术本身的进步及在表面电化学中的应用都远未达到与SERS可比的程度。实际上,红外吸收截面数量级为10~(-20) cm~2 molecule~(-1),而拉曼散射截面数量级为10~(-29)cm~2 molecule~(-1),因而SEIRAS的检测灵敏度与SERS相当,某些时候甚至更高。特别是SEIRAS几乎可以在所有过渡金属表面均能获得与银、金、铜表面相近的增强效应,同时其表面选率简单,因而应具有更大的发展空间和新的应用前景。
     电化学衰减全反射表面增强红外光谱(ATR-SEIRAS),可以克服外反射模式红外光谱(IR-RAS)测量中的薄层电解质结构的诸多限制,有利于检测电极表面的吸附和反应,尤其适合于电极表面极性较高的小分子不可逆反应过程的时间分辨研究。将ATR-SEIRAS用于研究Pt族金属的电催化吸附与反应,可提供其它原位谱学技术难于提供的诸如参与界面反应的共吸附水等重要信息。如何制备具有SEIRA效应的金属薄膜是SEIRAS发展的瓶颈,对此我们提出了简易的“两步湿法镀膜”策略,使电化学ATR-SEIRAS技术全面拓展到Pt族金属表面。同时,由于该方法制备的金属膜为纳米颗粒金属薄膜,其表面结构比本体电极更接近实际催化体系。使用ATR-SEIRAS方法研究Pt族金属纳米薄膜电极表面的CO和甲醇氧化、NO还原以及电极界面共吸附水结构等,应有特别的参考价值。
     本论文主要围绕以下工作进行研究:自行设计了电化学原位-衰减全反射-表面增强红外光谱(ATR-SEIRAS)附件系统;将SEIRAS较全面地拓展到Pt族金属表面,并将其应用于CO和甲醇的吸附与氧化反应、NO的吸附及还原反应、共吸附水分子的可能界面结构,以及芳香小分子的吸附构型等研究。另外,初步研究了质子交换膜燃料电池(PEMFC)膜电极(MEA)的制备对单体电池性能的影响。具体主要内容和结果如下:
     1.提出“两步湿法镀膜”作为通用策略,制备具有SEIRA效应的Pt族纳米金属薄膜,为在Pt族金属电极开展电化学ATR-SEIRAS研究奠定了基础
     采用了简便易行的“两步湿法镀膜”,即在红外窗口Si半圆柱的底面上先通过化学镀镀上一层Au膜,然后采用合理电沉积方式在其上覆盖Pt族金属外层(Pt、Pd、Rh或Ru),成功地制备了具有SEIRA效应的Pt族金属纳米薄膜电极。
     使用电化学方法对上述Pt族金属(Pt、Pd和Rh)纳米薄膜进行测试,结果表明,镀层几乎无针孔,而且所得的各Pt族金属(Pt、Pd、Rh和Ru)纳米薄膜的电化学特征行为与本体金属一致,从而为与本体纯金属有可比性的电化学性质研究奠定了基础。
     另一方面,应用CO作为探针分子,对上述Pt族金属纳米薄膜的表面增强红外效应以及它在金膜基底上的覆盖程度进行了测试。结果显示该方法制备的Pt族金属纳米薄膜不仅几无“针孔”而且呈现极强SEIRA效应,增强效果超过其它方式制得的金属薄膜。同时吸附物种的吸收峰方向与定义的一致,不发生倒转,峰形单一,不出现所谓的“类-Fano”非对称双极峰扭曲现象,便于光谱的分析和解释,提高了结果的准确性。这些特性对现场ATR-SEIRAS的拓展应用至关重要。
     最后需指出的是,该“两步湿法镀膜”,作为一种通用的方法应用于在其它更多的过渡金属电极的ATR-SEIRAS研究,相关工作已由本实验室的其他同学相继展开。
     2.应用表面增强红外光谱研究燃料电池相关电催化基础反应
     (1)CO在Pt电极表面的吸附及氧化
     (a)UPD氢区0.1V下Pt电极表面CO的吸附及其氧化行为
     0.1 M HClO_4溶液中,Pt电极上CO吸附开始时较分散,随着CO总覆盖度增加,CO的局部浓度开始升高,当COB和COL峰的红外总吸收达饱和吸附时的红外总吸收的19%左右(简称θ_(CO-IR)),发生界面自由水的共吸附(简称H_2O_共)。之后各分子之间发生相互作用,CO_B和CO_L发生强烈偶合,待CO吸附饱和时,形成了一个CO和H_2O共的稳定共吸附层。
     该条件下形成的CO吸附层在氧化过程中,其H_2O共均在CO氧化完成之前消失,对应的θ_(IR)要比吸附过程的高得多。若采用扫描电位方式氧化,H_2O共消失时对应的θ_(CO-IP)约为40%;如采用电位阶跃氧化,相应的θ_(CO-IR)约为60%。以上CO生成和氧化过程的θ_(CO-IR)的差异,意味着这些H_2O共优先参与了反应。动电位扫描过程,在0.54 V之前不发生CO氧化,而在0.45 V左右开始出现微弱的阳极电流,伴随着H_2O共的ν_(OH)的同步缓慢减弱,由此可推测此阳极电流弱峰可能是H_2O共在活性位上的电活化所致,这种预活化的水将直接参与CO的氧化。
     在0.1 V预吸附CO层的氧化过程是一个整体结构崩溃的过程,即各共吸附组分(CO_L、CO_B和H_2O共)的局部覆盖度从氧化反应被激活之后就开始快速降低。反应机制更适合用“平均场近似模型”(Mean field approximation model)来描述。
     (b)双层区0.45 V下Pt电极表面CO的吸附及其氧化行为
     与前述吸附过程不同的是,该电位下CO在Pt电极上的吸附一开始时就表现为聚集吸附的过程,即虽然CO总体覆盖度不高,但是局部的CO浓度较高,几乎一开始吸附就检测到H_2O共。当CO吸附达到饱和时,CO的局部浓度也没有发生太大的改变,吸附过程类似“成核生长”,形成CO和水的共吸附层结构较稳定。氧化过程中各吸附物种几乎同步减小和消失,各谱峰形状、频率及半峰宽几乎不变。由此推测这一过程更适合于用“成核生长模型”(Nucleation and growth model)来描述。
     总的来看,Pt电极表面CO氧化过程依赖于CO的吸附电位区(UPD氢区或双层区),并且CO的氧化过程动力学特征与其对应的吸附过程的动力学特征具有相似性。
     (2)CO在Rh或Pd电极及CH_3OH在Pt电极表面氧化初探
     在0.0 V预吸附的CO在Rh电极氧化过程类似于0.45 V预吸附Pt电极上CO的氧化过程;而在Pd电极上CO氧化开始时各谱峰的频率、半峰宽变化不大,但后期可发生CO_B向CO_T转移;结合电化学循环伏安扫描和ATR-SEIRAS光谱同步测量,获得了甲醇在Pt电极表面按双路径机理氧化及不同电位区间的表面吸附物种的信息。
     3.利用ATR-SEIRAS研究NO在Pt族电极表面的吸附和还原行为(1)NO在Ru电极表面的吸附和还原研究
     Ru电极预吸附NO在0.1 M HClO_4中只呈现1874-1840 cm~(-1)的谱峰,归属为与氧共吸附的线性NO或吸附在Ru氧化物表面的NO(表示为v_2(O)-NO物种)。在负向电位扫描过程中,并未发现NO吸附在还原态Ru表面的红外吸收峰(v_2-NO),这说明包括NO分子和共吸附氧物种在内的v_2(O)-NO物种作为整体被还原的,即并非分开独立进行还原的。光谱结果还表明,v_2(O)-NO物种在还原过程中可能存在快速扩散的行为;或者在整个电极表面的任何区域的v_2(O)-NO物种同时发生还原反应,导致v_2(O)-NO物种的覆盖度在还原过程中表现为快速均匀的降低过程。
     Ru在溶液中含有HNO_2的0.1 M HClO_4条件下,SEIRAS光谱中可以观察到1886-1850 cm~(-1)左右的v_2(O)-NO物种的红外吸收峰,以及1520-1578 cm~(-1)左右的与氧共吸附的三重吸附NO(v_1(O)-NO)的红外吸收峰。在负电位区观测到的1740-1790 cm~(-1)的谱带可归属为NO线性吸附在还原态Ru上v_2-NO物种。在阳极扫描的0.0到0.3 V之间v_2(O)-NO峰的积分强度为零,这说明在该条件下Ru表面氧化物在0.0到0.3 V之间几乎可以完全被还原。当电位高于0.35 V,电极表面开始生成氧化物种,v_2-NO物种随即开始转换为v_2(O)-NO物种。
     (2)预吸附单层NO在Pt电极表面的吸附和还原研究
     SEIRAS光谱研究发现了1760-1737 cm~(-1)和1609-1524 cm~(-1)的两个谱带。前者归属为线性吸附的NO分子(NOL)的红外吸收峰;后者可归属为双桥式吸附的NO分子(NO_B)的红外吸收峰。试验结果表明,在电化学条件下,预吸附NO的还原并不是一个结构敏感反应,而是一个吸附位敏感的还原反应。即NO_L和NO_B的还原是完全分步的过程,并且在还原过程中并没有发生吸附位的转移现象。
     (3)预吸附单层NO在Pd电极表面的吸附和还原研究
     在Pd电极表面可获得三个NO的红外吸收峰:1770-1724 cm~(-1)可归属为线性吸附的NO分子(NO_L)的红外吸收峰;1690-1572 cm~(-1)可归属为双桥式吸附的NO分子(NO_B)的红外吸收峰。1548-1487 cm~(-1)为三重吸附的NO分子(NO_M)的红外吸收峰。实验结果还表明,在电化学条件下,Pd电极表面预吸附NO还原也是一个吸附位敏感的还原反应,即NO_L、NO_B和NO_M还原是分步过程,但是在NO_B的还原过程中,明显地发生从NO_B到NO_M吸附位的转变。
     4.芳香小分子在Pt电极表面的吸附行为的增强红外光谱研究
     研究了HClO_4溶液中对硝基苯甲酸(PNBA)和KClO_4溶液中吡啶(Py)在Pt电极表面的吸脱附。研究结果表明在较高电位下(约0.3~0.7 V)PNBA是通过-COOH脱去质子之后的-COO~-吸附在Pt电极表面,并且两个氧原子几乎是等位地吸附在Pt电极表面,分子平面几乎垂直或以某小角度倾斜于电极表面。PNBA从约0.35 V以负电位开始脱附,脱附中间电位为0.2V。在0.1~-0.1 V区间,吸附PNBA分子中羧基的一个氧原子可能脱离电极表面,另一个氧原子可能以某种方式与Pt-H表面相结合。至于吡啶在Pt电极上的吸附,在相当宽的电位区间内(0.4~-0.4 V),吡啶在Pt电极上的吸附主要是通过N原子的孤对电子及脱氢后的α碳原子共同与Pt电极表面成键,并且分子平面与电极表面几乎是垂直或以某一小角度倾斜于电极表面,即采取edge-on而非end-on吸附构型。
     5.Pt族电极界面H_2O共分子结构的SEIRAS初探
     (1)Pt族电极界面与CO共吸附的H_2O共的ATR-SEIRAS特征
     我们在Pt、Pd、Rh和Ru电极表面都获得了IRAS难于检测到的H_2O共振动谱峰。3631-3658 cm~(-1)谱带被指认为共吸附单体水(水分子摆脱了通常的氢键作用,也称为自由水)的伸缩振动ν_(OH),而1626-1633 cm~(-1)为剪式振动峰δ_((HOH))。当电位正移至使CO氧化脱附的电位时,此单体水的特征峰也消失。这其中,电极材料较明显地影响ν_((OH))的振动频率,如ν_((OH))分别为3643 cm~(-1)(Ru)、3631 cm~(-1)(Rh)、3648cm~(-1)(Pd)和3658 cm~(-1)(Pt);而δ_((HOH))频率受电极材料影响小,均在1630 cm~(-1)附近。δ_((HOH))谱峰易受到近电极表面其它水分子的干扰。
     (2)溶液中的卤素离子对Pt电极上CO和H_2O共吸附结构的影响
     CO氧化之前,加入Cl~-对CO和H_2O共峰影响较小。只有在发生CO氧化后才观察到与Cl~-共吸附水的吸收峰,其ν_((OH))和δ_((HOH))分别位于3568和1622cm~(-1)。Cl~-的竞争吸附一定程度上抑制了CO的氧化过程。
     Ⅰ~-的加入在红外谱图上出现了3652 cm~(-1)、3610 cm~(-1)、3485 cm~(-1)的ν_((OH))及1637cm~(-1)左右的δ_((HOH))吸收峰。3652 cm~(-1)的谱峰可归为与CO共吸附的‘Ⅰ’类自由水的ν_(O-H);3610 cm~(-1)为与Ⅰ~-离子共吸附的‘Ⅱ’类自由水ν_((O-H));3485 cm~(-1)为在‘Ⅰ’和‘Ⅱ’类水外围更多的还有氢键作用的‘Ⅲ’类水分子。而1637 cm~(-1)应更多的为‘Ⅲ’水的δ_((HOH))贡献。Ⅰ~-的强吸附导致部分CO非氧化性脱落。
     (3)极端析氢电位条件下Pt电极表面的CO和水共吸附结构初探
     0.1 V或0.45 V下预吸附的CO,在经历强烈析氢后氧化的动力学过程分别与预吸附的CO直接进行氧化的动力学过程一致,说明CO与水的共吸附层结构稳定,以及氢析出主要发生在CO吸附层的缺陷空位Pt原子。
     在强析氢的条件下,CO_B和H_2O共的谱峰明显改变。对H_2O共而言,δ_(HOH)的同时随CO_B谱峰增加,而ν_(OH)的强度几乎不变。在更负的电位条件下,大量的气泡甚至可导致界面水部分脱离电极表面的现象,并造成了少部分CO_L和少部分H_2O共脱落。电位正扫,H_2O共依然存在,直到CO彻底氧化为止。δ_(HOH)的振动峰提前消失,表明其对外层环境的影响更敏感。在更负电位条件下,高频段(ν_(OH))的谱峰拟合得到3640 cm~(-1)、3498 cm~(-1)和3373 cm~(-1)的三个谱峰。这三个谱峰分别对应于自由水H_2O共、紧邻外层水(氢键部分解离)及外层类冰结构的界面水。
     6.低Pt载量的质子交换膜燃料电池的研制
     在新的还原体系中合成了高分散、Pt粒径2-5 nm、高催化活性的Pt/C催化剂。开发了低载铂量(0.15 mg cm~(-2))、超薄MEA(催化层厚10μm左右)制备技术,从而使电池性能有较大改进(自制催化剂在:室温;H_2:0.03 MPa;O_2:0.05 MPa;载铂0.15mg cm~(-2)的条件下,电池单体功率密度达0.17 W cm~(-2)。
Electrochemistry is the branch of chemistry concerned with the interrelation of electrical and chemical effects. A large part of this field deals with the study of chemical changes caused by the passage of an electric current and the production of electrical energy by chemical reactions. Special attention has been focusing on the physical and chemical properties of the interface of electrode/electrolyte. The electrocatalysis is an important interrelating area of surface electrochemistry and surface catalysis. Its main topics include the electrocatalytic oxidation of CO & methanol which is related to fuel cell fundamentals and applications, and the reduction of NO which is of environmental concerns. Thus, the studies of adsorptions and reaction processes of CO, NO and methanol on Pt group metal electrodes will be of great significance in both scientific and application aspects.
     In the past 30 years, the optical spectroscopy and scanning probe technology (SPM) have been applied in electrochemical study in order to get the interface information at the molecular level. The improvement in instrumental performances and analytical methodology promotes electrochemical research from macroscopic to microscopic, from statistic average to molecular level and into the dynamics atμs time-resolution. In particular, pushed by the advent of new-generation high throughput confocal Raman microprobe and the delicate construction of nano-templates in last decade, surface-enhanced Raman spectroscopy (SERS) has been extensively and intensively applied in probing electrode/electrolyte interfaces. By contrast, as its counterpart and complementary technique, surface-enhance IR absorption spectroscopy (SEIRAS) received far less attention and development. A possible misunderstanding causing this kind of imbalance can be attributed to low enhancement factor for SEIRAS (ca. 10-10~3 as compared to that of ca. 10~5 to 10~(12) for SERS). In fact, under most circumstances, the detection sensitivity of SEIRAS is essentially comparable to, and even higher than that of SERS, because the infrared absorption cross section and Raman scattering cross section are at the orders of 10~(-20) and 10~(-29) (cm~2 molecule~(-1) ), respectively. Strong SERS enhancement is limited to silver, gold, copper and alkali metals, but similar SEIRAS enhancement can be available for nearly all metals. Consequently, SEIRAS should be promising for further development and broader application.
     Free from problems caused by the thin-layer structure of conventional IRRAS, SEIRAS with Kretschmann ATR configuration (ATR-SEIRAS) is a powerful tool for the studies of adsorptions and reactions at electrodes, especially in real-time monitoring irreversible reactions involving highly polar small molecules. Application of ATR-SEIRAS to Pt group metal electrodes will provide special insights to the interfacial structures and reaction mechanisms of interested electrocatalytic systems. The prerequisite of applying ATR-SEIRAS to surface electrocatalysis is the appropriate construction of the SEIRA-active Pt group metal electrodes consisting of conductive nanoparticle films. The structure of as-prepared nano-particles is closer to that of actual catalysts, as compared to previous bulk materials, and the results yielded for CO & methanol oxidation and NO reduction should have more specific significance.
     This thesis focuses on the following aspects: Building up a set of custom-made system for in-situ ATR-SEIRAS; Presenting a versatile two-step wet process to construct Pt, Pd, Rh, and Ru nanoparticle films on Si prism for electrochemical ATR-SEIRAS study; In-situ ATR-SEIRAS investigation of CO and methanol adsorption and oxidation, NO adsorption and reduction, adsorption configuration of small aromatic molecules, and interfacial structure of coadsorbed free water; Preparing low-Pt loading membrane electrode assembly (MEA) and testing the PEMFC performance. The main results and conclusions are summarized as follows:
     1.A versatile two-step wet process to fabricate Pt, Pd, Rh, and Ru nanofilm electrodes for in-situ ATR-SEIRAS study:
     A versatile two-step wet process to fabricate Pt, Pd, Rh, and Ru nanoparticlefilms for electrochemical ATR-SEIRAS study is presented, which incorporates aninitial chemical deposition of a Au underlayer on the basal plane of a silicon prismwith the subsequent electrodepostion of desired platinum group metal overlayers.Galvanostatic electrodeposition of Pt, Rh, and Pd from phosphate or perchloric acidelectrolytes, or potentiostatic electrodeposition of Ru from a sulfuric acid electrolyte,yields sufficiently "pinhole-free" overlayers as evidenced by electrochemical andspectroscopic characterizations. The Pt group metal nanofilms thus obtained exhibitstrongly enhanced IR absorption. In contrast to the corresponding metal filmselectrochemically deposited directly on glassy carbon and bulk metal electrodes, theobserved enhanced absorption for the probe molecule CO exhibits normal unipolarband shapes.
     This ubiquitous strategy is expected to open a wide avenue for extending ATR SEIRAS to explore molecular adsorption and reactions on technologically important transition metals.
     2.A study of oxidation of CO and methanol at Pt group nanofilm electrodes by in-situ ATR-SEIRAS
     (1) Adsorption and oxidation of CO at Pt electrode in 0.1 M HClO_4
     In the case of CO adsorption at 0.1 V (vs. SCE), the increase of local surface concentration of CO adlayer is relatively slow. The coadsorbed water molecules (H_2O_(free) ) were detected when the total integrated intensity of CO_L and CO_B bands (denoted asθ_(CO-IR)) is 19 % that of saturated coverage, and the strong interaction and dipole coupling occurred between coadsorbates. In the potentiodynamic oxidation process, bands for H_2O_(free) disappeared at aθ_(CO-IR) of 40%, whereas in the potential step (to 0.65 V) oxidation process, the H_2O_(free) bands disappeared at theθ_(CO-IR) 60%. These facts indicate that H_2O_(free) molecules are actively involved in the oxidation of CO adlayer on Pt electrode. Moreover, theυOH band gradually weakens its intensity in response to the anodic prewave ranging from 0.45 to 0.54 V, which may be caused by the electro-activation of H_2O_(free) at some active sites before it reacts with CO to formed CO_2.The oxidation process of CO adlayer preformed at 0.1 V results in collapse of the entire structure, which may be better described with the so-called 'mean field approximation' model.
     In the case of CO adsorption at 0.45V, the CO molecules packed locally at the beginning of absorption process, as demonstrated by the fact that H_2O_(free) bands show up at a lowθ_(CO-IR) of 4%, and until saturation, the local structure of CO and H_2O_(free) remains rather stable as judged by the insignificant changes of band positions. The oxidation process of CO adlayer preformed at 0.45 V may proceed via "nucleation and growth" mechanism.
     (2) Oxidation of CO on Rh and Pd electrodes & methanol oxidation on Pt electrode
     The results showed that the oxidation process of CO adlayer on Rh electrode was similar to that of CO predosed at 0.45 V on Pt electrode in 0.1 M HClO_4.In the potentiodyanmic scan of CO predosed Pd electrode, CO oxidation proceeds in the potential region 0.9~0.96 V does not change significantly the band frequencies and widths of adsorbates, and the transformation of CO_B to CO_M occurred in the late oxidation process. The in-situ time-resolved spectra indicate that methanol was oxidized through two-pathway mechanism on Pt electrode.
     3.A study of adsorption and reduction of NO at Pt group electrode surface:
     (1) Adsorption and reduction of NO at Ru electrode
     For a NO-predosed Ru electrode, only one band located at 1840-1874 cm~(-1) was detected in 0.1 M HClO_4, attributable to atop NO coadsorbed with oxygen-containing species (denoted asυ_2(O)-NO species). For a Ru electrode in 0.1 M HClO_4 containing 20 mM NaNO_2, two IR bands located at 1850-1886 cm~(-1) and 1740-1790 cm~(-1) were observed. The former, predominant at relatively high potentials, is ascribable to theυ_2(O)-NO species, whereas the latter to atop NO adsorbed on nominal Ru sites at relatively low potentials (denoted asυ_2-NO species). In addition, a very weak band at 1520-1578 cm~(-1) may be assigned to multi-coordinated NO coadsorbed with oxygen-containing species.
     The real-time spectral results suggest that the reduction of NO molecules and the coadsorbed oxygen-containing species proceed simultaneously rather than separately. No evidence was found for the conversion ofυ_2(O)-NO toυ_2-NO species during its reduction. Rather, the reverse process may occur at higher potentials. The net accumulation of theυ_2-NO species in CaseⅡresulted from the re-adsorption of NO on the nominally reduced Ru sites at lower potentials. In both cases, theυ_2(O)-NO species at Ru electrode can start to be reduced without the need of thecomplete removal of surface oxides.
     (2) Adsorption and reduction of NO adlayer at Pt electrode
     Two NO bands at 1760-1737 and 1609-1524 cm~(-1) were obtained at NO-predosed Pt electrode. The former is assigned to linear adsorbed NO molecules on Pt atoms (NO_L), and the latter can be attributed to bridge-adsorbed NO molecules on Pt atoms (NO_B). The in-situ time-resolved spectral results indicated that the electroreduction of NO was not a structure-sensitive reaction but a site-sensitive reaction at Pt electrode. NO_L and NO_B were reduced separately, and the adsorptionsites transfer did not occurred in the reduction.
     (3) Adsorption and reduction of NO adlayer at Pd electrode
     Three IR bands of NO at 1770-1724 cm~(-1) , 1690-1572 cm~(-1) and 1548-1487 cm~(-1) were detected at NO-predosed Pd electrode which can be attributed to NO_L, NO_B and multi-coordinated NO_M, respectively. The real-time spectral results also indicated that the reduction of NO adlayer is not structure sensitive, but site sensitive. The molecules of NO_L, NO_B and NO_M were reduced separately, with sites transfer from NO_B to CO_M occurring.
     4.A study of electroadsorption of aromatic molecules on Pt electrodes with ATR-SEIRAS:
     In situ ATR surface-enhanced IR absorption spectroscopy (ATR-SEIRAS) hasbeen applied to study the adsorption of p-nitrobenzoic acid (PNBA) in 0.1 M HClO_4or pyridine (Py) in 0.1 M KClO_4 on Pt electrodes. The results indicate that adsorptionof PNBA at positive potential of 0.3 V vs. SCE yielded p-nitrobenzoate species boundto the surface through the carboxylate oxygen atoms with a bridging coordination.The PNBA was desorbed gradually as the potential shifted negatively, and mightadopt single oxygen-atom coordination to H-bonded Pt surface. The transitionpotential for electroadsorption of PNBA on Pt electrodes was centered ca 0.2 V vs.SCE. As for the adsorption of Py on Pt electrodes, spectroscopic evidence pointed tothe formation ofα-pyridyl species nearly perpendicular to the Pt surface. Over thepotential range between-0.4 and 0.4 V vs. SCE, the configuration and orientation ofadsorbed Py remained virtually unchanged.
     5.Interfacial structure of H_2O_(free) at CO-predosed Pt group electrodes
     (1) The SEIRAS features of H_2O_(free) at CO-predosed Pt group electrodes
     H_2O_(free) coadsorbed with CO was detected on Pt, Pd, Rh and Ru electrodes byATR-SEIRAS. The band at 3631-3658 cm~(-1) is assigned toυOH of H_2O_(free), and theband at 1626-1633 cm~(-1) is assigned to the correspondingδHOH of H_2O_(free). TheυOHfrequency is sensitive to electrode material, with 3643 cm~(-1) for Ru, 3631 cm~(-1) for Rh,3648 cm~(-1) for Pd and 3658 cm~(-1) for Pt at saturated CO coverage. But theδHOHfrequency is nearly independent of electrode materials, rather it is affected by otherwater molecules.
     (2) The effect of halide anions on the interfacial H_2O_(free) at CO-predosed Ptelectrode
     In the presence of Cl in solution, spectral results showed only when CO adlayerwas stripped or partially stripped did the Clˉadsorb on Pt electrode. Two bands,υOH(3568 cm~(-1) ) andδHOH (1622 cm~(-1) ), emerged with the adsorption of Clˉ. The adsorbedClˉinhibited CO oxidation to some extent. In the presence of Iˉin solution, IR bandsat 3652 cm~(-1) , 3610 cm~(-1) and 3485 cm~(-1) (υOH) and at 1637 cm~(-1) (δHOH) were detectedat CO-predosed Pt electrode. The first three bands are assigned to H_2O coadsorbed with CO (typeⅠ), H_2O coadsorbed with I (typeⅡ), and outer-layer H_2O (typeⅢ),respectively. Stronger adsorption of I at Pt electrode may expel partially CO adlayer.
     (3) CO-predosed Pt electrode at very negative potentials
     After being subjected to very negative potential excursion, CO-predosed ateither 0.1 V or 0.45 V exhibits same oxidation kinetics. The hydrogen evolutionreaction (HER) occurs probably at defects sites of the adlayer. The entire spectrum ofthe infrared spectra of interface water can be detected under HER condition with theATR configuration. At strong HER potentials, CO_B band increases. The broaderυOHpeak can be separated into three peaks at 3640, 3498 and 3373 cm~(-1) by fitting. Thebands 3640 cm~(-1) and 3498 cm~(-1) are assigned to H_2O_(free) with CO and outer layer H_2Owith partially dissociated hydrogen bonds, respectively. The 3373 cm~(-1) band iscontributed from the bulk water of ice-like structure.
     6.Preparation of the membrane electrode assembly (MEA)
     The highly dispersed Pt/C catalyst with Pt particle sizes of 2-5 nm was synthesized in the new solution system. A special process of preparing MEA with a low loading of Pt (ca. 0.15 mg cm~(-2) ) and ultrathin catalytic layer (ca. 10μm thickness) was developed, and the battery performance was measured at room temperature (with the conditions: H_2 0.03 MPa, O_2 0.05 MPa, Pt 0.15 mg cm~(-2) ) to yield a power density of 0.17 W cm~(-2) .
引文
[1] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications [M]. John Wiley & Sons, Inc. 2001.
    [2] 查全性等,电极过程动力学导论(第三版)[M].北京:科学教育出版社,2002.
    [3] 张祖训,汪尔康,电化学原理和方法[M].北京:科学出版社,2000,
    [4] E. Yeager, T. E. Furtak, K. L. Kliewer, D. W. Lynch, Non-Traditional Approaches to the Study of the Solid Electrolyte Interface [M]. Amsterdam: North-Holland Publishing Co.,1980.
    [5] A. J. Bard, H. D. Abruna, C. E. Chidsey, L. R. Faulkner, S.W. Feldberg, K.Otaya, M. Majda, O. Melroy, R. W. Murrary, M. D. Porter, M. P. Soriaga, W.H.S., The electrode electrolyte interface a status report [J]. J. Phys. Chem., 1993, 97 (28):7147-7173.
    [6] 田中群,孙世刚,罗瑾,杨勇,现场光谱电化学研究的新进展[J].物理化学学报,1994,10(9):860-866.
    [7] A.Wieckowshki,Interfacial electrochemistry[M].New York:VCH,1999.
    [8] 郑华均,马淳安,光谱电化学原位测试技术的应用及进展[J].浙江工业大学学报,2003, 31(5),501-507.
    [9] 林中华,叶思宇,黄明东等,电化学中的光学方法[M].北京:科学出版社,1990.
    [10] 罗瑾,林仲华,田昭武.电化学原位紫外可见反射光谱法[J].化学通报,1994(2):5-8.
    [11] J. D. E. Mcintyre, D. E. Aspnes, Differential reflection spectroscopy of very thin surface films [J]. Surf. Sci, 1971, 24: 417-434.
    [12] M. Fleischmann, P. J. Hendra, A. J. McQuillan [J]. Chem. Phys. Lett., 1974, 26: 163-166.
    [13] L. Jeanmaire, R. P. Van Duyne, Surface raman spectroelectrochemistry part Ⅰ. Heterocyclic,aromatic, and aliphatic amines adsorbed on the anodized ailver electrode. [J] J. Electroannal. Chem. 1977, 84: 1-20.
    [14] M. G. Albrecht, J. A. Creighton, Anomalously intense Raman spectra of pyridine at silver electrode [J]. J. Am. Chem. Soc., 1979, 99: 5215-5217.
    [15] R. L. Birke, T. H. Lu, J. R. Lombardi, in Techniques for Characterization of Electrodes and Electrochemical processes, [M] Edited by R. Varma and J. R. Selman, chapt.5,212, 1991.
    [16] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering [J]. J. Phys. Condens. Matter., 1992, 4:1143-1212.
    [17] M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals [J]. J. Chem. Phys. 1978, 69: 4159-4161.
    [18] G. C. Schatz,, R. P. Van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy. [M] Handbook of vibrational spectroscopy. Edt. By J. M. Chalmers and P. R. Griffiths, John Wiley &Son Ltd, Chichester, 2002.
    [19] V. M. Hallmark, A. Campion, A modification of the image dipole selection rules for surface Raman scattering [J]. J. Chem. Phys., 1986, 84: 2942-2944.
    [20] J. C. Tsang, J. R. Kirtley, J. A. Bradley, Surface-enhanced raman spectroscopy and surface plasmon [J]. Phys. Rev. Lett., 1979, 43: 772-775.
    [21] R. K. Chang, D. E. Furtak, Surface Enhanced Raman Scattering.[M] NewYork, Plenum Press, 1982.
    [22] M. Moskovits, Surface-enhanced spectroscopy [J]. Rev. Mod. Phys., 1985, 57: 783-826.
    [23] (a)蒋玉雄,厦门大学博士论文[D],2006.;(b)陈艳霞[D]厦门;厦门大学博士学位论文, 1998.;(c)邹受忠,[D]厦门;厦门大学硕士学位论文,1994.
    [24] S. H. Macomber, T. E. Furtak, Surface-enhanced Raman Scattering magnified photochemical activation of the silver electrode in aqueous halide electrolytes [J].Chem. Phys. Lett., 1982(90):439-442.
    [25] M. Fleischmanm, Z. Q. Tian, L.J. Li, Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates [J]. J. Electroanal.Chem., 1987 (217): 397-401.
    [26] T. M. Cotton, Q. Feng, A surface-enhanced resonance Raman study of the photoreduction of methylviologen on a P-InP Semiconductor electrode [J]. J. Phys. Chem., 1986 (90): 983-987.
    [27] J. S. Gao, Z. Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy Carbon substrates [J]. Spectrochemica. Acta A, 1997 (53):1595-1602.
    [28] J. Gosztola, M. J. Weaver, Electroinduced structural changes in manganese dioxide manganese hydroxide films as characterize byreal-timesurface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem., 1989 (271):141-144
    [29] W. Akemann, K. A. Friedrich, U. Linke, U. Stimming, The catalytic oxidation of carbon monoxide at the platinum/electrolyte interface investigated by optical second harmonic generation (SHG): comparison of Pt(111) and Pt(997) electrode surfaces [J]. Surf Sci., 1998, 402 (1-3): 571-575
    [30] G. Q. Lu, A. Lagutchev, D.D. Dlott, A. Wieckowski, Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode [J]. Surf. Sci., 2005, 585 (1-2): 3-16
    [31] M. L. Lynch, R. M. Corn, In-situ 2nd- Harmonic generation studies of the surface -structure of a well-ordered Pt(111) electrode [J]. J. Phys. Chem. 1990, 94 (11): 4382-4385,
    [32] B. Pettinger, J. Lipkowski, S. Mirwald and A. Friedrich, Specific adsorption at Au(111) electrodes studied by second harmonic generation [J]. J. Electroanal. Chem. 1993, 329:289-311.
    [33] D. A. Higgins, R. M. Corn, 2nd-Harmonic generation studies of adsorption at a liquid liquid electrochemical interface [J]. J. Phys. Chem. 1993, 97 (2): 489-493.
    [34] O. Sato, R. Baba, K. Hashimoto , A. Fujishima, Coherent interferometric analysis of the molecular orientation based on the study of the optical second harmonic generation [J]. J. Electroanal.Chem. 1991, 306, 291-296.
    [35] P. Guyot-Sionnest, A. Tadjeddine, Spectroscopic investigations of adsorbates at the metal—electrolyte interface using sum frequency generation [J]. Chem. Phys. Lett., 1990, 172:341-345.
    [36] P. A. Brooksby, W. R. Fawcett, Determination of the Electric Field Intensities in a Mid-Infrared Spectroelectrochemical Cell Using Attenuated Total Reflection Spectroscopy with the Otto Optical Configuration [J].Anal.Chem., 2001, 73:1155-1160.
    [37] W. R. Heineman, J. N. Burnett, R. W. Murry, optically transparent Tthin-larer electrodes: ninhydrin reduction in an infrared transparent cell [J]. Anal. Chem., 1968, 40: 1974-1978.
    [38] 周尉,王俊逸,盛海涛,江志裕,严曼明,甲醇阳极氧化的现场FTIR透射差谱研究,化学学报,2000,58(11):1447-1451.
    [39] F.Liu, W. Zhou, M. Yan, Z. Jiang, In situ transmission difference FTIR spectroscopic investigation on anodic oxidation of methanol in aqueous solution [J]. Electrochem. Commun., 2003, 5:276-282.
    [40]R. G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques [J]. J. Chem. Phys. 1966. 44(1): 310-315.
    [41]A. Bewick, J. M. Mellor, B. S. Pons, Distinction between ECE and disproportionation mechanisms in the anodic oxidation of methyl benzenes using spectroelectrochemical methods [J]. Electrochim. Acta, 1980, 25(7): 931-941.
    [42] 周志有,厦门大学博士论文[D],2004.
    [43]C. H. Zhen, S. G Sun, C.J. Fan, S. P. Chen, B.W. Mao, Y. J. Fan , In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions [J]. Electrochim. Acta 2004, 49 (8): 1249-1255.
    [44]Q. H. Wu, N.H. Li, S.G. Sun, Manipulation of electrocatalytic reaction pathways through surface chemistry: In situ Fourier transform infrared spectroscopic studies of 1,3-butanediol oxidation on a Pt surface modified with Sb and S adatoms [J]. J. Phys. Chem. B, 2006, 110 (23): 11383-11390.
    [45]S. M. Moon, C. Bock, B. MacDougall, Setup, sensitivity and application of thin electrolyte layer ATR-FTIR spectroscopy [J]. J. Electroanal. Chem. 2004, 568:225-233.
    [46]R. Aroca, S. Rodriguez-Llorente, Surface-enhanced vibrational spectroscopy [J]. J. Mol. Struct., 1997, 408/409:17-22.
    [47]A. Hartstein, J. R. Kirtley, J. C. Tsang, Enhancement in the infrared absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett, 1980 45:201-204.
    [48]M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) [J]. Bull. Chem. Soc. Jpn., 1997, 70:2861-2880.
    [49] Y. Nishikawa, K. Fujiwara, T. Shima, A Study of the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films [J]. Appl. Spectrosc. 1991, 45:747-751.
    [50]M. Osawa, M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contribution of electromagnetic and chemical mechanisms [J]. J. Phys. Chem. 1991, 95: 9914-9919.
    [51]A. Hatta, T. Ohshima, W. Suetaka, Observation of the enhanced infrared absorptionof p-nitrobenzoate on Ag island films with an ATR technique [J]. J. Appl. Phys. A , 1982, 29:71-75.
    [52]A. Hatta, Y. Suzuki, W. Suetaka, Infrared absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration, Evidence for two types of enhanced surface electric fields [J]. Appl. Phys. A, 1984, 35:135-140.
    [53]Y. Nishikawa, K. Fujiwara, K. Ataka, M. Osawa, Surface-enhanced external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers [J]. Anal. Chem. 1993, 65:556-562.
    [54]S. J. Lee, K. Kim, Diffuse reflectance infrared spectra of stearic acid self-assembled on fine silver particles [J]. Vib. Spectrosc. 1998, 18:187-201.
    [55]M. Osawa, M. Kuramitsu, A. Hatta, W. Su'etaka, H. Seki, Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films [J]. Surf. Sci. Lett. 1986, 175:L787-L793
    [56]Y. Suzuki, M. Osawa, A. Hatta, W. Suetaka, Mechanismof absorption enhancement in infrared ATR spectra observed in the Kretschmann configuration [J]. Appl. Surf. Sci. 1988, 33/34: 875-881
    [57]Y. Nishikawa, T. Nagasawa, K. Fujiwara, M. Osawa, Silver island films for surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement [J]. Vib. Spectrosc. 1993, 6:43-53.
    [58]H. D. Wanzenboeck, B. Mizaikoff, N. Weissenbacher, R. Kellner, Surface enhanced infrared absorption spectroscopy (SEIRA) using external reflection on low-cost substrates, Fresenius J [J]. Anal. Chem. 1998, 362:15-20.
    [59]A. E. Bjerke, F. R. Griffiths, W. Theiss, Surface-enhanced infrared absorption of CO on platinized platinum [J]. Anal. Chem. 1999,71:1967-1974.
    [60]S. Y. Kang, I. C. Jeon, K. Kim, Infrared absorption enhancement at silver colloidal particles [J]. Appl. Spectrosc. 1998, 52:278-283.
    [61]J. A. Seelenbinder, C. W. Brown, P. Pivarnik, A. G Rand, Colloidal gold filtrates as a metal substrates for surface-enhanced infrared absorption spectroscopy [J]. Anal. Chem. 1999, 71:1963-1966.
    [62]T. Kamata, A. Kato, J. Umemura, T. Takenaka, Intensity enhancement of infrared attenuated total reflection spectra of stearic acid Langmuir-Blodgett monolayers with evaporated silver island films [J]. Langmuir 1987, 3:1150-1154.
    [63]A. Hatta, N. Suzuki, Y. Suzuki, W. Su'etaka, Infrared absorption of polycyanoacrylate enhanced by Ag island films in the Kretschmann's ATR geometry, The coverage dependence []].Appl. Surf. Sci. 1989, 37: 299-305.
    [64]E. Johnson, R. Aroca, Surface-enhanced infrared spectroscopy of monolayers [J]. J. Phys. Chem. 1995, 99:9325-9330.
    [65]M. Osawa, K. Yoshii, In situ and real-time surface-enhanced infrared study of electrochemical reactions [J].Appl. Spectrosc. 1997, 51:512-518.
    [66]M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa, Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles [J]. Appl. Spectrosc. 1993, 47:1497-1502.
    [67]W.-B. Cai, L.-J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa, Orientational phase transition in a pyridine adlayer on gold(111) [J]. Langmuir 1998, 14:6992-6998.
    [68]H. Noda, T. Minoha, L.-J. Wan, M. Osawa, Adsorption and ordered phase formation of 2,2'-bypyridine on Au(111): a combined surface-enhanced infrared and STM study [J]. J. Electroanal. Chem. 2000, 481: 62-68.
    [69] L.-J. Wan, M. Terashima, H. Noda, M. Osawa, Molecular orientation and ordered structure of benzenethiol adsorbed on gold(111) [J]. J. Phys. Chem. B, 2000,104: 3563-3569.
    [70]K. Itoh, K. Hayashi, Y. Hamanaka, M. Yamamoto, T. Araki and K. Iriyama, Infrared and Raman-scattering spectroscopic study on the structures of Langmuir-Blodgett monolayers containing a merocyanine dye [J]. Langmuir, 1992, 8:140-147.
    [71]Y. Nishikawa, K. Fujiwara, T. Shima, Qualitative-analysis of nanogram samples with FT-IR transmission surface electromagnetic-wave spectroscopy [J]. Appl. Spectrosc. 1990, 44: 691-694.
    [72] Y. Nishikawa, Y. Ito, N. Yamakami, K. Fujiwara and T. Shima, Identification of Subnanometer Surface-Layers on Polymer-Films by Surface-Enhanced Infrared Transmission Spectroscopy[J], Surf. Interface Anal, 1992,18:481-486.
    [73]R. Aroca, B. Price, A new surface for surface-enhanced infrared spectroscopy: Tin island films [J]. J. Phys. Chem. B, 1997,101: 6537-6540.
    [74]T. Yoshidome, T. Inoue, S. Kamata, Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films[J]. Chem. Lett. 1997, 6:533 - 534.
    [75]R. Kellner, B. Mizaikoff, M. Jakusch, H.D. Wanzenebock and N. Weissenbacher, Surface-enhanced vibrational spectroscopy: A new tool in chemical IR sensing? [J]. Appl. Spectrosc.1997, 51:495-503.
    [76]S. Sato and T. Suzuki, Study of surface-enhanced IR absorption spectroscopy over evaporated Au films in an ultrahigh vacuum system [J]. Appl. Spectrosc, 1997, 51:1170-1175.
    [77]O. Krauth, G. Fahsold and A. Pucci, Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001) [J]. J. Chem. Phys. 1999, 110:3113-3117.
    [78]R. Oritz, A. Cuesta, O.P. Marquez, J. Marquez, J.A. Mendez and C. Gutierrez, Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates [J]. 7. Electroanal. Chem. 1999, 465: 234-238.
    [79]T. R. Jensen, R. P. Van Duyne, S. A. Johnson, V. A. Maroni, Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons [J]. Appl. Spectrosc, 2000, 54:371-377.
    [80]N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene [J]. 7. Phys. Chem. B, 1998,102 (2): 361-371.
    [81]S. Sato, K. Kamada and M. Osawa, Surface-enhanced IR absorption (SEIRA) of CO adsorbed on small Pt particles deposited on an island Au film [J]. Chem. Lett., 1999:15-16.
    [82](a)A.E. Bjerke, P.R. Griffiths, W. Theiss, Surface-enhanced infrared absorption of CO on platinized platinum [J]. Anal. Chem., 1999, 71:1967-1974.; (b) F. Maroun, F. Ozanam, J.-N. Chazalviel, W. Theiss, In situ infrared investigation of metals electrodeposited for SE1RAS [J]. Vib. Spectrosc, 1999, 19:193-198
    [83] W.-G. Lin, S.-G. Sun, Z.-Y. Zhou, S.-P. Chen, H.-C. Wang, Abnormal Infrared Effects of Nanostructured Rhodium Thin Films for CO Adsorption at Solid/Gas Interfaces [J]. J. Phys. Chem. B., 2002,106(45):11778-11783.
    [84] G.-Q. Lu, S.-G. Sun, L.-R. Cai, S.-P. Chen, Z.-W. Tian, K.-K. Shiu, In Situ FTIR Spectroscopic Studies of Adsorption of CO, SCN-, and Poly(o-phenylenediamine) on Electrodes of Nanometer Thin Films of Pt, Pd, and Rh: Abnormal Infrared Effects (AIREs) [J]. Langmuir, 2000,16(2):778-786.
    [85] W. Chen, S.-G Sun, Z.-Y. Zhou, S.-P. Chen, IR Optical Properties of Pt Nanoparticles and Their Agglomerates Investigated by in Situ FTIRS Using CO as the Probe Molecule [J]. J. Phys. Chem. B., 2003,107(36):9808-9812.
    [86]C. Pecharroman, A. Cuesta, C. Gutierrez, Comments on the paper by M.-S. Zheng and S.-G. Sun entitled 'In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions' [J. Electroanal. Chem. 500 (2001) 223] [J]. J. Electroanal. Chem.2002, 529(2):145-154.
    [87]A. A. Kamnev, L. A. Dykman, P. A. Tarantilis, and M. G. Polissiou, Spectroimmunochemistry using colloidal gold bioconjugates [J]. Biosci. Rep., 2002, 22:541-547.
    [88]C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, and J. A. Aznarez, SERS and SEIR Joint Studies on Gold,Silver and Copper Nanostructures [C]. in Proceedings of the XVIIIICORS: John Wiley and Sons, New York, 2002, p.295.
    [89]E. Garcia-Caurel, E. Bertran, and A. Canillas, Application of FTIR phase-modulated ellipsometry to the characterisation of thin films on surface-enhanced IR absorption active substrates [J]. Thin Solid Films, 2001, 99:398-399.
    [90]Zhu, Y., Uchida, H., Watanabe, M. Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique [J]. Langmuir, 1999,15(25):8757-8764.
    [91]H. Miyake, S. Ye, and M. Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem.Commun. 2002, 4(12):973-977.
    [92]J. Yang, S.-H. Chen,Development of electrode-less plating method for silver film preparations for surface-enhanced infrared absorption measurements [J]. Appl. Spectrosc.2001, 55(4): 399-406.
    [93]A. Rodes, J. M. Orts, J. M. Perez, J. M. Feliu, A. Aldaz, Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy [J]. Electrochem. Commun., 2003, 5(1): 56-60.
    [94]A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun., 2002:1500-1501.
    [95]H. Miyake, M. Osawa, Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution [J]. Chem. Lett. 2004, 33(3):278-279
    [96]J. A. Seelenbinder, C. W. Brown, Comparison of organic self-assembled monolayers as modified substrates for surface-enhanced infrared absorption spectroscopy [J]. Appl. Spectrosc. 2002, 56(3):295-299 .
    [97]J. A. Seelenbinder, C. W. Brown, D. W. Urish, Self-assembled monolayers of thiophenol on gold as a novel substrate for surface-enhanced infrared absorption [J]. Appl. Spectrosc. 2000, 54(3):366-370.
    [98]C. Domingo, J. V. Garcia-Ramos, S. Sanchez-Cortes, J. A. Aznarez, Surface-enhanced infrared absorption of DMIP on gold-germanium substrates coated by self-assembled monolayers [J]. J. Mol. Struct, 2003, 419:661-662,
    [99]K. Ataka, T. Yotsuyanagi, M. Osawa, Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy [J].J. Phys. Chem. 1996,100:10664-10672.
    [100]S.-G Sun, W.-B. Cai, L.-J. Wan and M. Osawa, Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy [J]. 7. Phys. Chem.1999,103:2460-2466.
    [101]Th. Wandlowski, K. Ataka, S. Pronkin, D. Diesing, Surface enhanced infrared spectroscopy—Au(111-20 nm)/sulphuric acid—new aspects and challenges [J]. Electrochim. Acta, 2004, 49:1233-1247.
    [102]G. T. Merklin, P. R. Griffith, Influence of chemical interactions on the surfaceenhanced infrared absorption spectrometry of nitrophenols on copper and silver films, Langmuir, 1997, 13: 6159-6163.
    
    [103]H. Metiu, Surface Enhanced Spectroscopy [J]. Prog. Surf. Sci., 1984,17:153-320.
    [104]A.Wakaun, Surface-enhanced electromagnetic processes, in Solid State Physics [M]. H. Ehrenreich, D. Tumbull (Eds.), Academic, New York, 1984, 38, pp. 223-294.
    [105]J. I. Gersten, A. Nitzan, Photophysics and photochemistry near surfaces and small particles [J]. Surf. Sci., 1985,158:165-189
    [106]M. Osawa, K. Ataka, Electromagnetic mechanism of enhanced infrared absorption of molecules adsorbed on metal island films [J]. Surf. Sci. Lett.. 1992, 262:L118-L122
    [107]B. N. J. Persson, R. Ryberg, Vibrational interaction between molecules adsorbed on a metal surface: the dipole-dipole interactions [J]. Phys. Rev. B, 1981, 24:6954-6970.
    [108]B. N. J. Persson, A. Liebsch, Collective vibrational models of isotope mixture of CO on Cu(111) and Cu(001) [J]. Surf. Sci., 1981,110:356-368.
    [109]P. Dumas, R. G. Tobin, P. Richards, Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy.l [J]. Silver, Surf. Sci., 1986, 171:555-578.
    [110]A. Wakaun, 'Surface-enhanced Electromagnetic Processes'[C]. in "Solid State Physics", H. Ehrenreich, D. Turnbull (Eds) Academic Press, New York, 1984, 38:223-294.
    [111]S. Yoshida, T. Yamaguchi, A. Kimbara, Optical properties of aggregated silver films [J]. J. Opt. Soc.Am., 1971, 61:62-69.
    [112]W. N. Hansen, Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium [J]. J. Opt. Soc. Am., 1968, 58: 380-390.
    [113]G. A. Niklasson, C. G. Granqvist, Optical properties and solar selectivity of coevaporated Co-Al_2O_3 composite films [J]. 7. Appl. Phys. 1984, 55:3382-3410.
    [114]B.A. Maxwell-Garnett [J].Philos. Trans. Royal. Soc. A, 1904, 203:385-420.
    [115]D. A. G. Bruggemann, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen [J]. Ann. Phys. (Leipzig), 1935, 24:636-664.
    [116]M. Watanabe, Y. Zhu, H. Uchida, Oxidation of CO on a Pt-Fe alloy electrode studied by surface-enhanced infrared reflection-absorption spectroscopy [J]. J. Phys. Chem. 2000, 104:1762-1768.
    [117]U. Fano, Effects of configuration interaction on intensities and phase shifts [J]. Phys. Rev. 1961,124(6):1866-1878.
    [118]D. C. Langreth, Energy transfer at surface: asymmetric line shapes and the electro-hole-pair mechanism [J]. Phys. Rev. Lett. 1985, 54(2):126-129.
    [119]Z. Crljen, D.C. Langreth, Asymmetric line shapes and the electro-hole-pair mechanism for adsorbed molecules on surfaces [J]. Phys. Rev. B 1987, 35(9):4224-4231.
    [120]D. A. Heaps, P. R. Griffiths, Band shapes in the infrared spectra of thin organic films on metal nanoparticles [J]. Vib. Spectrosc.2006, 42:45-50.
    [121]D. A. Heaps, P. R. Griffiths, Effect of molecular spacers on surface-enhanced attenuated total reflection infrared spectra of bulk liquids [J]. Mb. Spectrosc. 2006, 41:221-224.
    [122]R. F. Aroca, D. J. Ross, C. Domingo, Surface-enhanced infrared spectroscopy [J]. Appl. Spectrosc, 2004, 58(11):324A-338A.
    [123]M. Osawa, in Handbook of Vibrational Spectroscopy[M]. J. M. Chalmers and P. R. Griffiths, Eds., John Wiley and Sons, New York, 2002.
    [124]T. Imae, in Encyclopedia of Surface and Colloid Science [C]. M. Dekker, (Eds.) Basel, New York, 2002, p.3547.
    
    [125]A. Ulman, Ultrathin Organic Films [M]. Academic Press, Boston, 1991.
    [126]Z. Zhang, N. Yoshida, T. Imae, Q. Xue,M. Bai, J. Jiang, and Z. Liu,A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: A structural investigation by surface plasmon resonance, ultraviolet-visible, and infrared spectroscopies [J]. J. Colloid Interface Sci. 2001, 243(2)382-387.
    [127]Z. Zhang, T. Imae, H. Sato, A. Watanabe, and Y. Ozaki, Surface-enhanced Raman scattering and surface-enhanced infrared absorption spectroscopic studies of a metalloporphyrin monolayer film formed on pyridine self-assembled monolayer-modified gold [J]. Langmuir, 2001,17(15):4564-4568.
    [128]C. R. Olave, E. A. F. Carrasco, M. Campos-Vallette, M. S. Saavedra, G. F. Diaz,R. E. Clavijo, W. Figueroa, J. V. Garcia-Ramos, S. Sanchez-Cortes, C. Domingo,J. Costamagna, and A. Rios, Vibrational study of the interaction of dinaphthalenic Ni(II) and Cu(II) azamacrocycle complexes methyl and phenyl substituted with different metal surfaces [J]. Vib. Spectrosc. 2002, 28(2):287-297.
    [129]M. Campos-Vallette, M. S. Saavedra, GF. Diaz, R. E. Clavijo, Y. Martinez, F.Mendizabal, J. Costamagna, J. C. Canales,J. V. Garcia-Ramos, and S. Sanchez-Cortes, Surface-enhanced vibrational study of azabipiridyl and its Co(II), Ni(II) and Cu(II) complexes [J]. Vib. Spectrosc.2001, 27(1):15-27.
    [130]H. Nagaoka and T. Imae, The construction of layered architectures of dendrimers-Adsorption layers of amino-terminated dendrimers on 3-mercaptopropionic acid self-assembled monolayer formed on Au [J]. Int. J. Nonlinear Sci. Num. Sim. 2002, 3(3-4):223-227.
    [131]L.-J. Wan, H. Noda, C. Wang, C.-L. Bai, M. Osawa, Controlled Orientation of Individual Molecules by Electrode Potentials [J]. Chem. Phys. Chem. 2001, 2:617-619.
    [132]T. Wandlowski, K. Ataka, and D. Mayer, In situ infrared study of 4,4 '-bipyridine adsorption on thin gold films [J]. Langmuir, 2002,18(11):4331-4341.
    [133] Y. X. Diao, M. J. Han, L. J. Wan, K. Itaya, T. Uchida, H. Miyake, A. Yamakata, M. Osawa, Adsorbed structures of 4,4 '-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir 2006, 22(8): 3640-3646.
    [134]H. S. Kim, S. J. Lee, N. H. Kim, J. K. Yoon, H. K. Park, K. Kim, Adsorption Characteristics of 1,4-Phenylene Diisocyanide on Gold Nanoparticles: Infrared and Raman Spectroscopy Study [J]. Langmuir, 2003,19(17): 6701-6710.
    [135]M. Ito, T. Imae, Self-assembled monolayer of carboxyl-terminated poly(amido amine) dendrimer [J]. J. Nanosci. Nanotechnol., 2006, 6(6):1667-1672.
    [136]T. Yamazaki, T. Imae, Preparation of dendrimer SAM on Au substrate and adsorption/desorption of poly-L-glutamate on the SAM [J]. J. Nanosci. Nanotechnol., 2005, 5(7):1066-1071.
    [137]L. Kampschulte, M. Lackinger, A. K. Maier, R. S. K. Kishore, S. Griessl, M. Schmittel, W. M. Heckl, Solvent Induced Polymorphism in Supramolecular 1,3,5-Benzenetribenzoic Acid Monolayers [J]. J. Phys. Chem. B., 2006,110(22): 10829-10836.
    [138]A. Kudelski, Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review. [J]. Vib. Spectrosc, 2005, 39(2):200-213.
    
    [139]G. J. Su, H. M. Zhang, L. J. Wan, C. L. Bai, T. Wandlowski, Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au(111)[J]. J. Phys. Chem. B., 2004, 108(6): 1931-1937.
    [140]R. Nakamura, K. Ueda, S. Sato, In Situ Observation of the Photoenhanced Adsorption of Water on TiO2 Films by Surface-Enhanced IR Absorption Spectroscopy [J]. Langmuir, 2001, 17(8): 2298-2300.
    [141]R. Nakamura, S. Sato, Oxygen Species Active for Photooxidation of n-Decane over TiO2 Surfaces [J]. J. Phys. Chem. B., 2002, 106(23): 5893-5896.
    [142]R. Nakamura, S. Sato, Surface-enhanced IR absorption of Pt and its application to in situ analysis of surface species [J]. Langmuir, 2002, 18(11): 4433-4436.
    [143]S. Sato, K. Ueda, Y. Kawasaki, R. Nakamura, In Situ IR Observation of Surface Species during the Photocatalytic Decomposition of Acetic Acid over TiO2 Films [J]. J. Phys. Chem. B., 2002,106(35):9054-9058.
    [144]A. Badura, B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle, M. Rogner, Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device[J]. Photochem. and Photobiology 2006, 82(5):1385-1390.
    [145]D. Ferri, T. Burgi, A. Baiker, Pt and Pt/Al2O3 Thin Films for Investigation of Catalytic Solid-Liquid Interfaces by ATR-IR Spectroscopy: CO Adsorption, H2-Induced Reconstruction and Surface-Enhanced Absorption [J]. J. Phys. Chem. B., 2001, 105(16): 3187-3195.
    [146]H. Noda, K. Ataka, L.-J. Wan, M. Osawa, Time-resolved surface-enhanced infrared study of molecular adsorption at the electrochemical interface [J]. Surf. Sci., 1999, 427-428:190-194
    [147]K. Ataka, Y. Hara, M. Osawa, A new approach to electrode kinetics and dynamics by potential-modulated Fourier transform infrared spectroscopy[J]. J. Electroanal. Chem., 1999, 473:34-42.
    [148]K. Ataka, G. Nishina, W.-B. Cai, S.-G. Sun, M. Osawa, Dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): A combined timeresolved surface-enhanced infrared and chronocoulometric study [J]. Electrochem. Commun. , 2000, 2:417-421
    [149]K. Ataka, M. Osawa, In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solution [J]. Langmuir, 1998,14:951-959.
    [150]K. Ataka, M. Osawa, In situ infrared study of cytosine adsorption on gold electrodes [J]. J. Electroanal. Chem., 1999,460:188-196.
    [151]I. Taniguchi, S. Yoshimoto, Y. Sunatani, K. Nishiyama, Potential and pH dependencies of adsorbed species of 2,4—pyridinethiol and 2-pyrimidinethiol on Au(111) electrode [J] Electrochem., 1999, 67,1197-1199.
    [152]S. Pronkin, T. Wandlowski, ATR-SEIRAS - an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes [J]. Surf. Sci. 2004, 573(1): 109-127.
    [153]J. M. Delgado, J. M. Orts, A. Rodes, ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes [J]. Langmuir 2005, 21(19): 8809-8816.
    [154]K. P. Ishida, P. R. Griffiths, Theoretical and experimental investigation of internal reflection at thin copper films exposed to aqueous solutions [J]. Anal. Chem., 1994, 66(4): 522-530.
    [155]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode [J]. J. Am. Chem. Soc. 2003, 125(11): 3680-3861.
    [156]M. Futamata, L. Q. Luo, C. Nishihara, ATR-SEIR study of anions and water adsorbed on platinum electrode [J]. Surf. Sci. 2005, 590(2-3): 196-211.
    [157]E. Sudo, Y. Esaki, and M. Sugiura, Analysis of additives in a polymer by LC/IR using surface enhanced infrared absorption spectroscopy [J]. Bunseki Kagaku, 2001, 50:703-707.
    [158]P. R. Griffiths, D. Heaps, and A. Bjerke, Bomem-Michelson Award Symposium Pittcon 2003 [M]. Orlando, Florida (2003).
    [159]D. A. Heaps, P. R. Griffiths, Reduction of detection limits of the direct deposition GC/FT-IR interface by surface-enhanced infrared absorption [J]. Anal. Chem. 2005, 77(18):5965-5972.
    [160]S. Sanchez-Cortes, C. Domingo, J. V. Garcia-Ramos, J. A. Aznarez, Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films [J]. Langmuir, 2001,17(4):1157-1162.
    [161]M. Sinther, A. Pucci, A. Otto, A. Priebe, S. Diez, G. Fahsold, Enhanced infrared absorption of SERS-active lines of ethylene on Cu [J]. Phys. Status SolidiA 2001,188(4):1471-1476.
    [162]A. G. Rand, J. Ye, C. W. Brown, S. V. Letcher, Optical biosensors for food pathogen detection [J]. Food Technol. 2002, 56:32-39.
    [163]H. Y. N. Holman, D. L. Perry, J. C. Hunter-Cevera, Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces [J].J. Microbiol. Methods 1998, 34(1): 59-71.
    [164]R. Aroca and R. Bujalski,Surface enhanced vibrational spectra of thymine [J]. Vib. Spectrosc. 1999,19(1):11-21.
    [165]S. Pronkin and T. Wandlowski,Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes [J]. J. Electroanal. Chem.2003, 550-551:131-147.
    [166]K. Ataka, J. Heberle, Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer [J]. J. Am. Chem. Soc. 2003, 125(17): 4986-4987.
    [167]K. Ataka, J. Heberle, Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes [J]. J. Am. Chem. Soc. 2004, 126(30):9445-9457.
    [168]K. Ataka, B. Richter, J. Heberle, Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode [J]. J. Phys. Chem. B, 2006, 110(18):9339-9347.
    [169]K. Ataka, J. Heberle, Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer [J]. Biopolymers, 2006, 82 (4):415-419.
    [169]T. Iwasita, In Handbook of Fuel Cells [M]. W. Vielstich, A. Lamm, H. A. Gasteiger, Eds., Wiley-UK: Chichester, 2003, Vol. 2, p 603.
    [170]W. Vielstich, In Encyclopedia of Electrochemistry[M]. A. J. Bard, M. Stratmann, Eds., Wiley-VCH: Weinheim, 2003, Vol. 2, p466.
    [171]M. Watanabe, In Handbook of Fuel Cells[M]. W. Vielstich, A. Lamm, H. A. Gasteiger, Eds., Wiley-UK: Chichester, 2003, Vol. 2, p 408.
    [172]J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells [J]. Int. J. Energy Res. 2001, 25:695-713.
    [173]H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang , D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155(2):92-110.
    [174]S. Wasmus and A. Kuver, Methanol oxidation and direct methanol fuel cells: a selective review[J].J. Electroanal. Chem., 1999, 461(1-2): 14-31.
    
    [175]R. R. Adzic, In Electrocatalysis [M]. J. Lipkowski, P. N. Ross, Eds., Wiley: New York, 1998.
    [176]Catalysis and Electrocatalysis at Nanoparticle Surfaces [M]. ed. A. Wieckowski, E. Savinova, C. G. Vayenas, Marcel Dekker, New York, 2003.
    [177]M. Haruta, S. Tsubota, in Catalysis and Electrocatalysis at Nanoparticle Surfaces [M]. ed. A. Wieckowski, E. Savinova and C. G. Vayenas, Marcel Dekker, NY, 2003, p. 645
    [178]B. Love and J. Lipkowski, in Electrochemical Surface Science [M]. ed. M. Soriaga, ACS Symp. Sen, Washington, 1988, 378:474.
    [179]S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. II. The "Reactant-Pair" Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanoll [J]. J. Phys. Chem., 1964, 68(1): 70-80.
    [180]F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreier, E. Savinova , U. Stimminga, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility [J]. Faraday Disc, 2004, 125:357-377
    [181]M. Bergelin, E. Herrero, J. M. Feliu, M. Wasberg, Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients [J]. J. Electroanal. Chem. 1999, 467:74-84.
    [182]N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen, Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111) [J]. J. Electroanal. Chem. 2002, 524-525:242-251
    [183]C. McCallum, D. Pletcher, An investigation of the mechanism of the oxidation of carbon monoxide adsorbed onto a smooth Pt electrode in aqueous acid [J]. J. Electroanal. Chem. 1976, 70, 277-290.
    [184]B. Love, Lipkowski, in electrochemical surface science [M]. Ed. M. Soriaga, ACS symp, ser., Washington, 1988, 378:474.
    [185]S. C. Chang, M. J. Weaver,Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces: Structural and electrochemical implications [J]. J. Chem. Phys. 1990, 92:4582 -4594.
    [186]B. Pozniak, Y. Mo , D. A. Scherson, The electrochemical oxidation of carbon monoxide adsorbed on Pt(111) in aqueous electrolytes as monitored by in situ potential step-second harmonic generation [J]. Faraday Discuss., 2002,121:313-322.
    [187] E. Herrero, K. Franaszczuk, A. Wieckowski, Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study [J]. J. Phys. Chem., 1994, 98(19): 5074-5083.
    [188]R. Parsons, T. VanderNoot, The oxidation of small organic molecules. A survey of recent fuel cell related research [J]. J. Electroanal. Chem. 1988, 257:9-45.
    [189]T. D. Jarvi, E. M. Stuve, In Electrocatalysis [M]. J. Lipkowski, P. N. Ross, Ed., Wiley-VCH: New York, 1998, pp 75-153.
    [190]A. Hamnett, In Interfacial Electrochemistry [M]. A. Wieckowski, Ed., Marcel Dekker, Inc.: New York, 1999, pp 843-883.
    [191]A. C, A. de Vooys, R. A. van Santen, J. A. R. van Veen, Electrocatalytic reduction of NO3- on palladium/copper electrodes[J]. J. Mol. Catal. A, 2000,154:203-215.
    [192]W. J. Plieth, in: A. J. Bard (Eds.), Encyclopedia of Electrochemistry of the Elements [M]. vol. 8, Marcel Dekker, New York, 1978, p. 321.
    [193]G. Horanyi, E. M. Rizmayer, Electrocatalytic reduction of NO_2~-and NO_3~- ions at a platinized platinum electrode in alkaline medium [J]. J. Electroanal. Chem., 1985, 188:265-272.
    [194]J. F. van der Plas, E. Barendrecht, Electrocatalytic hydrogenation processes controlled potential-1. The electrocatalytic reduction of nitric acid [J]. Electrochim. Acta, 1979, 25:1463-1469.
    [195]I. Villegas, R. Gomez, M. J. Weaver, Nitric Oxide as a Probe Adsorbate for Linking Pt(111) Electrochemical and Model Ultrahigh-Vacuum Interfaces Using Infrared Spectroscopy [J]. J. Phys. Chem., 1995, 99(40):14832-14839.
    [196]M. J. Weaver, S. Zou, C. Tang, A concerted assessment of potential-dependent vibrational frequencies for nitric oxide and carbon monoxide adlayers on low-index platinum-group surfaces in electrochemical compared with ultrahigh vacuum environments: Structural and electrostatic implications[J]. J. Chem. Phys., 1999,111:368-381.
    [197]P. Hollins, The influence of surface defects on the infrared spectra of adsorbed species [J]. Surf. Sci. Rep., 1992,16:53-94.
    [198]M. T. M. Koper, R. A. van Santen, S. A. Wasileski, M. J. Weaver, Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces [J]. J. Chem. Phys., 2000,1134:392-4407.
    [199] W. A. Brown, D. A. King, NO Chemisorption and Reactions on Metal Surfaces: A New Perspective [J].J. Phys. Chem. B., 2000,104(12):2578-2595.
    [200]M. Gajdos, J. Hafner, A. Eichler, Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption [J]. J. Phys.: Condens. Matter, 2006,18:13-40.
    [201]M. Gajdos, J. Hafner, A. Eichler, Ab initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II.Dissociative adsorption,[J]. J. Phys.: Condens. Matter, 2006,18:41-54.
    [202]A. C. A. De Vooys, M. T. M. Koper, R. A. van Santen, J. A. R. van Veen,Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes [J]. J. Catal, 2001, 202:387-394.
    [203]J. A. Colucci, M. J. Foral, S. H. Langer, Nitric oxide reduction at noble metal electrodes: a voltammetric study in acid solution [J]. Electrochim. Acta, 1985, 30:1675-1685.
    [204]A. C. A. de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Mechanisms of electrochemical reduction and oxidation of nitric oxide [J]. Electrochim. Acta, 2004,49:1307-1314.
    [205]G. E. Dima, G. L. Beltramo, M. T. M. Koper, Nitrate reduction on single-crystal platinum electrodes [J]. Electrochim. Acta, 2005, 50:4318-4326.
    [206]N. J. DiNardo, Ph. Avouris, J. E. Demuth, Chemisorbed pyridine on Ni(001): A high resolution electron energy loss study of vibrational and electronic excitations [J]. J. Chem. Phys. 1984, 81:2169-2180.
    [207]Y. Ikezawa, T. Sawatari, T. Kitazume, H. Goto, K. Toriba, In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode [J]. Electrochim. Acta, 1998, 43:3297-3301.
    [208]S. Haq, D. A. King , Configurational Transitions of Benzene and Pyridine Adsorbed on Pt{111} and Cu{110} Surfaces: An Infrared Study [J]. J. Phys. Chem. 1996, 100:16957-16965.
    
    [209]B. J. Bandy, D. R. Llyoyd, N. V. Richardson, Selection rules in photoemission from adsorbates: Pyridine adsorbed on copper[J]. Surf. Sci. 1979, 89:344-353.
    [210]M. E. Bridge, M. Connolly, D. R. Lloyd, J. Somers, P. Jakob , D. Menzel, Electron spectroscopic studies of pyridine on metal surfaces[J]. Spectrochim. Acta A, 1987, 43:1473-1478.
    [211]A. L. Johnson, E. L. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on platinum(111) by NEXAFS [J]. J. Phys. Chem., 1985, 89(19):4071-4075.
    [212]H. Noda, L.-J. Wan, M. Osawa, Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution : A combined surface-enhanced infrared and STM study [J]. Phys. Chem. Chem. Phys. 2001, 3:3336-3342.
    [213]X.-Y. Xiao, S.-G. Sun, Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry, EQCM, in situ FTIRS and Raman spectroscopy [J]. Electrochimica Acta, 2000, 45:2897-2902.
    
    [214]F. Franks, Water: A comprehensive treatise. [M] New York, Plenum, 1973, Vols: 1-7.
    [215]D. Eisengerg, W. Kauzmann, The structure and properties of water. [M] New York, Oxfrod University press, 1969.
    
    [216]P. Ball, Life's matrix: a biography of water. [M] New York, Farrar, Straus and Giroux, 1999.
    [217]G. W. Robinson, S. B. Zhu, S. Singh, M. W. Evans, Water in biology, chemistry, and physics. [M] Singapore, World scientific, 1996.
    
    [218]L. R. Pratt, Introduction: water. [J] Chem. Rev. 2002,102: 2625-2626.
    [219]D. Myers, Surfaces, interfaces, and colloids: principles and applications. [M] 2nd edition, John Wiley & Sons, Inc. 1999.
    [220]M. Futamata, D. Diesing, Adsorbed state of pyridine, uracil and water on gold electrode surfaces [J]. Vib. Spectrosc. 1999, 19:187-192.
    [221]M. Nakamura, Y. Shingaya, M. Ito, Hydration processes on metal surfaces studied by IR and STM: a model for the potential drop across the electric double layers [J]. Surf. Sci., 2002, 502-503:474-484.
    [222]M. Ito, M. Nakamura, Hydration processes of electrolyte anions and cations on Pt(111), Ir(111), Ru(001) and Au(111) surfaces: Coadsorption of water molecules with electrolyte ions [J]. Faraday Discuss., 2002,121:71-84.
    [223]H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada, Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 581:132-138.
    [224]K. Yoshimi, M.-B. Song, M. Ito, Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: coadsorption of CO with water on Pt(111)[J]. Surf. Sci., 1996, 368:389-395.
    [225]H. Ogasawara, J. Yoshinobu, M. Kawai, Direct observation of the molecular interaction between chemisorbed CO and water overlayer on Pt(111) [J]. Surf. Sci., 1997, 386:73-77.
    [226]N. Kizhakevariam, X-D Jiang, M. J. Weaver, Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: The archetypical case of carbon monoxide/water coadsorption on Pt(111) [J]. J. Chem. Phys., 1994,100:6750-6764 .
    [227]M. Nakamura, M. Ito, Coadsorption of water and CO molecules on Ru(001) at high CO coverages: comparisons with a Ru(001) electrode surface [J]. Surf. Sci., 2001, 490:301-307.
    [228]M. Nakamura, M. Ito, Coadsorption of water monomers with CO on Ru(001) and charge transfer during hydration processes [J]. Chem. Phys. Lett, 2001, 335:170-175.
    [1] 王培铭,许乾尉.材料研究方法[M].北京:科学出版社,2005:58-207,251-317.
    [2] 吴瑾光.近代傅立叶变换红外光谱及应用(上卷)[M].北京:科学技术文献出版社.1994:1.
    [3] 项一非,李树家.中级物理化学实验fM].北京:高等教育版社,1988:1-5,203.
    [4] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications [M]. John Wiley & Sons, Inc. 2001.
    [5] 查全性等,电极过程动力学导论(第三版)[M].北京:科学教育出版社,2002.
    [6] 张祖训,汪尔康,电化学原理和方法[M].北京:科学山版社,2000。
    [7] S.-G. Sun, W.-B. Cai, L.-J. Wan and M. Osawa, Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy [J]. J. Phys. Chem. 1999, 103, 2460-2466.
    [8] K. Ataka, Y. Hara, M. Osawa, A new approach to electrode kinetics and dynamics by potential-modulated Fourier transform infrared spectroscopy [J]. J. Electroanal. Chem., 1999, 473, 34—42.
    [1] A. Hartstein, J. R. Kirtley, J. C. Tsang, Enhancement in the infrared absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett., 1980, 45:201-204.
    [2] M. Osawa, In Handbook of Vibrational Spectroscopy [M]. Vol. 1, Eds.: J. M. Chalmers, P. R. Griffiths, John Wiley & Sons, Chichester, 2002, p. 785.
    [3] K. Ataka, T. Yotsuyanagi, M. Osawa, Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy [J]. J. Phys. Chem., 1996, 100:10664-10672.
    [4] W.-B. Cai, L.-J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa, Orientational phase transition in a pyridine adlayer on gold(111) [J]. Langmuir, 1998, 14:6992-6998.
    [5] H. Noda, T. Minoha, L.-J. Wan, M. Osawa, Adsorption and ordered phase formation of 2,2'-bypyridine on Au(111): a combined surface-enhanced infrared and STM study [J]. J. ElectroanaL Chem. 2000, 481: 62-68.
    [6] L.-J. Wan, M. Terashima, H. Noda, M. Osawa, Molecular orientation and ordered structure of benzenethiol adsorbed on gold(111) [J]J. Phys. Chem. B, 2000, 104:3563-3569.
    [7] H. Noda, K. Ataka, L.-J. Wan, M. Osawa, Time-resolved surface-enhanced infrared study of molecular adsorption at the electrochemical interface [J]. Surf. Sci., 1999, 427-428:190-194
    [8] K. Ataka, Y. Hara, M. Osawa, A new approach to electrode kinetics and dynamics by potential-modulated Fourier transform infrared spectroscopy [J]. J. Electroanal. Chem., 1999, 473:34-42.
    [9] K. Ataka, G. Nishina, W.-B. Cai, S.-G. Sun, M. Osawa, Dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): A combined timeresolved surface-enhanced infrared and chronocoulometric study [J]. Electrochem. Commun., 2000, 2:417-421
    [10] Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode [J]. J. Am. Chem. Soc., 2003, 125(11): 3680-3861.
    [11] K. Ataka, M. Osawa, In situ infrared study of cytosine adsorption on gold electrodes [J]. J. Electroanal. Chem., 1999, 460:188-196.
    [12] I. Taniguchi, S. Yoshimoto, Y. Sunatani, K. Nishiyama, Potential and pH dependencies of adsorbed species of 2,4-pyridinethiol and 2-pyrimidinethiol on Au(111) electrode [J]. Electrochem., 1999, 67:1197-1199.
    [13] Y. Zhu, H. Uchida, M. Watanabe, Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique [J]. Langmuir, 1999,15(25):8757-8764.
    [14] M. Watanabe, Y. Zhu, H. Uchida, Oxidation of CO on a Pt-Fe alloy electrode studied by surface-enhanced infrared reflection-absorption spectroscopy [J]. J. Phys. Chem. 2000, 104: 1762-1768.
    [15] W. Kern, D. A. Puotinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology [J]. RCA Rev., 1970, 31:187-196.
    [16] H. Miyake, S. Ye, and M. Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun.2002, 4(12) 4:973-977.
    [17]S. Zou, M. J. Weaver, Surface-Enhanced Raman Scattering on Uniform Transition-Metal Films: Ibward a Versatile Adsorbate Vibrational Strategy for Solid-Nonvacuum Interfaces? [J]. Anal. Chem., 1998, 70(11):2387-2395.
    [18]S. Strbac, F. Maroun, O. M. Magnussen , R. J. Behm The structure, growth and reactivity of electrodeposited Ru/Au(111) surfaces [J]. J. Electroanal. Chem. 2001, 500: 479-490.
    [19]C. Gutierrez, J. A. Caram, B. Beden, In-situ spectroscopic study of the adsorption of carbon monoxide on a polycrystalline ruthenium electrode by EMIRS and PMRS [J]. J. Electroanal. Chem. 1991, 305:289-299.
    [20]A. E. Bjerke, P. R. Griffiths, W. Theiss, Surface-Enhanced Infrared Absorption of CO on Platinized Platinum [J]. Anal. Chem., 1999, 71(10): 1967-1974.
    [21]S. Park, A. Wieckowski, M. J. Weaver, Electrochemical Infrared Characterization of CO Domains on Ruthenium-Decorated Platinum Nanoparticles [J]. J. Am. Chem. Soc, 2003, 125(8):2282-2290.
    [22]B. Beden, C. Lamy, In Spectroelectrochemistry: Theory and Practice [M]. R. J. Gale, Ed.; Plenum Press: New.York, 1988; Chapter 5.
    [23]R. J. Nichols, In Adsorption of Molecules at Metal Electrodes [M]. J. Lipkowski, P. N. Ross, Eds.; VCH: New York, 1992; Chapter 7.
    [24]A. Miki, S. Ye, M. Osawa, [J]. Chem. Commun. 2002, 1500-1501.; Osawa, M. private communication.
    [25]K. Kunimatsu, Adsorption of carbon monoxide on a smooth palladium electrode: an in-situ infrared spectroscopic study [J]. J. Phys. Chem., 1984, 88(11):2195-2200.
    [26]K. Kunimatsu, R.O. Lezna, M. Enyo, Adsorption and oxidation of carbon monoxide on a rhodium electrode studied by in-situ infrared spectroscopy[J]. J. Electroanal. Chem., 1989, 258:115-126.
    [27]T. Yajima, H. Uchida, M. Watanabe, In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy [J]. J. Phys. Chem. B., 2004, 108(8): 2654-2659.
    [1]K. Ataka, J. Heberle, Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer [J]. Biopolymers, 2006, 82 (4): 415-419.
    [2]T. Iwasita, In Handbook of Fuel Cells[M]. W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-UK: Chichester, 2003; Vol. 2, p 603.
    [3]W. Vielstich, In Encyclopedia of Electrochemistry [M]. A. J. Bard, M. Stratmann, Eds.; Wiley-VCH: Weinheim, 2003; Vol. 2, p 466.
    [4]M. Watanabe, In Handbook of Fuel Cells [M]. W. Vielstich, A. Lamm, H. A. Gasteiger, Eds.; Wiley-UK: Chichester, 2003; Vol. 2, p 408.
    [5]J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells [J]. Int. J. Energy Res. 2001; 25:695-713.
    [6]H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang , D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006,155(2):92-110.
    [7]S. Wasmus and A. Kuver, Methanol oxidation and direct methanol fuel cells: a selective review [J].J.Electroanal. Chem., 1999,461(1-2): 14-31.
    
    [8] R. R. Adzic, In Electrocatalysis [M]. Lipkowski, J., Ross, P. N., Eds.; Wiley: New York, 1998.
    [9]A. Wieckowski, E. Savinova, C. G Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces [M]. Marcel Dekker, New York, 2003.
    [10]M. Haruta, S. Tsubota, in Catalysis and Electrocatalysis at Nanoparticle Surfaces [M]. ed. A. Wieckowski, E. Savinova and C. G Vayenas, Marcel Dekker, NY, 2003, p. 645
    [11]B. Love and J. Lipkowski, in Electrochemical Surface Science [M].ed. M. Soriaga, ACS Symp. Sen, Washington, 1988, vol. 378, 474.
    [12]S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. II. The "Reactant-Pair" Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanoll [J].J. Phys. Chem.,1964, 68(1): 70-80.
    [13]F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreier, E. Savinova , U. Stimminga, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility [J]. Faraday Disc, 2004,125:357-377.
    [14]M. Bergelin, E. Herrero, J. M. Feliu, M. Wasberg, Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients [J]. J. Electroanal. Chem. 1999, 467:74-84.
    [15]N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen, Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111) [J]. J. Electroanal. Chem. 2002, 524-525:242-251.
    [16]C. McCallum, D. Pletcher, An investigation of the mechanism of the oxidation of carbon monoxide adsorbed onto a smooth Pt electrode in aqueous acid [J]. J. Electroanal. Chem. 1976, 70:277-290.
    [17]B. Love, Lipkowski, in electrochemical surface science [M]. Ed. M. Soriaga, ACS symp, ser., Washington,1988, vol. 378:474.
    [18]S. C. Chang, M. J. Weaver, Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces: Structural and electrochemical implications [J]. J. Chem. Phys. 1990, 92:4582-4594.
    [19]B. Pozniak, Y. Mo, D. A. Scherson, The electrochemical oxidation of carbon monoxide adsorbed on Pt(111) in aqueous electrolytes as monitored by in situ potential step-second harmonic generation [J]. Faraday Discuss., 2002, 121, 313 - 322.
    [20]S. Zou, M. J. Weaver, Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical-bonding versus electrostatic-field effects, [J]. J. Phys. Chem.,1996, 100:4237-4242.
    [21]N. Kizhakevariam, X. Jiang, M. J. Weaver, Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: the archetypical case of carbon monoxide/water coadsorption on Pt(111)[J]. J. Chem. Phys. 1994,100:6750-6764.
    [22]M. W. Severson, M. J. Weaver, Nanoscale island formation during oxidation of carbon monoxide adlayers at ordered electrochemical interfaces: a dipole-coupling analysis of coverage-dependent infrared spectra [J]. Langmuir, 1998, 14:5603-5611.
    [23]M. J. Weaver, S. Zou, C. Tang, A concerted assessment of potentialdependent vibrational frequencies for nitric oxide and carbon monoxide on low-index platinum-group surfaces in electrochemical compared with ultrahigh vacuum environments: structural and electrostatic implications [J]. J. Chem. Phys, 1999, 111: 368-381.
    [24]M. W. Severson, C. Stuhlmann, I. Villegas, M. J. Weaver, Dipole-dipole coupling effects upon infrared spectroscopy of compressed electrochemical adlayers: application to the Pt(111)/CO system [J]. J. Chem. Phys. 1995, 103: 9832-9843.
    [25]N. Kizhakevariam, I. Villegas, M. J. Weaver, Infrared spectroscopy of modern electrochemical interfaces in ultrahigh vacuum: the roles of adsorbate and cation double-layer hydration in the Pt(111)-carbon monoxide aqueous system [J]. J. Phys. Chem., 1995, 99 7677-7688.
    [26]F. Maillard, E. R. Savinova, P. A. Simonov, V. I. Zaikovskii, U. Stimming, Infrared Spectroscopic Study of CO Adsorption and Electro-oxidation on Carbon-Supported Pt Nanoparticles: Interparticle versus Intraparticle Heterogeneity [J]. J. Phys. Chem. B., 2004, 108(46): 17893-17904.
    [27]M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Blizanac, T. Tomoyuki, P. N. Ross, N. M. Markovic, The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts [J]. J. Am. Chem. Soc, 2005,127(18): 6819-6829.
    [28]E. A. Batista, T. Iwasita, W. Vielstich, Mechanism of Stationary Bulk CO Oxidation on Pt(111) Electrodes [J]. J. Phys. Chem. B, 2004, 108:14216-14222.
    [29]V. Stamenkovic, K. C. Chou, G. A. Somorjai, P. N. Ross, and N. M. Markovic, Vibrational Properties of CO at the Pt(111)-Solution Interface: the Anomalous Stark-Tuning Slope [J]. J. Phys. Chem. B, 2005,109:678-680.
    [30]Y. Zhu, H. Uchida, M. Watanabe, Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique [J]. Langmuir, 1999,15(25), 8757-8764.
    [31]E. Herrero, K. Franaszczuk, A. Wieckowski, Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltarnmetric and Chronoamperometric Study [J]. J. Phys. Chem., 1994, 98(19): 5074-5083.
    [32]R. Parsons, T. VanderNoot, The oxidation of small organic molecules. A survey of recent fuel cell related research [J]. J. Electroanal. Chem. 1988, 257, 9-45.
    [33]T. D. Jarvi, E. M. Stuve, In Electrocatalysis[M]. J. Lipkowski, P. N. Ross, Ed.; Wiley-VCH: New York, 1998; pp 75-153.
    [34]A. Hamnett, In Interfacial Electrochemistry [M]. A. Wieckowski, Ed.; Marcel Dekker, Inc.: New York, 1999; pp 843-883.
    [35] Y. X.Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode [J]. J. Am. Chem. Soc. 2003,125(11): 3680-3861.
    [36]W. V. Glassey, R. Hoffmann, A Comparative Study of the p(2 X 2)-C0/M(111), M) Pt, Cu, Al Chemisorption Systems [J]. J. Phys. Chem. B. 2001, 105, 3245-3260.
    [37]D. K. Lambert, vibrational Stark effect of adsorbates at electrochemical interface [J]. ElectrochimicaActa, 1996, 41(5):623-630.
    [38]M. Head-Gordon, J. C. Tully, [J]. Chem. Phys., 1993,175: 37.
    [39]N. K. Ray, A. B. Anderson, Variations in carbon-oxygen and platinum-carbon frequencies for carbon monoxide on a platinum electrode [J]. J. Phys. Chem., 1982, 86(25):4851-4852.
    [40]S. P. Mehandru, A. B. Anderson, Potential-induced variations in properties for carbon monoxide adsorbed on a platinum electrode [J]. J. Phys. Chem., 1989, 93(5):2044-2047.
    [41]S. A. Wasileski, M. T. M. Koper, M. J. Weaver, Field-Dependent Electrode-Chemisorbate Bonding: Sensitivity of Vibrational Stark Effect and Binding Energetics to Nature of Surface Coordination [J].J.Am. Chem. Soc, 2002,124(11):2796-2805.
    [42]H. Wang , R. G. Tobin, D. K. Lambert , Coadsorption of hydrogen and CO on Pt(335): Structure and vibrational Stark effect [J]. J. Chem. Phys., 1994,101( 5):4277-4287.
    [43]C. Korzeniewski , S. Pons , P. P. Schmidt, M. W. Severson , A theoretical analysis of the vibrational spectrum of carbon monoxide on platinum metal electrodes [J]. J. Chem. Phys., 1986, 85(7):4153-4160.
    [44] B. N. J. Persson, R. Ryberg, Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction [J]. Phys. Rev. B, 1981, 24: 6954 - 6970.
    [45] R. G. Greenler, R. K. Brandt, The origins of multiple bands in the infrared spectra of carbon monoxide adsorbed on metal surfaces [J]. Colloid Surface A, 1995,105(1): 19-26.
    [46] R. G. Greenler, F. M. Leibsle, R. S. Sorbello, One-dimensional and two-dimensional coupling of CO adsorbed on stepped, platinum surfaces [J]. J. Electron Spectrosco. Relat Phenom., 1996, 39:195-203.
    [47] R. K. Brandt, R. G Greenler, The arrangement of CO adsorbed on a Pt(533) surface [J]. Chem. Phys. Lett, 1994, 221(3-4):219-223.
    [48] C. S. Kim, W. J. Tornquist, C. Korzeniewski , Site-dependent vibrational coupling of CO adsorbates on well-defined step and terrace sites of monocrystalline platinum: Mixed-isotope studies at Pt(335) and Pt(111) in the aqueous electrochemical environment [J]. J. Chem. Phys. 1994,101(10): 9113-9121.
    [49] I. Villegas, M. J. Weaver, Carbon monoxide adlayer structures on platinum (111) electrodes: A synergy between in-situ scanning tunneling microscopy and infrared spectroscopy [J]. J. Chem. Phys., 1994,101(2): 1648-1660.
    [50]A. Lopez-Cudero, A. Cuesta, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt(111) [J]. J. Electroanal. Chem., 2005,579(1): 1-12.
    [51]A. Lopez-Cudero, A. Cuesta, C. Gutierrez, Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100) [J]. J. Electroanal. Chem., 2006, 586(2): 204-216.
    [52] J. Sobkowski, A.Czerwinski, Voltammetric study of carbon monoxide and carbon dioxide adsorption on smooth and platinized platinum electrodes [J]. J. Phys. Chem., 1985, 89(2): 365-369.
    [53]H. Kita, H. Narumi, S. Ye, H. Naohara, Analysis of irreversible oxidation wave of adsorbed CO at Pt(111), Pt(100) and Pt(110) electrodes [J]. J. Appl. Electrochem., 1993, 23:589-596.
    [54]A. Wieckowski, M. Rubel, C. Gutierrez, Reactive sites in bulk carbon monoxide electro-oxidation on oxide-free platinum (111) [J]. 1995, 382 (1-2):97-101.
    [55]H. Kita, H. Naohara, T. Nakato, S. Taguchi, A.,Effects of adsorbed CO on hydrogen ionization and CO oxidation reactions at Pt single-crystal electrodes in acidic solution [J]. J. Electroanal. Chem., 1995, 386(1-2):197-206.
    [56]K. Kunimatsu, W. G. Golden, H. Seki, M. R. Philpott, Carbon monoxide adsorption on a platinum electrode studied by polarization modulated FT-IRRAS. 1. Carbon monoxide adsorbed in the double-layer potential region and its oxidation in acids [J]. Langmuir, 1985,1(2): 245-250.
    [57]K. Kunimatsu, H. Seki, W. G. Golden, J. G. Gordon, M. R. Philpott, Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy: II. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids [J]. Langmuir, 1986, 2(4): 464-468.
    [58]S. K. Desai, M. Neurock, First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy [J]. Phys. Rev. B, 2003, 68: 075420(1-7).
    [59]V. Rosca, M. T.M. Koper,Rate laws for reductive stripping of NO adlayers at single-crystal platinum electrodes as deduced from transient experiments [J]. Surf. Sci., 2005, 584:258-268.
    [60]B. Beden, C. Lamy, The electrooxidation of CO: a test reaction in electrocatalysis [J]. Electrochim. Acta, 1990, 35(4):691-704.
    [61]K. Kunimatsu, R.O. Lezna, M. Enyo, Adsorption and oxidation of carbon monoxide on a rhodium electrode studied by in-situ infrared spectroscopy [J]. J. Electroanal. Chem., 1989, 258:115-126.
    [62]S.-C. Chang, M. J. Weaver, The characterization of carbon monoxide electrosorbed on ordered rhodium(100) by in-situ infrared spectroscopy [J]. J. Electroanal. Chem., 1990, 285(1-2):263-272.
    [63]S. Zou, R. Gomez, M. J. Weaver, Infrared spectroscopy of carbon monoxide and nitric oxide on palladium(111) in aqueous solution: unexpected adlayer structural differences between electrochemical and ultrahigh-vacuum interfaces [J]. J. Electroanal. Chem., 1999, 474(2):155-166.
    [1]I. Villegas, R. Gomez. M. J. Weaver, Nitric Oxide as a Probe Adsorbate for Linking Pt(111) Electrochemical and Model Ultrahigh-Vacuum Interfaces Using Infrared Spectroscopy [J]. J. Phys. Chem., 1995, 99(40), 14832-14839.
    
    [2]M. J. Weaver, S. Zou, C. Tang, A concerted assessment of potential-dependent vibrational frequencies for nitric oxide and carbon monoxide adlayers on low-index platinum-group surfaces in electrochemical compared with ultrahigh vacuum environments: Structural and electrostatic implications [J]. J. Chem. Phys., 1999, 111:368-381.
    
    [3] P. Hollins, The influence of surface defects on the infrared spectra of adsorbed species [J]. Surf. Sci. Rep., 1992,16:53-94.
    
    [4]M. T. M. Koper, R. A. van Santen, S. A. Wasileski, M. J. Weaver, Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces [J]. J. Chem. Phys., 2000,113:4392-4407.
    
    [5]W. A. Brown, D. A. King, NO Chemisorption and Reactions on Metal Surfaces: A New Perspective [J]. J. Phys. Chem. B., 2000, 104(12):2578-2595.
    
    [6]M. Gajdos, J. Hafner, A. Eichler, Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption [J]. 7. Phys.: Condens. Matter, 2006, 18:13-40.
    
    [7]M. Gajdos, J. Hafner, A. Eichler, Ab initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorption,[J]. J. Phys.: Condens. Matter, 2006, 18:41-54.
    [8]A. Rodes, V. Climent, J. M. Orts, J. M. Perez, A. Aldaz, Nitric oxide adsorption at Pt(100) electrode surfaces [J]. Electrochim. Acta, 1998, 44:1077-1090.
    
    [9] A. Rodes, R. Gomez, J. M. Orts, J. M. Feliu, J. M. Perez, A. Aldaz, In Situ FTIR Spectroscopy Characterization of the NO Adlayers Formed at Platinum Single Crystal Electrodes in Contact with Acidic Solutions of Nitrite [J]. Langmuir, 1996, 11: 3549-3553.
    
    [10]A. Rodes, R. Gomez, J. M. Perez, J. M. Feliu, A. Aldaz, On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt(h,k,l) and Rh(h,k,l) electrodes [J]. Electrochim. Acta., 1996, 41:729-745.
    
    [11]B. Alvarez, A. Rodes, J. M. Perez, J. M. Feliu, J. L. Rodriguez, E. Pastor, Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes [J]. Langmuir, 2000,16:4695-4705.
    
    [12]S. Zou, R. Gomez, M. J. Weaver, Infrared spectroscopy of carbon monoxide and nitric oxide on palladium(111) in aqueous solution: unexpected adlayer structural differences between electrochemical and ultrahigh-vacuum interfaces [J]. J. Electroanal. Chem., 1999, 474: 155-166.
    
    [13]R. Gomez, M. J. Weaver, Electrochemical Infrared Studies of Monocrystalline Iridium Surfaces. 3. Adsorbed Nitric Oxide and Carbon Monoxide as Probes of Ir(100) Interfacial Structure [J]. J. Phys. Chem. B, 1998, 102:3754-3764.
    
    [14]V. Rosca, G. L. Beltramo, M. T. M. Koper, Reduction of NO Adlayers on Pt(110) and Pt(111) in Acidic Media: Evidence for Adsorption Site-Specific Reduction [J]. Langmuir, 2005, 21:1448-1456.
    [15]G. L. Beltramo, M. T. M. Koper, Nitric Oxide Reduction and Oxidation on Stepped Pt[n(111)×(111)] Electrodes [J]. Langmuir, 2003, 19:8907-8915.
    [16]A. C. A. De Vooys, M. T. M. Koper, R. A. van Santen, J. A. R. van Veen, Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes [J]. J. Catal, 2001, 202:387-394.
    [17]S. Ye, H. Kita, Adsorbed HNO2/NO redox couple at Pt(111) single-crystal electrode [J]. J. Electroanal Chem.,1993, 346:489-495.
    [18]W. J. Plieth, In: A. J. Bard, (Eds.), Encyclopedia of the Electrochemistry of the Elements [M]. Marcel Dekker, New York, Vol.8,1978, Chapter 5.
    [19]J. A. Colucci, M. J. Foral, S. H. Langer, Nitric oxide reduction at noble metal electrodes: a voltammetric study in acid solution [J]. Electrochim. Acta, 1985, 30: 1675-1685.
    [20]A. D. Davydov, A. T. Bell, An infrared study of NO and CO adsorption on a silica-supported Ru catalyst [J]. J. Catal., 1977, 49:332-344.
    [21]B. E. Hayden, K. Kretzschmar, A. M. Bradshaw, A TPD and IR study of co-adsorption of NO and oxygen on Ru(001) [J]. Surf. Sci., 1983, 125:366-376.
    [22]P. Jakob, M. Stichler, D. Menzel, The adsorption of NO on Ru(001) and on 0(2 ×1)/Ru(001) revisited [J]. Surf. Sci., 1997, 370 :L185-L192.
    [23]H. J. Kreuzer, S. H. Payne, P. Jakob, D. Menzel, Coupled desorption and site conversion of co-adsorbates: A lattice gas analysis of thermal desorption and spectroscopic data of (NO+O)/Ru(001) [J]. Surf. Sci., 1999,424:36-54.
    [24]M. Stichler, D. Menzel, The geometry of the saturated (2×2)-NO adlayer on Ru(001): a structure with three different sites [J]. Surf. Sci., 1997, 391:47-58.
    [25]E. Umbach, S. Kulkarni, P. Feulner, D. Menzel, A multimethod study of the adsorption of NO on Ru(001) : I. XPS, UPS and XAES measurements [J]. Surf. Sci., 1979, 88:65-94.
    [26]M. Stichler, D. Menzel, A systematic investigation of the geometrical structures of four oxygen/nitric oxide coadsorbate layers on Ru(001) [J]. Surf. Sci., 1999, 419:272-290.
    [27]K. Nakamoto, infrared and Raman spectra of inorganic and coordination compounds [M]. John Wiley & Sons, Inc., New York, 5th edition, 1997.
    [28]S. Zou, M. J. Weaver, Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical-bonding versus electrostatic-field effects, [J]. J. Phys. Chem.,1996,100:4237-4242.
    [29]D. K. Lambert, vibrational Stark effect of adsorbates at electrochemical interface [J]. Electrochimica Acta, 1996, 41(5):623-630.
    [30]A. C. A., de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Mechanisms of electrochemical reduction and oxidation of nitric oxide [J]. Electrochim. Acta 2004,49:1307-1314.
    [31]K. Momoi, M. B. Song, M. Ito, Redox mechanisms of NO with water on the Pt(111) electrode studied by in-situ STM and IRAS [J]. J. Electroanal. Chem. 1999, 473:43-48.
    [32]Z.-H. Zang, Z.-L. Wu, S.-L. Yau, Elucidation of the Structures of Nitric Oxide and Nitrous Acid at Pt(111) Electrodes by in Situ Scanning Tunneling Microscopy in 0.1 M HC104 [J]. J. Phys. Chem. B. 1999,103(44):9624-9630.
    [33]R. Gomez, A. Rodes, J. M. Orts, J. M. Feliu, J. M. Perez, FTIRS and electrochemical characterization of NO adlayers on Pt(hkl) generated upon immersion in an acidic solution of nitrite [J]. Surf. Sci., 1995, 342:L1104-L1110.
    [34]V. Rosca, G. L. Beltramo, M. T. M. Koper, Reduction of NO Adlayers on Pt(110) and Pt(111) in Acidic Media: Evidence for Adsorption Site-Specific Reduction [J]. Langmuir, 2005, 21:1448-1456.
    [35]V. Rosca , M. T.M. Koper, Rate laws for reductive stripping of NO adlayers at single-crystal platinum electrodes as deduced from transient experiments [J]. Surf. Sci., 2005, 584:258-268
    [36]W.R. Egelhoff, in: D.A. King, D.P. Woodruff (Eds.), The hemical Physics and Heterogeneous Catalysis [M]. vol. 4, lsevier, New-York, 1982.
    [1]N. J. DiNardo, Ph. Avouris, J. E. Demuth, Chemisorbed pyridine on Ni(001): A high resolution electron energy loss study of vibrational and electronic excitations [J]. J. Chem. Phys., 1984, 81, 2169-2180.
    [2]Y. Ikezawa, T. Sawatari, T. Kitazume, H. Goto, K. Toriba, In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode [J]. Electrochim. Acta, 1998, 43:3297-3301.
    [3]S. Haq, D. A. King , Configurational Transitions of Benzene and Pyridine Adsorbed on Pt{111} and Cu{110} Surfaces: An Infrared Study [J]. J. Phys. Chem., 1996, 100: 16957-16965.
    [4]B. J. Bandy, D. R. Llyoyd, N. V. Richardson, Selection rules in photoemission from adsorbates: Pyridine adsorbed on copper[J]. Surf. Sci., 1979, 89:344-353.
    [5]M. E. Bridge, M. Connolly, D. R. Lloyd, J. Somers, P. Jakob , D. Menzel, Electron spectroscopic studies of pyridine on metal surfaces[J].Spectrochim. Acta A, 1987, 43:1473-1478.
    [6]A. L. Johnson, E. L. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on platinum(111) by NEXAFS [J]. J. Phys. Chem.; 1985; 89(19):4071-4075.
    [7]W.-B. Cai, L.-J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa, Orientational phase transition in a pyridine adlayer on gold(111) [J]. Langmuir, 1998,14:6992-6998.
    [8]H. Noda, L.-J. Wan, M. Osawa, Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution : A combined surface-enhanced infrared and STM study [J]. Phys. Chem. Chem. Phys., 2001, 3:3336-3342.
    [9]X.-Y. Xiao, S.-G. Sun, Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry, EQCM, in situ FTIRS and Raman spectroscopy [J]. Eledrochimica Acta, 2000, 45:2897-2902.
    [10]M. Osawa, M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contribution of electromagnetic and chemical mechanisms [J]. J. Phys. Chem., 1991, 95:9914-9919.
    [11]V. P. Tolstoy, I. V. Chernyshova, V. A. Skrushevsky, Handbook of Infrared Spectroscopy of Ultrathin Films [M]. John Wiley & Sons, Inc., New York, 2003.
    [12]E. E. Ernstbrunner, R. B. Girling, R. E. Hester, Free radical studies by resonance Raman spectroscopy. Part 3.—4-Nitrobenzoate radical Dianion[J].J. Chem. Soc, Faraday II, 1978, 74 :1540-1549.
    [13]G. T. Merklin, P. R. Griffiths, Effect of Microscopic Surface Roughness in Surface-Enhanced Infrared Absorption Spectrometry [J]. J. Phys. Chem. B., 1997, 101(30): 5810-5813.
    [14]N. B. Colthup, L. H. Daly, S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy [C]. 3rd edition, Academic Press, San Diego, CA, 1990.
    [15]A. G. Brolo, D. E. Irish, The adsorption and orientation of pyrazine on silver electrodes: a surface enhanced Raman scattering study [J].J. Eledroanal. Chem. 1996, 414:183-196.
    [16]C. Zuo, P. W. Jagodzinski, Surface-Enhanced Raman Scattering of Pyridine Using Different Metals: Differences and Explanation Based on the Selective Formation of -Pyridyl on Metal Surfaces [J]. J. Phys. Chem. B., 2005, 109(5):1788-1793.
    [17] W.-B. Cai, C.-X. She, B. Ren, J.-L. Yao, Z. -W. Tian, Z.-Q. Tian, Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes——effects of potential and electrolyte [J]. J. Chem. Soc., Faraday Trans., 1998, 94:3127-3133.
    [18] L. Corrsin, B. J. Fax, R. C. Lord, The Vibrational Spectra of Pyridine and Pyridine-d5 [J]. J. Chem. Phys. 1953, 21:1170-1176.
    [19] C. H. Kline Jr., J. Turkevich, The Vibrational Spectrum of Pyridine and the Thermodynamic Properties of Pyridine Vapors [J]. J. Chem. Phys. 1944, 12, 300-309.
    [1] 邹受忠[D],厦门;厦门大学硕士学位论文,1994.
    [2] 陈艳霞[D],厦门;厦门大学博士学位论文,1998.
    [3] 蒋玉雄[D],厦门;厦门大学博士学位论文,2006.
    [4] K. Ataka, T. Yotsuyannagi, M. Osawa, Potential-dependent reorientation of water molecules at an electrode/electrolyte interfaces studied by surface-enhanced infrared absorption spectroscopy [J|. J. Phys. Chem. 1996, 100: 10664-10672.
    [5] M. Futamata, D. Diesing, Adsorbed state of pyridine, uracil and water on gold electrode surfaces [J]. Vib. Spectrosc. 1999, 19:187-192.
    [6] M. Futamata, L. O. Luo, C. Nishihara, ATR-SEIR study of anions and water adsorbed on platinum electrode [J]. Surf. Sci. 2005, 590(2-3): 196-211.
    [7] M. Nakamura, Y. Shingaya, M. Ito, Hydration processes on metal surfaces studied by IR and STM: a model for the potential drop across the electric double layers [J]. Surf. Sci., 2002, 502-503:474-484.
    [8] M. Ito, M. Nakamura, Hydration processes of electrolyte anions and cations on Pt(111), Ir(111), Ru(001) and Au(111) surfaces: Coadsorption of water molecules with electrolyte ions [J]. Faraday Discuss., 2002, 121:71-84.
    [9] S. Pronkin, T. Wandlowski, ATR-SEIRAS-an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes [J]. Surf. Sci. 2004, 573(1):109-127.
    [10] H. Shiroishi, Y. Ayato, K. Kunimatsu, T. Okada, Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy) [J]. J. Electroanal. Chem., 2005, 581:132-138.
    [11] Ko Yoshimi, M.-B. Song, M. Ito, Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: coadsorption of CO with water on Pt(111) [J]. Surf. Sci., 1996, 368:389-395.
    [12] H. Ogasawara, J. Yoshinobu, M. Kawai, Direct observation of the molecular interaction between chemisorbed CO and water overlayer or, Pt(111) [J]. Surf. Sci., 1997, 386:73-77.
    [13] N. Kizhakevariam, X-D Jiang, M. J. Weaver, Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: The archetypical case of carbon monoxide/water coadsorption on Pt(111) [J]. J. Chem. Phys., 1994, 100:6750-6764.
    [14] M. Nakamura, M. Ito, Coadsorption of water and CO molecules on Ru(001) at high CO coverages: comparisons with a Ru(001) electrode surface [J]. Surf. Sci., 2001, 490:301-307.
    [15] M. Nakamura, M. Ito, Coadsorption of water monomers with CO on Ru(001) and charge transfer during hydration processes [J]. Chem. Phys. Lett., 2001, 335: 170-175.
    [16] A. Miki, S. Ye, M. Osawa, Chem. Commun. 2002,1500. M. Osawa, private communication.
    [17] Y. Zhu, H. Uchida, M. Watanabe, Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique [J]. Langmuir, 1999,15(25):8757-8764.
    [18] S. P. Mehandru, A. B. Anderson, Potential-induced variations in properties for carbon monoxide adsorbed on a platinum electrode [J]. J. Phys. Chem., 1989, 93(5):2044-2047.
    [19] K. Kunimatsu, T. Senzaki, M. Tsushima, M. Osawa, A combined surface-enhanced infrared and electrochemical kinetics study of hydrogen adsorption and evolution on a Pt electrode [J]. Chem. Phys. Lett., 2005, 401:451-454.
    [20]V. P. Tolstoy, I. V. Chernyshova, V. A. Skrushevsky, Handbook of Infrared Spectroscopy of Ultrathin Films [M]. John Wiley @ Sons, Inc., New York, 2003.
    [21]S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, M. J. Shultz, Vibrational Spectroscopic Studies of Aqueous Interfaces: Salts, Acids, Bases, and Nanodrops [J]. Chem. Rev. 2006, 106(4): 1155 -1175.
    [22]J. D. Roth, S.-C. Chang, M. J. Weaver, Infrared spectroscopy of carbon monoxide electrosorption on platinum over wide potential ranges. Delineation of site occupancy changes and nonlinear band frequency-potential shifts [J]. J. Electroanal. Chem., 1990, 288:285-292.
    [23]N. K. Ray, A. B. Anderson, Variations in carbon-oxygen and platinum-carbon frequencies for carbon monoxide on a platinum electrode [J].J. Phys. Chem., 1982, 86(25):4851-4852.
    [24]S. A. Wasileski, M. T. M. Koper, M. J. Weaver, Field-Dependent Electrode-Chemisorbate Bonding: Sensitivity of Vibrational Stark Effect and Binding Energetics to Nature of Surface Coordination [J]. J. Am. Chem. Soc. 2002,124(11):2796-2805.
    [25]H. Wang , R. G. Tobin, D. K. Lambert , Coadsorption of hydrogen and CO on Pt(335): Structure and vibrational Stark effect [J]. J. Chem. Phys., 1994,101(5):4277-4287.
    [26] C. Korzeniewski , S. Pons, P. P. Schmidt, M. W. Severson , A theoretical analysis of the vibrational spectrum of carbon monoxide on platinum metal electrodes [J]. J. Chem. Phys., 1986, 85(7):4153-4160.
    [1] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P.Wilkinson, A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155:95-110.
    [2] K. Sopian, W. R. W. Daud, Challenges and future developments in proton exchange membrane fuel cells [J]. Renew. Energ., 2006, 31: 719-727.
    [3] A. B. Anderson, E. Grantschatava, S. Seong. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance [J]. J. Electrochem. Soc., 1996, 143(6): 2075-2082.
    [4] X. Ren, M. S. Wilson, S. Gottesfeld. High performance Direct Methanol Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc., 1996, 143(1): L12-L15.
    [5] S. Ye, A. K. Vijh, L. H. Dao. A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrite foam with very low platinum loading [J]. J. Electrochem. Soc., 1996, 143 (1):L7-L9.
    [6] 邵志刚,衣宝廉,韩明,乔亚光,刘浩,于景荣,质子交换膜燃料电池的一种新的制备方法[J].电化学,2000,6(3):317-323.
    [7] M. Watanabe, H. Uchida, Y. Seki, Self-humidifying polymer electrolyte membranes for fuel cells [J]. J. Electrochem. Soc., 1996, 143(12):3847-3852.
    [8] M. S. Wilson, S. Gottesfeld, High performance catalyzed membranes of ultra-low platinum loadings for polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 1992, 139(2):L28-L30.
    [9] 徐洪峰 衣宝廉,电极结构对质子交换膜燃料电池性能的影响[J].电源技术,1998,22(4):163-166.
    [10] 邵志刚,衣宝廉,质子交换膜燃料电池电极的一种新的制备方法[J].电化学,2000,6(3):317-323.
    [11] 邵志刚,衣宝廉,超低铂担量质子交换膜燃料电池电极[J].电源技术,2000,24(1):42-44.
    [12] C. H. Hsu, C. C. Wan, An Innovative Process for PEMFC Electrodes Using the Expansion of Nafion Film [J]. J. Power Sources, 2003, 115:268-273.
    [13] 郝德利,韩立明,薛金生,平晓山,刘崇刚,质子交换膜燃料电池技术进展[J].电源技术,2001,25(6):436-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700