有机多相催化体系对醇选择性氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由醇选择性氧化制备相应的醛或酮在实验室研究和工业生产中都有重要的意义。近年来,以H202、02尤其是空气作为氧化剂,以有机小分子2,2,6,6-四甲基哌啶-N-氧自由基(TEMPO)作为催化剂的绿色环保、经济高效的催化体系的开发成为研究的热点。
     本论文研究了以空气为氧化剂,以固载化的TEMPO作为主催化剂,以吸附的NOx(x=l,2)作为助催化剂的醇类选择性多相催化氧化体系。建立了高效、高选择性、环境友好、后处理简单、适用面广泛的醇类有氧氧化制备醛或者酮的方法。
     首先,将主催化剂4-氧-2,2,6,6-四甲基哌啶-N-氧自由基(4-oxo-TEMPO)固载到多孔硅珠(PSB:porous silica bead)的表面上得到多相催化剂PSB-TEMPO,再将助催化剂NOx气体吸附至多孔硅珠的孔道中得到PSB-TEMPO-NOX。以苯甲醇为底物,考察了PSB-TEMPO-NOx用量对苯甲醇的催化氧化效果的影响,当催化剂PSB-TEMPO-NOX用量为0.5 g时,1 mmol苯甲醇在4 h内完全转化为苯甲醛。
     随后,用溶胶-凝胶法制备了硅胶固载催化剂。在甲醇中,通过氰基硼氢化钠催化的还原氨化反应将4-oxo-TEMPO连接到三氨丙基三乙氧基硅烷上,再加入正硅酸乙酯(TEOS)和水,控制Si:H2O:MeOH为1:8:5,上述混合物发生水解和缩合反应,最后经过陈化,洗涤和研磨得到固载化催化剂S1-TEMPO。将助催化剂NOx气体吸附至S1-TEMPO的孔道中得到S1-TEMPO-NOx,以苯甲醇作为底物,当S1-TEMPO-NOx用量为0.3 g时,1 mmol苯甲醇在2.5 h内完全转化为苯甲醛。
     进一步,在使用溶胶-凝胶法制备硅胶固载催化剂时,若使用三乙酰氧基硼氢化钠替代氰基硼氢化钠催化还原氨化反应时,可以用乙醇作为溶剂,同样控制Si:H2O:MeOH为1:8:5,经过水解和缩合反应,得到固载化催化剂S2-TEMPO,将助催化剂NOx气体吸附至S2-TEMPO的孔道中得到S2-TEMPO-NOX,仍旧以苯甲醇作为底物,当催化剂S2-TEMPO-NOX用量为0.3 g时,1 mmol苯甲醇在2 h内完全转化为苯甲醛。
     采用上述两种多相催化体系,分别考察了不同醇类化合物的氧化反应。研究发现,这两种催化体系均能使芳香族伯、仲醇,脂肪族伯、仲醇,以及含杂原子O的醇类化合物在常温常压下空气中高效地、高选择性地转化为相应的醛或酮。上述3种多相催化剂在催化效率不变的情况下都可循环使用10次。结合多相催化剂的元素分析(C、H、N),FT-IR, N2吸附-脱附,NOx-TPD, TEM以及XRD测试结果,推测出了这两种多相催化体系的孔道内反应过程及机理。
The selective oxidation of alcohols to the corresponding aldehydes or ketones plays a central role both in lab research and industrial production. Rencently, the development of environmental friendly and economy efficient catalytic oxidation systems is becoming the focus of the world. In these catalytic oxidation systems, hydrogen peroxide, molecular oxygen and especially air are used as clean oxidation reagents, and 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) is used as the catalyst.
     In our heterogeneous organo-catalytic system which is for the selective oxidation of alcohols, air was used as a oxidation reagent. TEMPO was used as a major catalyst, NOx was used as a cocatalyst. We developed an efficient, high selective, environmental friendly, easy handling and broad using method for the preparation of aldehydes and ketones from alcohols.
     Firstly,4-oxo-2,2,6,6-tetramethylpiperidinyl-1-oxy (4-oxo-TEMPO) which is major catalyst was immobilized on the surface of porous silica beads (PSB) to generate a heterogeneous catalyst PSB-TEMPO. NOx gas was adsorpted into the pore canal of PSB to generate PSB-TEMPO-NOx. Benzyl alcohol was used as the model substrate, we studied how the amount of PSB-TEMPO-NOx would affect the catalytic oxidation of benzyl alcohol, and it came out that 1 mmol benzyl alcohol was totally converted into benzaldehyde in 4 hours when the ammout of PSB-TEMPO-NOx was set to 0.5 g.
     Subsequently, S1-TEMPO was produced using sol-gel method. In methanol, 4-oxo-TEMPO was linked to aminopropyltriethoxysilane through a reductive amination reaction which is catalysed by sodium cyanoborohydride, and then tetraethoxy silicone (TEOS) and water was added to the methanol solution, Si:H2O:MeOH=1:8:5. Hydrolysis reaction and condensation reaction occurred in the mixture, after the aging process, washing and grinding. S1-TEMPO was finally obtained. NOx gas was adsorpted into the pore canal of S1-TEMPO to generate S1-TEMPO-NOx. Benzyl alcohol was used as the model substrate, we studied how the amount of S1-TEMPO-NOx would affect the catalytic oxidation of benzyl alcohol, and it came out that 1 mmol benzyl alcohol was totally converted into benzaldehyde in 2.5 hours when the ammout of S1-TEMPO-NOx was set to 0.3 g.
     Further more, Sodium triacetoxyborohydride was used to replace sodium cyanoborohydride in the reductive amination reaction, and correspondingly, methanol was replaced by ethanol, Si:H2O:MeOH=1:8:5. After the hydrolysis reaction and condensation reaction, S2-TEMPO was finally obtained. NOx gas was adsorpted into the pore canal of S2-TEMPO to generate S2-TEMPO-NOx. Benzyl alcohol was used as the model substrate, we studied how the amount of S2-TEMPO-NOx would affect the catalytic oxidation of benzyl alcohol, and it came out that 1 mmol benzyl alcohol was totally converted into benzaldehyde in 2 hours when the ammout of S2-TEMPO-NOx was set to 0.3 g.
     Finally, the oxidation of a broad range of alcohols were studied under the two above-mentioned heterogeneous catalytic systems. And it turned out that the two catalytic systems could efficiently and high selectively catalyse the convertion of a broad range of alcohols which contain aromatic primary and secondary alcohols, aliphatic primary and secondary alcohols and O-heteroatom alcohol to their corresponding aldehydes and ketones under mild conditions. The 3 heterogeneous catalysts could be used for over 10 times without the loss of activity. The pore canal reaction mechanism was proposed according to the data of the elemental analysis, FT-IR, N2 adsorption/desorption analysis, NOX-TPD, TEM and XRD analysis.
引文
[1]THOMPSON A, ZHAN B Z. Recent developments in the aerobic oxidation of alcohols [J]. Tetrahedron,2004,60(13):2917-2935.
    [2]HUDLICKY M. Oxidations inorganic chemistry [M]. Washington DC:American Chemical Society,1990:35-76.
    [3]MENGER F M, LEE C. Synthetically useful oxidations at solid sodium permanganate surfaces [J].Tetra. Lett.,1981,22(18):1655-1656.
    [4]MUZART J. Chromium-catalyzed oxidations in organic synthesis [J]. Chem. Rev.,1992, 92(1):113-140.
    [5]SEMMELHACK M F, SCHMID C R, CORTES D A, et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion [J]. J. Am. Chem. Soc. 1984,106 (11):3374-3376.
    [6]DIJKSMANA, ARENDS I, SHELDON R A. Cu (Ⅱ)-nitroxyl radicals as catalytic galactose oxidase mimics [J]. Org. Biomol. Chem.,2003,1(18):3232-3237.
    [7]MARKO I E, GILES P R, TSUKAZAKI M. Copper-catalyzed oxidation of alcohols to aldehydes and ketones:An efficient, aerobic alternative [J]. Science,1996,274 (5295):2044-2046.
    [8]MARKO I E, TSUKAZAKI M, GILES P R, et al. Anaerobic copper-catalyzed oxidation of alcohols to aldehydes and ketones [J]. Angew. Chem., Int. Ed.,1997,36(20): 2208-2210.
    [9]MARKO I E, GAUTIER A, CHELLE-REGNAUT l, et al. Efficient and practical catalytic oxidation of alcohols using molecular oxygen [J]. J. Org. Chem.,1998,63(22): 7576-7577.
    [10]MARKO I E, GILES P R, TSUKAZAKI M, et al. Efficient, ecologically benign, aerobic oxidation of alcohols [J]. J. Org. Chem.,1999,64(7):2433-2439.
    [11]MARKO I E, GAUTIER A, MUTONKOLE J L, et al. Neutral non-racemising, catalytic aerobic oxidation of alcohols [J]. J. Organomet. Chem.,2001,624 (1-2):344-347.
    [12]CAPDEVIELLE P, SPARFEL D, BARANNELAFONT J, et al. Efficient catalytic dehydrogenation of alcohols by the 2,2'-bipyridine-Copper(Ⅰ) chloride dioxygen system in acetonitrile-a Mechanistic Study with Deuterium-Isotope Effects [J]. J. Chem. Res.,1993, (1):10-11.
    [13]BETZEMEIER B, CAVAZZINI M, QUICI S, et al. Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic compounds [J]. Tetrahedron Lett.,2000, 41(22):4343-4346.
    [14]COLEMAN K S, LORBER C Y, OSBORN J A. Selective catalytic oxidation of alcohols by a ruthenium-copper bifunctional system using molecular oxygen [J]. Eur. J. Inorg. Chem.,1998, (11):1673-1675.
    [15]COLEMAN K S, COPPE M, THOMAS C, et al. Catalytic oxidation of alcohols into aldehydes and ketones by an osmium-copper bifunctional system using molecular oxygen [J]. Tetrahedron Lett.,1999,40(19):3723-3726.
    [16]MULDOON J, BROWN S N. Practical Os/Cu-cocatalyzed air oxidation of allyl and benzyl alcohols at room temperature and atmospheric pressure [J]. Org. Lett. 2002,4(6):1043-1045.
    [17]LIU L, JI L Y, WEI Y Y. Base promoted aerobic oxidation of alcohols to corresponding aldehydes or ketones catalyzed by CuCl/TEMPO [J]. Catal. Comm.,2008,9(6): 1379-1382.
    [18]SHELDON R A, KOCHI J K. Metal-catalyzed oxidation of organic compounds [M]. New York:Academic Press,1981,350-357.
    [19]TOMIOKA H, TAKAI K, OSHIMA K, et al. Selective oxidation of primary hydroxyl in the presence of secondary one [J]. Tetrahedron Lett.,1981,22(17):1605-1608.
    [20]MATSUMOTO M, I TO S. Ruthenium-catalyzed oxidation of allyl alcohols by molecular-oxygen [J]. J. Chem. Soc. Chem. Comm.,1981, (17):907-908.
    [21]KANEMOTO S, MATSUBARA S, TAKAI K, et al. Chromium (Ⅵ) or ruthenium (Ⅱ) complex catalysis in oxidation of alcohols to adehydes and ketones by means of bis (trimethylsilyl) peroxide [J]. Bull. Chem. Soc. Jpn.,1988,61(10):3607-3612.
    [22]INOKUCHI T, NAKAGAWA K, TORII S. One-pot conversion of primary alcohols to α-oxygenated alkanals with TEMPO in Combination with molecular-oxygen and Ruthenium complex [J]. Tetrahedron Lett.,1995,36(18):3223-3226.
    [23]HANYU A, TAKEZAWA E, SAKAGUCHI S, et al. Selective aerobic oxidation of primary alcohols catalyzed by a Ru(PPh3)3Cl2/Hydroquinone system [J]. Tetrahedron Lett. 1998,39(31):5557-5560.
    [24]TAKEZAWA E, SAKAGUCHI S, ISHII Y. Oxidtive cleavage of vicdiosto aldehydes with dioxygen catalyzed by Ru (PPh3)3Cl2 on active carbon [J]. Org. Lett.,1999,(1): 713-715.
    [25]DIJKSMAN A, ARENDS I.W. C. E, SHELDON R A. Efficient ruthenium-TEMPO-catalyzed aerobic oxidation of aliphatic alcohols into aldehydes and ketones [J]. Chem. Commun.,1999, (16):1591-1592.
    [26]BACKVALL J E, CHOWDHURY R L, KARLSSON U. Ruthenium-catalysed aerobic oxidation of alcohols via multistep electron-transfer [J]. J. Chem. Soc., Chem. Commun. 1991, (7):473-475.
    [27]COLEMAN K S, LORBER C Y, OSBORN J A. Selective catalytic oxidation of alcohols by a ruthenium-copper bifunctional system using molecular oxygen [J]. Eur. J. Inorg. Chem.,1998, (11):1673-1675.
    [28]SHAPLEY P A, ZHANG N J, ALLEN J L, et al. Selective alcohol oxidation with molecular oxygen catalyzed by Os-Cr and Ru-Cr complexes [J]. J. Am. Chem. Soc. 2000,122(6):1079-1091.
    [29]KARVEMBU R, HEMALATHA S, PRABHAKARAN R, et al. Synthesis, characterization and catalytic activities of ruthenium complexes containing triphenylphosphine /triphenylarsine and tetradentate schiff bases [J]. Inorg. Chem. Commun.,2003, 6(5):486-490.
    [30]MATSUMOTOT, UENOM, KOBAYASHI J, et al. Polymer incarcerated ruthenium catalyst for oxidation of alcohols with molecular oxygen [J]. Aav. Synth. Catal.,2007, 349(4-5):531-534.
    [31]BLACKBURN T F, SCHWARTS J. Homogeneous catalytic oxidation of secondary alcohols to ketones by molecular oxygen under mild conditions [J]. J. Chem. Soc. Chem. Comm.,1977, (5):157-158.
    [32]NISHIMURA T, ONOUE T, OHE K, et al. Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen [J]. Tetrahedron Lett.,1998,39(33) 6011-6014.
    [33]NISHIMURA T. ONOUE T, OHE K, et al. Palladium (Ⅱ)-catalyzed oxidation of alcohols to Aldehydes and ketones by molecular oxygen [J]. J. Org. Chem.,1999, 64(18):6750-6755.
    [34]SHVO Y, GOLDMAN-LEV V. Catalytic oxidation of alcohols with allyl diethyl posphate and palladium acetate [J]. J. Organmet. Chem.,2002,650(1-2):151-156.
    [35]MORI K, HARA T, MIZUGAKI T, et al. Hydroxyapatite-supported palladium nanoclusters:a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen [J]. J. Am. Chem. Soc.,2004,126(34): 10657-10666.
    [36]MORI K, YAMAGUCHI K, HARA T, et al. Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts [J]. J. Am. Chem. Soc.,2002,124(39):11572-11573.
    [37]WU L H, ZHANG Q H, WANG Y. Solvent-free aerobic oxidation of alcohols catalyzed by an efficient and recyclable palladium heterogeneous catalyst [J]. Adv. Synth. Catal.,2005,347(10):1356-1360.
    [38]ENACHE D I, EDWARDS J K, HUTCHINGS G J, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts [J]. Science,2006,311(5759): 362-365.
    [39]MIFSUD M, PARKHOMENKO K V, ARENDS I W C E, et al. Pd nanoparticles as catalysts for green and sustainable oxidation of functionalized alcohols in aqueous media [J]. Tetrahedron,2010,66(5):1040-1044.
    [40]ROHAN D, HODNETT B K. Reactivity and stability of vanadium oxide catalysts for the oxidation of butan-2-ol of by hydrogenperoxide [J]. J. Appl. Catal A:General, 1997,151(2):409-422.
    [41]GOPINATH R, PAITAL A R, PATEL B K. V205-H202:A convenient reagent for the direct oxidation of acetals to esters [J]. Tetrahedron Lett.,2002,43(29):5123-5126.
    [42]MARTIN S E, SUAREZ D F. Catalytic aerobic oxidation of alcohols by Fe (NO3)3-FeBr3 [J]. Tetrahedron Lett.,2002,43(25):4475-4479.
    [43]WANG N W, LIU R H, CHEN J P, et al. NaN02-activated, iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions [J]. Chem. Commun.,2005, (42):5322-5324.
    [44]WANG X L, LIANG X M. Aerobic oxidation of alcohols to carbonyl compounds catalyzed by Fe(N03)3/4-OH-TEMPO under mild conditions [J]. Chin. J. Catal.,2008,29(9): 935-939.
    [45]ADAM W, SAHA-MOLLER C R, GANESHPURE P A. Synthetic applications of nonmetal catalysts for homogeneous oxidation [J]. Chem. Rev.,2001,101(11):3499-3548.
    [46]ROZANTSEV E G, SHOLLE V D. Free nitroxyl radieal [M]. Moscow:Khimiya,1971, 190,401.
    [47]ANELLI P L, BIFFI C, MONTANARI F, et al. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ket.ones mediated by oxoammonium salts under two-phase conditions [J]. J. Org. Chem., 1987,52(12):2559-2562.
    [48]ROZANTSE E G, SHOLLE V D. Synthesis and reactions of stable nitroxyl radicals Ⅱ. Reactions [J].Synthesis,1971, (8):401-414.
    [49]SHELDON R A, ARENDS I W C E. Organocatalytic oxidations mediated by nitroxyl radicals [J]. Adv. Synth. Catal.,2004,346 (9-10):1051-1071.
    [50]MINISCI F, RECUPERO F, PEDULLI G F, et al. Transition metal salts catalysis in the aerobic oxidation of organic compounds:Thermochemical and kinetic aspects and new synthetic developments in the presence of N-hydroxy-derivative catalysts [J]. J. Mol. CataL. A:Chem.,2003,204:63-90.
    [51]SEMMELHACK M F, SCHMID C R, CORTES D A, et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosium ion [J]. J. Am. Chem. Soc. 1984,106(11):3374-3376.
    [52]BETZEMEIER B, CAVAZZINI M, QUICI S, et al. Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions [J]. Tetrahedron Lett.,2000, 41 (22):4343-4346.
    [53]RAGAGNIN G, BETZEMEIER B, QUICI S, et al. Copper-catalysed aerobic oxidation of alcohols using fluorous biphasic catalysis [J]. Tetrahedron,2002,58(20): 3985-3991.
    [54]GAMEZ P, ARENDS J W C E, REEDIJK J, et al. Copper (Ⅱ)--catalysed aerobic oxidation of primary alcohols to aldehydes [J]. chem. commun.,2003, (19):2414-2415.
    [55]DIjKSMAN A, ARENDS I W C E, SHELDON R A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones [J]. Chem. Commun.,1999, (16):1591-1592.
    [56]CECCHETTO A, FONTANA F, MINISCI F, et al. Efficient Mn-Cu an Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions [J]. Tetrahedron Lett.,2001,42(38):6651-6653.
    [57]DIJKSMAN A, MARINO-GONZALEZ A, SHELDON R A, et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system [J]. J. Am. Chem. Soc.,2001,123(28):6826-6833.
    [58]ANELLI P L, BANFI S, MONTANARI F, et al. Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions [J]. J. Org. Chem.,1989,54(12):2970-2972.
    [59]BJORSVIK H R, LIGUORI L, MINISCI F, et al. A new modified "montanari oxidation process" by means of chlorine dissolved in the reaction solvent as oxidant and TEMPO as catalyst:oxidation of 3-S-quinuclidinol to 3-quinuclidinone [J]. Org. Process Res. Dev.,2002,6(2):197-200.
    [60]MILLER R A, HOERRNER R S. Iodine as a Chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones [J]. Org. Lett. 2003,5(3):285-287.
    [61]LIU R H. LIANG X M. HU X Q. et al. Transition-metal-free:a highly efficient catalytic aerobic alcohol oxidation process [J]. J. Am. Chem. Soc.,2004,126(13): 4112-4113.
    [62]LIU R, DONG C, LIANG X, et al. Highly efficient catalytic aerobic oxidations of benzylic alcohols in water [J]. J. Org. Chem.,2005,70(2):729-731.
    [63]JIANG N, RAGAUSKAS A J. TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H202/HBr/ionic liquid [bmim] PF6 system [J]. Tetrahedron Lett. 2005,46(19):3323-3326.
    [64]HERRERIAS C I, ZHANG T Y, LI C J. Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions [J]. Tetrahedron Lett.,2006,47(1):13-17.
    [65]WANG X L, LIU R H, JIN Y, et al. TEMPO/HCl/NaNO2 Catalyst:A transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions [J]. Chem. Eur. J.,2008,14(9):2679-2685.
    [66]XIE Y, MO W M, XU D, et al. Efficient NO equivalent for activation of molecular oxygen and its application in transition-metal-free catalytic aerobic alcohol oxidation [J]. J. Org. Chem.,2007,72(11):4288-4291.
    [67]HE X J, SHEN Z L, MO W M, et al. TEMPO-tert-butyl nitrite:an efficient catalytic system for aerobic oxidation of alcohols [J].adv. synth. Catal.,2009,351(1-2): 89-92.
    [68]DIJKSMAN A, ARENDS I W C E, SHELDON R A. Polymer immobilised TEMPO (PIPO):an efficient catalyst for the chlorinated hydrocarbon solvent-free and bromide-free oxidation of alcohols with hypochlorite [J].chem. commun.,2000, (4):271-271.
    [69]HOLCZKNECHT O, CAVAZZINI M, QUICI S, et al. Selective oxidation of alcohols to carbonyl compounds mediated by fluorous-tagged TEMPO radicals [J]. Adv. Synth. Catal.,2005,347(5):677-688.
    [70]POZZI G, CAVAZZINI M, QUICI S, et al. Poly(ethylene-glycol)-supported TEMPO:an efficient, recoverable metal-free catalyst for the selective oxidation of alcohols [J]. Organic Letters,2004,6(3):441-443.
    [71]WU X E, MA L, DING M X, et al. TEMPO-derived task-specific ionic liquids for oxidation of alcohols [J]. Synlett,2005, (4):607-610.
    [72]QIAN W X, JIN E, BO W L, et al. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water [J]. Tetrahedron,2006,62(4):556-562.
    [73]SUBHANI M A, BEIGI M, EILBRACHT P. Polyurethane- and polystyrene-supported 2,2,6,6-tetramethyl-piperidine-l-oxyl (TEMPO); facile preparation, catalytic oxidation and application in a membrane reactor [J]. Adv. Synth. Catal.,2008, 350(18):2903-2909.
    [74]TSUBOKAWA N, KIMOTO T, ENDO T. Oxidation of alcohols with copper (Ⅱ) salts mediated by nitroxyl radicals immobilized on ultrafine silica and ferrite surface [J]. J. Mol. Catal. A:Chem.,1995,101(1):45-50.
    [75]BOLM C, FEY T. TEMPO oxidations with a silica-supported catalyst [J]. Chem. Commun.,1999, (18):1795-1796.
    [76]FEY T, FISCHER H, BACHMANN S, et al. Silica--supported TEMPO catalysts:sythesis and application in the anelli oxidation of alcohols [J]. J. Org. Chem.,2001, 66(24):8154-8159.
    [77]CIRIMINNA R, BOLM C, FEY T, et al. Sol-gel ormosils dopped with TEMPO as recyclable catalysts for the selective oxidation of alcohols [J]. Adv. Synth. Catal.,2002,344(2):159-163.
    [78]KARIMI B, BIGLARI A, CLARK J H, et al. Green, transition-metal-free aerobic oxidation of alcohols using a highly durable supported organocatalyst [J]. Angew. Chem. Int. Ed.,2007,46(33):7210-7213.
    [79]MICHAUD A, GINGRAS G, MORIN M, et al. Siliacat TEMPO:an effective and useful oxidizing catalyst [J]. Org. Process Res. Dev.,2007,11(4):766-768.
    [80]WANG P G, CAI T B, TANIGUCHI N. Nitric oxide donors:for pharmaceutical and bilogical application [M]. Weinheim:WILEY-VCH,2005,1-110.
    [81]GREGG S G, SING K S W. Adsorption, surface area and porosity [M]. London:Academic Press,1967,121.
    [82]THOMMES M. Physical adsorption characterization of nanoporous materials [J]. Chem. Ing. Tech.,2010,82(7):1059-1073.
    [83]CIRIMINNA R, BLUM J, AVNIR D, et al. Sol-gel entrapped TEMPO for the selective oxidation of methyl α-D-glucopyranoside [J]. Chem. Commun.,2000, (15): 1441-1442.
    [84]GURAV J L, JUNG I K, PARK H H, et al. Silica aerogel:synthesis and applications [J]. J. Nanomater.,2010, Article ID 409310,11 pages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700