RNA去甲基化酶FTO抑制剂的筛选及ALKBH5的晶体结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
m6A是真核生物mRNA和IncRNA中含量最为丰富的一种修饰碱基。m6A影响mRNA的剪接、运输、翻译和降解,参与脂肪生成、精子发生、发育、致癌、干细胞再生以及其他生命进程。
     FTO是第一个通过全基因组关联分析发现与肥胖密切相关的基因,也是目前发现与肥胖相关性最强的易感基因。许多研究报道FTO与心血管疾病,Ⅱ型糖尿病,阿尔茨海默氏病和乳腺癌等多种疾病的发生发展密切相关。FTO基因编码一种20G加氧酶,是第一个被发现的mRNAm6A去甲基化酶。本实验室在早期解析FTO蛋白与3-meT复合物晶体结构(PDB:3LFM)的基础上,进一步开展了对FTO抑制剂的设计合成和活性评价。根据FTO晶体结构,结合分子对接分析和高通量虚拟筛选后,设计了120种FTO抑制剂的备选化合物。
     首先以3-meT为底物,对120种化合物进行体外抑制FTO去甲基化酶活性的系统筛选,最后筛选得到3种结构独特的化合物,它们对FTO去甲基化酶活性有显著影响,将其命名为C1、C2和C3。通过对这3种化合物的结构比较和构效分析,进一步优化出另外两种化合物:C4和C5。然后分别以含:m6A的ssDNA和ssRNA为底物,对这5种化合物的FTO去甲基化酶活性的抑制作用进行了系统检测。结果发现,这5种化合物对FTO的抑制活性均表现有浓度依赖性,FTO酶活性随化合物的浓度升高而降低。其中C1对FTO抑制活性最高,C2次之,C5最低。以ALKBH2和ALKBH5为靶标检测不同抑制剂靶标酶的选择性。结果表明化合物C1和化合物C2也对ALKBH2去甲基活性有明显抑制,化合物C1对ALKBH5有很强抑制作用。实验表明C1、C3、C4这3种化合物在细胞内也有一定程度的去甲基化酶抑制活性。
     ALKBH5与FTO均属于AlkB家族成员。ALKBH5是第二个被发现的mRNA m6A去甲基化酶,在睾丸和肺中高表达;ALKBH5可以调控mRNA代谢和运输,并且与精子的生成密切相关。但是目前对ALKBH5如何识别mRNA上的m6A修饰及催化m6A去甲基化的分子机制仍不清楚。本文表达并纯化了ALKBH5不同片段,通过悬滴法筛选得到了可以进行衍射分析的ALKBH5晶体,在上海同步辐射光源收集到分辨率2.4A的衍射数据。数据分析显示ALKBH5晶体属于P212121空间群,一个不对称单位含一个蛋白分子。由于利用分子置换法无法解析ALKBH5的晶体结构,正在尝试利用Se-MAD法解析ALKBH5的晶体结构。
N6-methyladenosine (m6A) is a ubiquitous modification found in mammalian mRNA and long non-coding RNA. M6A modification can affect diverse biological processes including mRNA splicing, nuclear exportation, stability, and translational efficiency. The m6A in RNA may be involved in adipogenesis, spermatogenesis, development, carcinogenesis, as well as other yet unidentified life processes.
     The fat mass and obesity-associated FTO gene is the first and most robust obesity-risk gene discovered in genome-wide association studies. In addition, FTO is reported to be involved in various disease processes, including cardiovascular diseases, type Ⅱ diabetes, Alzheimer's disease, and breast cancer. Such discoveries make FTO an increasingly interesting target. FTO is able to catalyse the demethylation of3-methylthymine (3-meT) and3-methyluracil (3-meU) in ssDNA and ssRNA. The latest research results show that m6A in nuclear RNA may be a physiological substrate of FTO.
     The crystal structure of FTO in complex with3-meT (PDB code3LFM) was used as a docking target. Based on docking results of virtual screening,120compounds were synthesized or bought.
     Initially, we evaluate the inhibition of FTO demethylation on3-meT to screen120compounds. Three compounds (C1, C2, and C3) were found to be active for FTO. Two new compounds (C4and C5) were designed with chemical modification. A restriction endonuclease digestion assay was adopted to evaluate the inhibition of FTO demethylation on m6A in ssDNA by compounds. FTO repair activity was inhibited by5compounds in a concentration-dependent manner. We have determined the dose-dependent response of3compounds inhibition of FTO demethylation on an m6A-containing15-mer ssRNA. To evaluate the enzyme selectivity of inhibitors, we first examined its activity against several other AlkB human isoforms in vitro. We found that compound1and compound2can inhibited ALKBH2activity. The compound1also inhibited ALKBH5, another demethylase of m6A. We established a stable FTO over-expression293cell line and found that FTO over-expression decreased m6A content in mRNA in293cells, revealing that FTO also regulated m6A modification in293cells in an FTO activity dependent manner. After FTO over-expression293cells were respectively treated with compound1, compound3and compound4at a concentration of40μ M for24h, and the mRNA isolated from cells showed a notable increase of the modifying m6A level compared to untreated cells.
     Similar to FTO, ALKBH5has been identified as a mammalian m6A RNA demethylase in vitro and in vivo. ALKBH5is ubiquitously expressed in testicles and lung. The ALKBH5significantly affects nuclear mRNA export and RNA metabolism. ALKBH5-deficiency results in testis atrophy and reduction of sperm number and motility.
     The available data have unambiguously established the link between ALKBH5and RNA demethylation. But how ALKBH5specifically selects its substrates remains unknown. Structural study will provide insight into the underlying mechanism. Here, the ALKBH5protein was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to2.4A resolution sing synchrotron radiations. The crystals belonged to the space group P212121, and one molecule in the asymmetric unit. Structural determination using Se-MAD is underway.
引文
[1]Sharp P A. The centrality of RNA. Cell,2009,136(4):577-580.
    [2]He C. Grand challenge commentary:RNA epigenetics? Nat Chem Biol,2010,6(12):863-865.
    [3]Yi C, Pan T. Cellular dynamics of RNA modification. Acc Chem Res,2011,44(12):1380-1388.
    [4]Wei C M, Gershowitz A, Moss B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell,1975,4(4):379-386.
    [5]Surrey S, Nemer M. Methylated blocked 5'terminal sequences of sea urchin embryo messenger RNA classes containing and lacking poly(A). Cell,1976,9(4 Pt 1):589-595.
    [6]Wei C M, Moss B. Methylated nucleotides block 5'-terminus of vaccinia virus messenger RNA. Proc Natl Acad Sci U S A,1975,72(1):318-322.
    [7]Schibler U, Kelley D E, Perry R P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol,1977,115(4):695-714.
    [8]Perry R P, Kelley D E, Friderici K, et al. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5'terminus. Cell,1975,4(4):387-394.
    [9]Dong H, Chang D C, Hua M H, et al.2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLoS Pathog,2012,8(4):e1002642.
    [10]Squires J E, Patel H R, Nousch M, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res,2012,40(11):5023-5033.
    [11]Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A,1974,71(10):3971-3975.
    [12]Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell, 2007,25(5):635-646.
    [13]Sonenberg N, Hinnebusch A G. Regulation of translation initiation in eukaryotes:mechanisms and biological targets. Cell,2009,136(4):731-745.
    [14]Daffis S, Szretter K J, Schriewer J, et al.2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature,2010,468(7322):452-456.
    [15]Grosjean H, Bokar J A. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRN A//GROSJEAN H. Fine-Tuning of RNA Functions by Modification and Editing. Springer Berlin Heidelberg,2005:141-177.
    [16]Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol,2011,7(12):885-887.
    [17]Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature,2012,485(7397):201-206.
    [18]Meyer K D, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons. Cell,2012,149(7):1635-1646.
    [19]Chen-Kiang S, Nevins J R_, Darnell J J. N-6-methyl-adenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA. J Mol Biol,1979,135(3):733-752.
    [20]Narayan P, Ludwiczak R L, Goodwin E C, et al. Context effects on N6-adenosine methylation sites in prolactin mRNA. Nucleic Acids Res,1994,22(3):419-426.
    [21]Beemon K, Keith J. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol,1977,113(1):165-179.
    [22]Horowitz S, Horowitz A, Nilsen T W, et al. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci U S A,1984,81(18):5667-5671.
    [23]Kane S E, Beemon K. Inhibition of methylation at two internal N6-methyladenosine sites caused by GAC to GAU mutations. J Biol Chem,1987,262(7):3422-3427.
    [24]Iwanami Y, Brown G M. Methylated bases of transfer ribonucleic acid from HeLa and L cells. Arch Biochem Biophys,1968,124(1):472-482.
    [25]Saneyoshi M, Harada F, Nishimura S. Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA. Biochim Biophys Acta,1969,190(2):264-273.
    [26]Bringmann P, Luhrmann R. Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6. FEBS Lett,1987,213(2):309-315.
    [27]Shimba S, Bokar J A, Rottman F, et al. Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Res, 1995,23(13):2421-2426.
    [28]Horowitz S, Horowitz A, Nilsen T W, et al. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci U S A,1984,81(18):5667-5671.
    [29]Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet, 2013,29(2):108-115.
    [30]Narayan P, Rottman F M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science,1988,242(4882):1159-1162.
    [31]Bokar J A, Rath-Shambaugh M E, Ludwiczak R, et al. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem,1994,269(26):17697-17704.
    [32]Tuck M T. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Biochem J,1992,288 (Pt 1):233-240.
    [33]Bokar J A, Shambaugh M E, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 1997,3(11):1233-1247.
    [34]Leach R A, Tuck M T. Expression of the mRNA (N6-adenosine)-methyltransferase S-adenosyl-L-methionine binding subunit mRNA in cultured cells, Int J Biochem Cell Biol, 2001,33(10):984-999.
    [35]Zheng G, Dahl J A, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell,2013,49(1):18-29.
    [36]Bujnicki J M, Feder M, Radlinska M, et al. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol,2002,55(4):431-444.
    [37]Clancy M J, Shambaugh M E, Timpte C S, et al. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res,2002,30(20):4509-4518.
    [38]Bodi Z, Button J D, Grierson D, et al. Yeast targets for mRNA methylation. Nucleic Acids Res, 2010,38(16):5327-5335.
    [39]Zhong S, Li H, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell,2008,20(5):1278-1288.
    [40]Hongay C F, Orr-Weaver T L. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A,2011,108(36):14855-14860.
    [41]Granadino B, Penalva L O, Sanchez L. The gene fl(2)d is needed for the sex-specific splicing of transformer pre-mRNA but not for double-sex pre-mRNA in Drosophila melanogaster. Mol Gen Genet, 1996,253(1-2):26-31.
    [42]Granadino B, Campuzano S, Sanchez L. The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J,1990,9(8):2597-2602.
    [43]Larsson S H, Charlieu J P, Miyagawa K, et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell,1995,81(3):391-401.
    [44]Davies R C, Calvio C, Bratt E, et al. WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev, 1998,12(20):3217-3225.
    [45]McGraw S, Vigneault C, Sirard M A. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction, 2007,133(3):597-608.
    [46]Filippova N, Yang X, King P, et al. Phosphoregulation of the RNA-binding protein Hu antigen R (HuR) by Cdk5 affects centrosome function. J Biol Chem,2012,287(38):32277-32287.
    [47]Nabors L B, Gillespie G Y, Harkins L, et al. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3'untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res,2001,61(5):2154-2161.
    [48]Lafon I, Carballes F, Brewer G, et al. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene,1998,16(26):3413-3421.
    [49]Srikantan S, Tominaga K, Gorospe M. Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci,2012,13(4):372-379.
    [50]Kundu P, Fabian M R, Sonenberg N, et al. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res,2012,40(11):5088-5100.
    [51]Young L E, Moore A E, Sokol L, et al. The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res,2012,10(1):167-180.
    [52]Lebedeva S, Jens M, Theil K, et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell,2011,43(3):340-352.
    [53]Nguyen T T, Ma L N, Slovak M L, et al. Identification of novel Runxl (AML1) translocation partner genes SH3D19, YTHDf2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer,2006,45(10):918-932.
    [54]Niu Y, Zhao X, Wu Y S, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics,2013,11(1):8-17.
    [55]Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet,2007,39(6):724-726.
    [56]Frayling T M, Timpson N J, Weedon M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007,316(5826):889-894.
    [57]Scott L J, Mohlke K L, Bonnycastle L L, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science,2007,316(5829):1341-1345.
    [58]Hotta K, Kitamoto T, Kitamoto A, et al. Association of variations in the FTO, SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population. J Hum Genet,2011,56(9):647-651.
    [59]Wehr E, Schweighofer N, Moller R, et al. Association of FTO gene with hyperandrogenemia and metabolic parameters in women with polycystic ovary syndrome. Metabolism,2010,59(4):575-580.
    [60]Keller L, Xu W, Wang H X, et al. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study. J Alzheimers Dis, 2011,23(3):461-469.
    [61]Kaklamani V, Yi N, Sadim M, et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet,2011,12:52.
    [62]Jia G, Yang C G, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett, 2008,582(23-24):3313-3319.
    [63]Hess M E, Hess S, Meyer K D, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci,2013,16(8):1042-1048.
    [64]Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity,2005,23(2):165-175.
    [65]Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci, 2008,1143:1-20.
    [66]Kariko K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther, 2008,16(11):1833-1840.
    [67]Leach R A, Tuck M T. Methionine depletion induces transcription of the mRNA (N6-adenosine)methyltransferase. Int J Biochem Cell Biol,2001,33(11):1116-1128.
    [68]Tuck M T, James C B, Kelder B, et al. Elevation of internal 6-methyladenine mRNA methyltransferase activity after cellular transformation. Cancer Lett,1996,103(1):107-113.
    [69]Peters T, Ausmeier K, Dildrop R, et al. The mouse Fused toes (Ft) mutation is the result of a 1.6-Mb deletion including the entire Iroquois B gene cluster. Mamm Genome,2002,13(4):186-188.
    [70]Fredriksson R, Hagglund M, Olszewski P K, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology,2008,149(5):2062-2071.
    [71]Robbens S, Rouze P, Cock J M, et al. The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J Mol Evol,2008,66(1):80-84.
    [72]Jacobsson J A, Schioth H B, Fredriksson R. The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO. Obes Rev, 2012,13(12):1096-1109.
    [73]Wardle J, Llewellyn C, Sanderson S, et al. The FTO gene and measured food intake in children. Int J Obes (Lond),2009,33(1):42-45.
    [74]Dougkas A, Yaqoob P, Givens D I, et al. The impact of obesity-related SNP on appetite and energy intake. Br J Nutr,2013,110(6):1151-1156.
    [75]Tanofsky-Kraff M, Han J C, Anandalingam K, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr,2009,90(6):1483-1488.
    [76]Bruning J C, Gautam D, Burks D J, et al. Role of brain insulin receptor in control of body weight and reproduction. Science,2000,289(5487):2122-2125.
    [77]Ho A J, Stein J L, Hua X, et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A, 2010,107(18):8404-8409.
    [78]Benedict C, Jacobsson J A, Ronnemaa E, et al. The fat mass and obesity gene is linked to reduced verbal fluency in overweight and obese elderly men. Neurobiol Aging,2011,32(6):1151-1159.
    [79]Cohen R A. Obesity-associated cognitive decline:excess weight affects more than the waistline. Neuroepidemiology,2010,34(4):230-231.
    [80]Elias M F, Elias P K, Sullivan L M, et al. Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord,2003,27(2):260-268.
    [81]Andreasen C H, Stender-Petersen K L, Mogensen M S, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes,2008,57(1):95-101.
    [82]Do R, Bailey S D, Desbiens K, et al. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study. Diabetes, 2008,57(4):1147-1150.
    [83]Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res,2008,49(3):607-611.
    [84]Tews D, Fischer-Posovszky P, Wabitsch M. Regulation of FTO and FTM expression during human preadipocyte differentiation. Horm Metab Res,2011,43(1):17-21.
    [85]Susleyici-Duman B, Zengin K, Kayhan F E, et al. FTO mRNA expression in extremely obese and type 2 diabetic human omental and subcutaneous adipose tissues. Obes Surg,2011,21(11):1766-1773.
    [86]Kloting N, Schleinitz D, Ruschke K, et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia,2008,51(4):641-647.
    [87]Zabena C, Gonzalez-Sanchez J L, Martinez-Larrad M T, et al. The FTO obesity gene. Genotyping and gene expression analysis in morbidly obese patients. Obes Surg,2009,19(1):87-95.
    [88]Terra X, Auguet T, Porras J A, et al. Anti-inflammatory profile of FTO gene expression in adipose tissues from morbidly obese women. Cell Physiol Biochem,2010,26(6):1041-1050.
    [89]Samaras K, Botelho N K, Chisholm D J, et al. Subcutaneous and visceral adipose tissue FTO gene expression and adiposity, insulin action, glucose metabolism, and inflammatory adipokines in type 2 diabetes mellitus and in health. Obes Surg,2010,20(1):108-113.
    [90]Gerken T, Girard C A, Tung Y C, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science,2007,318(5855):1469-1472.
    [91]Olszewski P K, Fredriksson R, Eriksson J D, et al. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression. Biochem Biophys Res Commun, 2011,408(3):422-426.
    [92]Olszewski P K, Radomska K J, Ghimire K, et al. Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance. Physiol Behav,2011,103(2):248-253.
    [93]Stratigopoulos G, Padilla S L, LeDuc C A, et al. Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol,2008,294(4):Rl 185-R1196.
    [94]Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature, 2009,458(7240):894-898.
    [95]Church C, Lee S, Bagg E A, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet,2009,5(8):e1000599.
    [96]Boissel S, Reish O, Proulx K, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet, 2009,85(1):106-111.
    [97]Church C, Moir L, McMurray F, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet,2010,42(12):1086-1092.
    [98]Chorley B N, Wang X, Campbell M R, et al. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:current and developing technologies. Mutat Res,2008,659(1-2):147-157.
    [99]Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene,2001,20(19):2390-2400.
    [100]Imai T, Jiang M, Chambon P, et al. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc Natl Acad Sci U S A,2001,98(1):224-228.
    [101]Kim J W, Monila H, Pandey A, et al. Upstream stimulatory factors regulate the C/EBP alpha gene during differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun,2007,354(2):517-521.
    [102]Wu S, Mar-Heyming R, Dugum E Z, et al. Upstream transcription factor 1 influences plasma lipid and metabolic traits in mice. Hum Mol Genet,2010,19(4):597-608.
    [103]Kellendonk C, Eiden S, Kretz O, et al. Inactivation of the GR in the nervous system affects energy accumulation. Endocrinology,2002,143(6):2333-2340.
    [104]Chatterjee T K, Idelman G, Blanco V, et al. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J Biol Chem,2011,286(31):27836-27847.
    [105]Li S, Aufiero B, Schiltz R L, et al. Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP. Proc Natl Acad Sci U S A,2000,97(13):7166-7171.
    [106]Stratigopoulos G, LeDuc C A, Cremona M L, et al. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem, 2011,286(3):2155-2170.
    107] Ansley S J, Badano J L, Blacque O E, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature,2003,425(6958):628-633.
    108] Collin G B, Cyr E, Bronson R, et al. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet,2005,14(16):2323-2333.
    109] Hearn T, Spalluto C, Phillips V J, et al. Subcellular localization of ALMS 1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes,2005,54(5):1581-1587.
    110] Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet,2010,18(9):1054-1056.
    [11]Bell C G, Finer S, Lindgren C M, et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One, 2010,5(11):e14040.
    [112]Stepanow S, Reichwald K, Huse K, et al. Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One,2011,6(5):e 17711.
    [113]Jacobsson J A, Almen M S, Benedict C, et al. Detailed analysis of variants in FTO in association with body composition in a cohort of 70-year-olds suggests a weakened effect among elderly. PLoS One,2011,6(5):e20158.
    [114]Croteau-Chonka D C, Marvelle A F, Lange E M, et al. Genome-wide association study of anthropometric traits and evidence of interactions with age and study year in Filipino women. Obesity (Silver Spring),2011,19(5):1019-1027.
    [115]McDonough M A, Loenarz C, Chowdhury R, et al. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol,2010,20(6):659-672.
    [116]Loenarz C, Schofield C J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem Sci,2011,36(1):7-18.
    [117]Loenarz C, Schofield C J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol,2008,4(3):152-156.
    [118]Clifton I J, McDonough M A, Ehrismann D, et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem,2006,100(4):644-669.
    [119]Clifton I J, McDonough M A, Ehrismann D, et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem,2006,100(4):644-669.
    [120]Zhou J, Kelly W L, Bachmann B O, et al. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional alpha-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities. J Am Chem Soc,2001,123(30):7388-7398.
    [121]Hanauske-Abel H M, Gunzler V. A stereochemical concept for the catalytic mechanism of prolylhydroxylase:applicability to classification and design of inhibitors. J Theor Biol, 1982,94(2):421-455.
    [122]Leung I K, Krojer T J, Kochan G T, et al. Structural and mechanistic studies on gamma-butyrobetaine hydroxylase. Chem Biol,2010,17(12):1316-1324.
    [123]Elkins J M, Hewitson K S, McNeill L A, et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem, 2003,278(3):1802-1806.
    [124]Kivirikko K I, Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol,1998,16(7):357-368.
    [125]Klose R J, Kallin E M, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet,2006,7(9):715-727.
    [126]Kataoka H, Yamamoto Y, Sekiguchi M. A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J Bacteriol,1983,153(3):1301-1307.
    [127]Kurowski M A, Bhagwat A S, Papaj G, et al. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics,2003,4(1):48.
    [128]Westbye M P, Feyzi E, Aas P A, et al. Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem,2008,283(36):25046-25056.
    [129]Ringvoll J, Moen M N, Nordstrand L M, et al. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res,2008,68(11):4142-4149.
    [130]Sundheim O, Vagbo C B, Bjoras M, et al. Human ABH3 structure and key residues for oxidative aemetnylation to reverse DNA/RNA damage. EMBO J,2006,25(14):3389-3397.
    [131]Bjorastad L G, Zoppellaro G, Tomter A B, et al. Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)-and 2-oxoglutarate-dependent decarboxylase ALKBH4. Biochem J, 2011,434(3):391-398.
    [132]Solberg A, Robertson A B, Aronsen J M, et al. Deletion of mouse Alkbh7 leads to obesity. J Mol Cell Biol,2013,5(3):194-203.
    [133]van den Born E, Vagbo C B, Songe-Moller L, et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat Commun,2011,2:172.
    [134]Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature,2010,464(7292):1205-1209.
    [135]Meyre D, Proulx K, Kawagoe-Takaki H, et al. Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes,2010,59(1):311-318.
    [136]Han Z, Huang N, Niu T, et al. A loop matters for FTO substrate selection. Protein Cell, 2010,1(7):616-620.
    [137]Flashman E, Schofield C J. The most versatile of all reactive intermediates? Nat Chem Biol, 2007,3(2):86-87.
    [138]Rose N R, McDonough M A, King O N, et al. Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev,2011,40(8):4364-4397.
    [139]Mole D R, Schlemminger I, McNeill L A, et al.2-oxoglutarate analogue inhibitors of HIF prolyl hydroxylase. Bioorg Med Chem Lett,2003,13(16):2677-2680.
    [140]Schofield C J, Ratcliffe P J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004,5(5):343-354.
    [141]Elvidge G P, Glenny L, Appelhoff R J, et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-Ialpha, HIF-2alpha, and other pathways. J Biol Chem,2006,281(22):15215-15226.
    [142]Chowdhury R, McDonough M A, Mecinovic J, et al. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure,2009,17(7):981-989.
    [143]Ng S S, Kavanagh K L, McDonough M A, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature,2007,448(7149):87-91.
    [144]Horton J R, Upadhyay A K, Qi H H, et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol,2010,17(1):38-43.
    [145]Cunliffe C J, Franklin T J, Hales N J, et al. Novel inhibitors of prolyl 4-hydroxylase.3. Inhibition by the substrate analogue N-oxaloglycine and its derivatives. J Med Chem,1992,35(14):2652-2658.
    [146]Sezen B, Sames D. Selective and catalytic arylation of N-phenylpyrrolidine:sp3 C-H bond functionalization in the absence of a directing group. J Am Chem Soc,2005,127(15):5284-5285.
    [147]Rose N R, Woon E C, Kingham G L, et al. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J Med Chem, 2010,53(4):1810-1818.
    148] Welford R W, Schlemminger I, McNeill L A, et al. The selectivity and inhibition of AlkB. J Biol Chem,2003,278(12):10157-10161.
    149] Clement P M, Hanauske-Abel H M, Wolff E C, et al. The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int J Cancer,2002,100(4):491-498.
    [150]Higashide E, Horii S, Ono H, et al. Alahopcin, a new dipeptide antibiotic produced by Streptomyces albulus subsp. ochragerus subsp. nov. J Antibiot (Tokyo),1985,38(3):285-295.
    [151]Smirnova N A, Rakhman I, Moroz N, et al. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. Chem Biol, 2010,17(4):380-391.
    [152]Linden T, Katschinski D M, Eckhardt K, et al. The antimycotic ciclopirox olamine induces HIF-lalpha stability, VEGF expression, and angiogenesis. FASEB J,2003,17(6):761-763.
    [153]Schlemminger I, Mole D R, McNeill L A, et al. Analogues of dealanylalahopcin are inhibitors of human HIF prolyl hydroxylases. Bioorg Med Chem Lett,2003,13(8):1451-1454.
    [154]Rose N R, Ng S S, Mecinovic J, et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem,2008,51(22):7053-7056.
    [155]Conejo-Garcia A, McDonough M A, Loenarz C, et al. Structural basis for binding of cyclic 2-oxoglutarate analogues to factor-inhibiting hypoxia-inducible factor. Bioorg Med Chem Lett, 2010,20(20):6125-6128.
    [156]Koski M K, Hieta R, Bollner C, et al. The active site of an algal prolyl 4-hydroxylase has a large structural plasticity. J Biol Chem,2007,282(51):37112-37123.
    [157]Puistola U, Turpeenniemi-Hujanen T M, Myllyla R, et al. Studies on the lysyl hydroxylase reaction. II. Inhibition kinetics and the reaction mechanism. Biochim Biophys Acta,1980,611(1):51-60.
    [158]Kivirikko K I, Myllyla R, Pihlajaniemi T. Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J,1989,3(5):1609-1617.
    [159]Gunzler V, Brocks D, Henke S, et al. Syncatalytic inactivation of prolyl 4-hydroxylase by synthetic peptides containing the unphysiologic amino acid 5-oxaproline. J Biol Chem, 1988,263(36):19498-19504.
    [160]Karvonen K, Ala-Kokko L, Pihlajaniemi T, et al. Specific inactivation of prolyl 4-hydroxylase and inhibition of collagen synthesis by oxaproline-containing peptides in cultured human skin fibroblasts. J Biol Chem,1990,265(15):8415-8419.
    [161]Kerwar S S, Felix A M. Effect of L-3,4-dehydroproline on collagen synthesis and prolyl hydroxylase activity in mammalian cell cultures. J Biol Chem,1976,251(2):503-509.
    [162]Willam C, Masson N, Tian Y M, et al. Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc Natl Acad Sci U S A,2002,99(16):10423-10428.
    [163]Dambrova M, Liepinsh E, Kalvinsh I. Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovasc Med,2002,12(6):275-279.
    [164]Aik W, Demetriades M, Hamdan M K, et al. Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J Med Chem,2013,56(9):3680-3688.
    [165]Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc,2012,134(43):17963-17971.
    [166]Lancaster D E, McNeill L A, McDonough M A, et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem J, 2004,383(Pt.3):429-437.
    [167]Thalhammer A, Bencokova Z, Poole R, et al. Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1 alpha (HIF-lalpha).
    [168]Bakhtiar R, Lohne J, Ramos L, et al. High-throughput quantification of the anti-leukemia drug STI571 (Gleevec) and its main metabolite (CGP 74588) in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2002,768(2):325-340.
    [169]King O N, Li X S, Sakurai M, et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One,2010,5(11):e15535.
    [170]Sakurai M, Rose N R, Schultz L, et al. A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol Biosyst,2010,6(2):357-364.
    [171]Yamane K, Tateishi K, Klose R J, et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell,2007,25(6):801-812.
    [172]Xiang Y, Zhu Z, Han G, et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A,2007,104(49):19226-19231.
    [173]Tateishi K, Okada Y, Kallin E M, et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature,2009,458(7239):757-761.
    [174]Yan L, Colandrea V J, Hale J J. Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia. Expert Opin Ther Pat,2010,20(9):1219-1245.
    [175]李晓红,李蒙,陶艳蓉.大黄酸及其衍生物药理作用研究新进展.现代药物与临床,2010(06):417-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700