RNA m~6A去甲基化酶Alkbh5的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
6-甲基腺苷(N6-methyladenosine, m6A)是真核生物mRNA和长链非编码RNA中最常见、含量最丰富的一种甲基化修饰,它影响mRNA的剪接、输出、翻译和降解等多种RNA代谢过程,在基因的表达调控中起着重要的作用,广泛参与胚胎发育、细胞凋亡、精子发育以及昼夜节律等多种生命活动。m6A修饰是一种动态可逆的RNA修饰,由甲基转移酶和去甲基化酶共同调控。人源Alkbh5蛋白(human AlkB homolog5, hAlkbh5)是近年来继肥胖量与肥胖相关蛋白(fat mass and obesity associated protein, FTO)之后被发现的第二个mRNA m6A去甲基化酶,在mRNA的加工过程以及小鼠的精子发育等生物过程中都起着重要的调控作用。和FTO一样,Alkbh5是Fe2+和a-酮戊二酸(a-ketoglutarate, α-KG)依赖的非血红素加氧酶,属于AlkB家族成员。但与其它AlkB家族成员的底物特异性不同,Alkbh5只对单链RNA/DNA上的m6A修饰具有去甲基化活力。到目前为止,Alkbh5特异性识别m6A修饰及对单链核酸底物选择性识别的分子机制尚不清楚。本论文从结构生物学角度出发,结合生物化学与分子生物学技术对此进行深入的研究与探讨。
     本论文通过筛选大量人源Alkbh5截短蛋白片段,优化原核表达纯化条件,最后得到纯度高且稳定性好的人源Alkbh566-292蛋白,体外去甲基化活力实验证明其具有完全的m6A去甲基化酶活性。采用坐滴或悬滴蒸气扩散法获得了Alkbh566-292蛋白含有柠檬酸和乙酸,以及含有Mn2+, Mn2+和α-KG, Mn2+和NOG (N-oxalylglycine), Mn2+和PDCA (pyridine2,4-dicarboxylate)的五种高分辨率晶体,通过分子置换的方法解析它们的三维空间结构。Alkbh566-292整体结构包括7个α螺旋,9个β折叠和多个无规则卷曲,其活性中心形成一个高度保守的DSBH (double-stranded p-helix fold)结构域。将Alkbh566-292的结构和已知的AlkB家族其它成员的结构进行比对,发现Alkbh566-292的核酸识别盖子的二级结构组成以及空间构象存在明显的差异,表明Alkbh5对底物的特异性识别。结构指导的定点突变和体外酶活实验结果证明此盖子上的四个氨基酸R130、K132、Y139以及Y141是Alkbh5识别和结合m6A的关键氨基酸,它们可能通过氢键、静电作用以及π-π堆积作用特异性结合m6A。结构比对分析还发现Alkbh566-292包含一个独特的二硫键C230-C267,这个二硫键在不同种属的Alkbh5蛋白中都是高度保守的,但是在其它AIkB家族成员中不存在。通过与解析出来的其它AlkB家族蛋白DNA复合物结构比较,发现此二硫键导致AlkBFlip3模体与双链DNA上的非甲基修饰链之间存在严重的空间位阻,阻碍了Alkbh5与双链核酸的结合,因此Alkbh5对双链核酸没有催化活性。凝胶阻滞和体外去甲基化酶活实验结果都证实Alkbh566-292C230S突变体蛋白结合双链DNA的能力更强,并且对含有m6A修饰的双链DNA的去甲基化酶活力也显著增强,表明二硫键C230-C267是Alkbh5特异性识别单链而非双链核酸的结构基础。本论文还检测了4种α-KG类似物(NOG、PDCA、丁二酸以及柠檬酸)对Alkbh5的m6A去甲基化酶活力的抑制作用,结果显示分子量小的抑制剂对Alkbh5的去甲基化酶活抑制能力强于分子量大的抑制剂。同FTO相比,Alkbh5的活性中心空腔体积更小,导致其优先结合分子量小的抑制剂。最后,基于Alkbh566-292表面电势分布图,结合表面正电荷区域上关键氨基酸突变蛋白的去甲基化酶活力实验结果,构建了一个Alkbh5结合ssRNA的模型。
     总之,本论文的研究结果在一定程度上为了解Alkbh5选择性识别和结合底物的分子机理提供了结构上的理论依据,为AlkB家族蛋白选择性抑制剂的设计提供了分子基础。
N6-methyladenosine (m6A) is the most ubiquitous and abundant modification present in mRNA and long non-coding RNA across eukaryotes, which has been found to function in various pathways of RNA metabolism including mRNA splicing, nuclear export, translation and degradation and to play a vital role in the regulation of gene expression. The m6A modification is involved in diverse life activities such as embryo development, cell apoptosis, spermatogenesis and circadian clock. As a reversible and dynamic modification, m6A methylation is co-regulated by methyltransferases and demethylases. The human AlkB homolog5(hAlkbh5) is the second mRNA m6A demethylase identified after fat mass and obesity associated protein (FTO) recently, playing important regulatory roles in many biological processes including RNA processes and spermatogenesis in mice. Like FTO, Alkbh5is a Fe2+and α-KG (a-ketoglutarate)-dependent non-heme oxygenase, belonging to the AlkB family. Different from the substrate specificity of other AlkB family members, Alkbh5only displays demethylase activity toward the m6A modification in single-stranded nucleic acids. So far, the molecular mechanisms of the specific m6A recognition and single-stranded substrate selection by Alkbh5remain obscure. To elucidate the opened questions, in-depth studies were conducted in this thesis by means of structural biology combined with biochemistry and molecular biology.
     Through extensive screening of Alkbh5truncated variants and optimization for expression and purification conditions, the human Alkbh566-292protein of high purity and stability was obtained in this study. In vitro demethylation activity assay revealed that the human Alkbh566-292retained the full demethylation activity. Five high resolution crystals of the human Alkbh5catalytic core in complex with citrate and acetate, Mn2+, Mn2+and a-KG, Mn2+and N-oxalylglycine (NOG), Mn2+and pyridine2,4-dicarboxylate (PDCA) were acquired by vapor diffusion in hanging or sitting drops. Determined by molecular replacement, the Alkbh566-292structure consists of seven a-helices, nine β-sheets and several random coils, the active site of which is mainly composed of a highly conserved double-stranded β-helix fold. Structural comparison between Alkbh566-292and other AlkB proteins revealed that the nucleotide recognition lid of Alkbh566-292shows distinctive composition of secondary structures and spatial conformation, which likely confers the substrate selectivity characteristic of Alkbh5. The structure-guided mutagenesis and in vitro demethylase assays proved that the four residues R130, K132, Y139and Y141located at this region are vital for Alkbh5substrate recognition and binding, which may selectively bind m6A through hydrogen bonds, electrostatic and π-π stacking interactions. The structural alignment also shows that Alkbh5harbors a unique disulfide bond between C230and C267. The disulfide bond in Alkbh5is highly conserved in many different species but is not shared by other AlkB family members. When the double-stranded DNA from other AlkB family complex structures was modeled onto the catalytic site of Alkbh5, the Flip3motif of Alkbh5sterically clashed with the unmethylated strand, impeding the access of dsDNA and dsRNA to the active site of Alkbh5. Both the electrophoretic mobility shift and in vitro demethylase assays supported the stronger dsDNA binding affinity and the higher dsDNA demethylation activity in the C230S mutant, indicating that this disulfide bond is the structural element that determines the single-stranded preference of Alkbh5. Our work also investigated the inhibition of Alkbh5demethylase activity by four a-KG analogs including NOG, PDCA, succinate and citrate. We found that, in contrast to FTO, Alkbh5has potent binding preference towards smaller molecule inhibitors that is likely caused by the smaller active site cavity of Alkbh5. Finally, based on the electrostatic potential map of Alkbh5, we proposed an ssRNA binding model of Alkbh5according to the results of site-directed mutagenesis of the surface residues together with demethylation assays.
     Taken together, our studies provide a structural basis for understanding the selective substrate recognition and binding of Alkbh5and offer a foundation for selective drug design against AlkB members.
引文
Aas, P.A., Otterlei, M., Falnes, P.(?)., Vagb(?), C.B., Skorpen, F., Akbari, M., Sundheim,O., BJ(?)ras, M., Slupphaug, G., and Seeberg, E. (2003). Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421,859-863.
    Aik, W., Demetriades, M., Hamdan, M.K., Bagg, E.A., Yeoh, K.K., Lejeune, C., Zhang, Z., McDonough, M.A., and Schofield, C.J. (2013). Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J.Med. Chem.56,3680-3688.
    Aik, W., McDonough, M.A., Thalhammer, A., Chowdhury, R., and Schofield, C.J. (2012). Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr. Opin. Struct. Biol.22, 691-700.
    Aik, W., Scotti, J.S., Choi, H., Gong, L., Demetriades, M., Schofield, C.J., and McDonough, MA. (2014). Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. (doi:10.1093/nar/gku085)
    Amort, T., Souliere, M.F., Wille, A., Jia, X.-Y., Fiegl, H., Worle, H., Micura, R., and Lusser, A. (2013). Long non-coding RNAs as targets for cytosine methylation. RNA Biol.10,1003-1009.
    Aravind, L., and Koonin, E.V. (2001). The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol.2,1-0007.0008.
    Bachellerie, J.-P., Amalric, F., and Caboche, M. (1978). Biosynthesis and utilization of extensively undermethylated poly (A)+RNA in CHO cells during a cycloleucine treatment. Nucleic Acids Res. 5,2927-2944.
    Baltz, A.G., Munschauer, M., Schwanhausser, B., Vasile, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., and Milek, M. (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46,674-690.
    Barton, G.J. (1993). ALSCRIPT:a tool to format multiple sequence alignments. Protein Eng. Des. Sel. 6,37-40.
    Bjornstad, L., Zoppellaro, G., Tomter, A., Falnes, P., and Andersson, K. (2011). Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe (Ⅱ)-and 2-oxoglutarate-dependent decarboxylase ALKBH4. Biochem. J.434,391-398.
    Bodi, Z., Button, J.D., Grierson, D., and Fray, R.G. (2010). Yeast targets for mRNA methylation. Nucleic Acids Res.38,5327-5335.
    Bokar, J., Shambaugh, M., Polayes, D., Matera, A., and Rottman, F. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3,1233-1247.
    Bokar, J.A. (2005). The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In Fine-tuning of RNA functions by modification and editing, H. Grosjean, ed. (Springer Berlin Heidelberg), pp.141-177.
    Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P., and Rottman, F. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem.269, 17697-17704.
    Brunger, A.T. (2007). Version 1.2 of the Crystallography and NMR system. Nat. Protoc.2,2728-2733.
    Buratti, E., and Baralle, F.E. (2004). Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol.24,10505-10514.
    Burkhard, P., Stetefeld, J., and Strelkov, S.V. (2001). Coiled coils:a highly versatile protein folding motif. Trends Cell Biol.11,82-88.
    Camper, S., Albers, R., Coward, J., and Rottman, F. (1984). Effect of undermethylation on mRNA cytoplasmic appearance and half-life. Mol. Cell. Biol.4,538-543.
    Carroll, S., Narayan, P., and Rottman, F. (1990). N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell. Biol.10,4456-4465.
    Chen, B., Ye, F., Yu, L., Jia, G., Huang, X., Zhang, X., Peng, S., Chen, K., Wang, M., and Gong, S. (2012). Development of Cell-Active N 6-Methyladenosine RNA Demethylase FTO Inhibitor. J. Am. Chem. Soc.134,17963-17971.
    Chen, B.J., Carroll, P., and Samson, L. (1994). The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J. Bacteriol.176,6255-6261.
    Chen, W., Zhang, L., Zheng, G., Fu, Y., Ji, Q., Liu, F., Chen, H., and He, C. (2014). Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett.588,892-898.
    Chorley, B.N., Wang, X., Campbell, M.R., Pittman, G.S., Noureddine, M.A., and Bell, D.A. (2008). Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:current and developing technologies. Mutat. Res.659,147-157.
    Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325,834-840.
    Church, C., Lee, S., Bagg, E.A., McTaggart, J.S., Deacon, R., Gerken, T., Lee, A., Moir, L., Mecinovic, J., and Quwailid, M.M. (2009). A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet.5, e1000599.
    Clancy, M.J., Shambaugh, M.E., Timpte, C.S., and Bokar, J.A. (2002). Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA:a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res.30,4509-4518.
    Cowling, V. (2010). Regulation of mRNA cap methylation. Biochem J.425,295-302.
    Csepany, T., Lin, A., Baldick, C., and Beemon, K. (1990). Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem.265,20117-20122.
    Dai, X., and Rothman-Denes, L.B. (1999). DNA structure and transcription. Curr. Opin. in. Microbiol.2, 126-130.
    Dango, S., Mosammaparast, N., Sowa, M.E., Xiong, L.-J., Wu, F., Park, K., Rubin, M., Gygi, S., Harper, J.W., and Shi, Y. (2011). DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44,373-384.
    Das, P.M., and Singal, R. (2004). DNA methylation and cancer. J. Clin. Oncol.22,4632-4642.
    Davis, F.F., and Allen, F.W. (1957). Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol.Chem.227,907-915.
    Delaney, J.C., and Essigmann, J.M. (2004). Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines,1-methylguanine, and 3-methylthymine in alkB Escherichia coli. Proc. Natl. Acad. Sci. U.S.A.101,14051-14056.
    Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. U.S.A.105, 10762-10767.
    Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U.S.A.71,3971-3975.
    Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., Carlsson, L.M., Kiess, W., Vatin, V., and Lecoeur, C. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet.39,724-726.
    Dinglay, S., Trewick, S.C., Lindahl, T., and Sedgwick, B. (2000). Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev.14,2097-2105.
    Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., and Kupiec, M. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485,201-206.
    Dong, H., Chang, D.C., Hua, M.H.C., Lim, S.P., Chionh, Y.H., Hia, F., Lee, Y.H., Kukkaro, P., Lok, S.-M., Dedon, P.C., et al. (2012).2'-Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase. PLoS pathog.8, e1002642.
    Duncan, T., Trewick, S.C., Koivisto, P., Bates, P.A., Lindahl, T., and Sedgwick, B. (2002). Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. U.S.A.99, 16660-16665.
    Emsley, P., Lohkamp, B., Scott, W., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66,486-501.
    Esteller, M. (2005). Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol.45,629-656.
    Falnes, P.(?)., Bj(?)ras, M., Aas, P.A., Sundheim, O., and Seeberg, E. (2004). Substrate specificities of bacterial and human AlkB proteins. Nucleic Acids Res.32,3456-3461.
    Falnes, P.(?)., Johansen, R.F., and Seeberg, E. (2002). AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419,178-182.
    Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Bruning, J.C., and Ruther, U. (2009). Inactivation of the Fto gene protects from obesity. Nature 458,894-898.
    Frayling, T.M., Timpson, N J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Peny, J.R., Elliott, K.S., Lango, H., and Rayner, N.W. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316,889-894.
    Fredriksson, R., Hagglund, M., Olszewski, P.K., Stephansson, O., Jacobsson, J.A., Olszewska, A.M., Levine, A.S., Lindblom, J., and Schioth, H.B. (2008). The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinol.149,2062-2071.
    Fu, D., Brophy, J.A., Chan, C.T., Atmore, K.A., Begley, U., Paules, R.S., Dedon, P.C., Begley, T.J., and Samson, L.D. (2010). Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol. Cell. Biol.30,2449-2459.
    Fu, D., Jordan, J.J., and Samson, L.D. (2013a). Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes Dev.27,1089-1100.
    Fu, Y., Jia, G., Pang, X., Wang, R.N., Wang, X., Li, C.J., Smemo, S., Dai, Q., Bailey, K.A., and Nobrega, M.A. (2013b). FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun.4,1798-1805.
    Fustin, J.-M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M.S., Kakeya, H., and Manabe, I. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155,793-806.
    Gerken, T., Girard, C.A., Tung, Y.-C.L., Webby, C.J., Saudek, V., Hewitson, K.S., Yeo, G.S., McDonough, M.A., Cunliffe, S., and McNeill, L.A. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318,1469-1472.
    Graveley, B.R. (2000). Sorting out the complexity of SR protein functions. RNA 6,1197-1211.
    Grosjean, H. (2005). Modification and editing of RNA:historical overview and important facts to remember. In Fine-Tuning of RNA Functions by Modification and Editing, H. Grosjean, ed. (Springer Berlin Heidelberg), pp.1-22.
    Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., Cheng, W., Wang, J., Feng, Y., and Chai, J. (2010). Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464, 1205-1209.
    Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F., Haering, H.-U., Stefan, N., and Fritsche, A. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp. Clin. Endocrinol. Diabetes 117,194-197.
    He, C. (2010). Grand Challenge Commentary:RNA epigenetics? Nat. Chem. Biol.6,863-865.
    Heras, B., and Martin, J.L. (2005). Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr. D Biol. Crystallogr.61,1173-1180.
    Holland, P.J., and Hollis, T. (2010). Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching. PLoS One 5, e868O.
    Hongay, C.F., and Orr-Weaver, T.L. (2011). Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc. Natl. Acad. Sci. U.S.A.108,14855-14860.
    Hotta, K., Kitamoto, T., Kitamoto, A., Mizusawa, S., Matsuo, T., Nakata, Y., Kamohara, S., Miyatake, N., Kotani, K., and Komatsu, R. (2011). Association of variations in the FTO, SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population. J. Hum. Genet.56,647-651.
    Jacobsson, J.A., Schioth, H., and Fredriksson, R. (2012). The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO. Obes. Rev.13,1096-1109.
    Jia, G., Fu, Y., and He, C. (2013). Reversible RNA adenosine methylation in biological regulation. Trends Genet.29,108-115.
    Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., and Yang, Y.-G. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol.7,885-887.
    Jia, G., Yang, C.-G., Yang, S., Jian, X., Yi, C., Zhou, Z., and He, C. (2008). Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett.582,3313-3319.
    Jones, P.A. (2012). Functions of DNA methylation:islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13,484-492.
    Kaklamani, V., Yi, N., Sadim, M., Siziopikou, K., Zhang, K., Xu, Y., Tofilon, S., Agarwal, S., Pasche, B., and Mantzoros, C. (2011). The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genetics 12,52-59.
    Kane, S.E., and Beemon, K. (1985). Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites:implications for RNA processing. Mol. Cell. Biol 5,2298-2306.
    Karkhanis, V., Wang, L., Tae, S., Hu, Y.-J., Imbalzano, A.N., and Sif, S. (2012). Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating; promoter histones H2A and H4 of the polymerase 8 catalytic subunit gene, POLD1. J. Biol. Chem.287,29801-29814.
    Kataoka, H., Yamamoto, Y., and Sekiguchi, M. (1983). A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J. Bacteriol.153,1301-1307.
    Keller, L., Xu, W., Wang, H.-X., Winblad, B., Fratiglioni, L., and Graff, C. (2011). The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk:a prospective cohort study. J. Alzheimers Dis.23,461-469.
    Kierzek, E., and Kierzek, R. (2003). The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res.31, 4472-4480.
    Koivisto, P., Robins, P., Lindahl, T., and Sedgwick, B. (2004). Demethylation of 3-methylthymine in DNA by bacterial and human DNA dioxygenases. J. Biol. Chem.279,40470-40474.
    Kondo, N., Takahashi, A., Ono, K., and Ohnishi, T. (2010). DNA damage induced by alkylating agents and repair pathways. J. Nucleic Acids 2010,14:543531.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,693-705.
    Krug, R.M., Morgan, M.A., and Shatkin, A.J. (1976). Influenza viral mRNA contains internal N6-methyladenosine and 5'-terminal 7-methylguanosine in cap structures. J. Virol.20,45-53.
    Kurowski, M.A., Bhagwat, A.S., Papaj, G., and Bujnicki, J.M. (2003). Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics 4,48-53.
    Lee, D.-H., Jin, S.-G., Cai, S., Chen, Y., Pfeifer, G.P., and O'Connor, T.R. (2005). Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J. Biol. Chem.280, 39448-39459.
    Lees, J., Smith, B., Wien, F., Miles, A., and Wallace, B. (2004). CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem 332, 285-289.
    Levis, R., and Penman, S. (1978).5'-Terminal structures of poly(A)+ cytoplasmic messenger RNA and of poly(A)+ and poly(A)-heterogeneous nuclear RNA of cells of the dipteran Drosophila melanogaster. J. Mol. Biol.120,487-515.
    Li, M.-M., Nilsen, A., Shi, Y., Fusser, M., Ding, Y.-H., Fu, Y., Liu, B., Niu, Y., Wu, Y.-S., and Huang, C.-M. (2013a). ALKBH4-dependent demethylation of actin regulates actomyosin dynamics. Nat. Commun.4,1832-1844.
    Li, P., Gao, S., Wang, L., Yu, F., Li, J., Wang, C., Li, J., and Wong, J. (2013b). ABH2 Couples Regulation of Ribosomal DNA Transcription with DNA Alkylation Repair. Cell Rep.4,817-829.
    Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.-J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305,1437-1441.
    Liu, J., and Jia, G. (2013). Methylation Modifications in Eukaryotic Messenger RNA. J. Genet. Genomics 41,21-33.
    Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., and Deng, X. (2013). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. (doi:10.1038/nchembio.1432)
    Loenarz, C., and Schofield, C.J. (2008). Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol.4,152-156.
    Loenarz, C., and Schofield, C.J. (2011). Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci.36,7-18.
    Long, F., Vagin, A.A., Young, P., and Murshudov, G.N. (2007). BALBES:a molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr.64,125-132.
    Matoulkova, E., Michalova, E., Vojtesek, B., and Hrstka, R. (2012). The role of the 3'untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol.9, 563-576.
    McCoy, A.J. (2006). Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr.63,32-41.
    McDonough, M.A., Loenarz, C., Chowdhury, R., Clifton, I.J., and Schofield, C.J. (2010). Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol.20,659-672.
    Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons. Cell 149,1635-1646.
    Meyre, D., Proulx, K., Kawagoe-Takaki, H., Vatin, V., Gutierrez-Aguilar, R., Lyon, D., Ma, M., Choquet, H., Horber, F., and Van Hul, W. (2010). Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes 59,311-318.
    Mishina, Y., and He, C. (2006). Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J. Inorg. Biochem.100,670-678.
    Mishina, Y., Yang, C.-G., and He, C. (2005). Direct repair of the exocyclic DNA adduct 1, N6-ethenoadenine by the DNA repair AlkB proteins. J. Am. Chem. Soc.127,14594-14595.
    Motorin, Y., and Helm, M. (2011). RNA nucleotide methylation. Wiley Interdisciplinary Reviews: RNA 2,611-631.
    Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr.67,355-367.
    Nakao, M. (2001). Epigenetics:interaction of DNA methylation and chromatin. Gene 278,25-31.
    Narayan, P., Ludwiczak, R.L., Goodwin, E.C., and Rottman, F.M. (1994). Context effects on N6-adenosine methylation sites in prolactin mRNA. Nucleic Acids Res.22,419-426.
    Nichols, J. (1979).'Cap' structures in maize poly (A)-containing RNA. Biochim. Biophys. Acta 563, 490-495.
    Niu, Y., Zhao, X., Wu, Y.-S., Li, M.-M., Wang, X.-J., and Yang, Y.-G. (2013). N6-methyl-adenosine (m6A) in RNA:An Old Modification with A Novel Epigenetic Function. Genomics Proteomics Bioinform.11,8-17.
    Nojima, T., Hirose, T., Kimura, H., and Hagiwara, M. (2007). The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J. Biol. Chem.282, 15645-15651.
    Ougland, R., Lando, D., Jonson, I., Dahl, J.A., Moen, M.N., Nordstrand, L.M., Rognes, T., Lee, J.T., Klungland, A., and Kouzarides, T. (2012). ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 30,2672-2682.
    Pan, T. (2013). N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem. Sci.38,204-209.
    Pastore, C., Topalidou, I., Forouhar, F., Yan, A.C., Levy, M., and Hunt, J.F. (2011). Crystal structure and RNA binding properties of the RRM/AlkB domains in human ABH8, an enzyme catalyzing tRNA hypermodification. J. Biol. Chem.287,2130-2143.
    Perry, R.P., Kelley, D.E., Friderici, K., and Rottman, F. (1975). The methylated constituents of L cell messenger RNA:evidence for an unusual cluster at the 5'terminus. Cell 4,387-394.
    Peters, T., Ausmeier, K., and Riither, U. (1999). Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm. Genome 10,983-986.
    Ping, X.-L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., Adhikari, S., Shi, Y., Lv, Y., and Chen, Y.-S. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res.24,177-189.
    Poirot, O., O'Toole, E., and Notredame, C. (2003). Tcoffee@igs:A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res.31,3503-3506.
    Prescott, A.G., and Lloyd, M.D. (2000). The iron (Ⅱ) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat. Prod. Rep.17,367-383.
    Ricciardi, S., Kilstrup-Nielsen, C., Bienvenu, T., Jacquette, A., Landsberger, N., and Broccoli, V. (2009). CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum. Mol. Genet.18,4590-4602.
    Ringvoll, J., Moen, M.N., Nordstrand, L.M., Meira, L.B., Pang, B., Bekkelund, A., Dedon, P.C., Bjelland, S., Samson, L.D., and Falnes, P.(?). (2008). AlkB Homologue 2-Mediated Repair of Ethenoadenine Lesions in Mammalian DNA. Cancer Res.68,4142-4149.
    Robbens, S., Rouze, P., Cock, J.M., Spring, J., Worden, A.Z., and Van de Peer, Y. (2008). The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J. Mol. Evol.66, 80-84.
    Rose, N.R., McDonough, M.A., King, O.N., Kawamura, A., and Schofield, C.J. (2011). Inhibition of 2-oxoglutarate dependent oxygenases. Chem. Soc. Rev.40,4364-4397.
    Sambrook, J., and Russell, D. (2006). The condensed protocols from Molecular cloning:a laboratory manual (NY:Cold Spring Harbor Laboratory Press).
    Sanchez-Pulido, L., and Andrade-Navarro, M.A. (2007). The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC biochemistry 8,23.
    Scavetta, R.D., Thomas, C.B., Walsh, M.A., Szegedi, S., Joachimiak, A., Gumport, R.I., and Churchill, M.E.A. (2000). Structure of RsrI methyltransferase, a member of the N6-adenine β class of DNA methyltransferases. Nucleic Acids Res.28,3950-3961.
    Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y., Duren, W.L., Erdos, M.R., Stringham, H.M., Chines, P.S., and Jackson, A.U. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316,1341-1345.
    Sedgwick, B., Bates, P.A., Paik, J., Jacobs, S.C., and Lindahl, T. (2007). Repair of alkylated DNA: recent advances. DNA repair 6,429-442.
    Sharp, P.A. (2009). The centrality of RNA. Cell 136,577-580.
    Shepard, P.J., and Hertel, K.J. (2009). The SR protein family. Genome Biol.10,242-250.
    Shimada, K., Fujii, T., Tsujikawa, K., Anai, S., Fujimoto, K., and Konishi, N. (2012). ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and Tweak/Fn14/VEGF signals. Clin. Cancer Res.18,5247-5255.
    Shimada, K., Nakamura, M., Anai, S., De Velasco, M., Tanaka, M., Tsujikawa, K., Ouji, Y., and Konishi, N. (2009). A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res.69,3157-3164.
    Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E., and Tainer, J.A. (1996). A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384,87-92.
    Smith, R.V., and Erhardt, P.W. (1975). Nash determination for formaldehyde in the presence of bisulfite. Anal. Chem.47,2462-2464.
    Solberg, A., Robertson, A.B., Aronsen, J.M., Rognmo,0., Sjaastad, I., Wisl(?)f, U., and Klungland, A. (2013). Deletion of mouse Alkbb.7 leads to obesity. J. Mol. Cell. Biol.5,194-203.
    Songe-M(?)ller, L., van den Born, E., Leihne, V., Vagb(?), C.B., Kristoffersen, T., Krokan, H.E., Kirpekar, F., Falnes, P.(?)., and Klungland, A. (2010). Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell. Biol.30,1814-1827.
    Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. (2008). Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol. Cell 100,27-38.
    Squires, J.E., Patel, H.R., Nousch, M., Sibbritt, T., Humphreys, D.T., Parker, B.J., Suter, C.M., and Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res.40,5023-5033.
    Stoeger, A.S., Heilmann, G., Zeppelzauer, M., Ganswindt, A., Hensman, S., and Charlton, B.D. (2012). Human ALKBH4 Interacts with Proteins Associated with Transcription. PLoS ONE 7, e9045.
    Stoltzfus, C.M., and Dane, R.W. (1982). Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J. Virol.42,918-931.
    Stratakis, C.A., Lafferty, A., Taymans, S.E., Gafni, R.I., Meck, J.M., and Blancato, J. (2000). Anisomastia Associated with Interstitial Duplication of Chromosome 16, Mental Retardation, Obesity, Dysmorphic Facies, and Digital Anomalies:Molecular Mapping of a New Syndrome by Fluorescent in Situ Hybridization and Microsatellites to 16q13 (D16S419-D16S503) 1. J. Clin. Endocrinol. Metab.85,3396-3401.
    Sundheim, O., Talstad, V.A., Vagbo, C.B., Slupphaug, G., and Krokan, H.E. (2008). AlkB demethylases flip out in different ways. DNA Rep.7,1916-1923.
    Sundheim, O., Vagb(?), C.B., Bj(?)ras, M., Sousa, M.M., Talstad, V., Aas, P.A., Drabl(?)s, F., Krokan, H.E., Tainer, J.A., and Slupphaug, G. (2006). Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J.25,3389-3397.
    Tasaki, M., Shimada, K., Kimura, H., Tsujikawa, K., and Konishi, N. (2011). ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br. J. Cancer 104, 700-706.
    Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.-W., Read, R.J., and Adams, P.D. (2007). Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr.64,61-69.
    Thalhammer, A., Bencokova, Z., Poole, R., Loenarz, C., Adam, J., OTlaherty, L., Schodel, J., Mole, D., Giaslakiotis, K., Schofield, C.J., et al. (2011). Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor la (HIF-1α). PLoS ONE 6, e16210.
    Tsujikawa, K., Koike, K., Kitae, K., Shinkawa, A., Arima, H., Suzuki, T., Tsuchiya, M., Makino, Y., Furukawa, T., and Konishi, N. (2007). Expression and sub-cellular localization of human ABH family molecules. J. Cell. Mol. Med.11,1105-1116.
    Vagin, A., and Teplyakov, A. (1997). MOLREP:an automated program for molecular replacement. J. Appl. Crystallogr.30,1022-1025.
    Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui-Artola, A., Kim, D.S., De Juan-Pardo, E., Demeyer, K., Hole, K., and Larrea, E. (2012). N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. U.S.A.109,12449-12454.
    Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., and Jia, G. (2013). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. (doi:10.1038/nature12730)
    Wei, C.-M., Gershowitz, A., and Moss, B. (1975). Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell 4,379-386.
    Wei, C.M., Gershowitz, A., and Moss, B. (1976).5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochem.15,397-401.
    Wei, Y.-F., Carter, K.C., Wang, R.-P., and Shell, B.K. (1996). Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res.24,931-937.
    Westbye, M.P., Feyzi, E., Aas, P.A., Vagb(?), C.B., Talstad, V.A., Kavli, B., Hagen, L., Sundheim, O., Akbari, M., and Liabakk, N.-B. (2008). Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J. Biol. Chem.283,25046-25056.
    William, A.C., Pamela, F.C., Jef, R., James, A.M., Kimberly, A.H., Xiaonong, Z., Franck, A.P.V., Daniele, F., and Paul, F.A. (2011). The RNA modification database, RNAMDB:2011 update. Nucleic Acids Res.39.195-201.
    Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., and McCoy, A. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr.67,235-242.
    Woon, E.C., Demetriades, M., Bagg, E.A., Aik, W., Krylova, S.M., Ma, J.H., Chan, M., Walport, L.J., Wegman, D.W., and Dack, K.N. (2012). Dynamic combinatorial mass spectrometry leads to inhibitors of a 2-oxoglutarate-dependent nucleic acid demethylase. J.Med. Chem.55,2173-2184.
    Wu, S.-s., Xu, W., Liu, S., Chen, B., Wang, X.-l., Wang, Y., Liu, S.-f., and Wu, J.-q. (2011). Down-regulation of ALKBH2 increases cisplatin sensitivity in H1299 lung cancer cells. Acta Pharmacol. Sin.32,393-398.
    Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation:many roads lead to Rome. Nature Rev. Mol. Cell. Biol.11,607-620.
    Yang, C.-G., Yi, C., Duguid, E.M., Sullivan, C.T., Jian, X., Rice, P.A., and He, C. (2008). Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452,961-965.
    Yi, C., and Pan, T. (2011). Cellular Dynamics of RNA Modification. Acc. Chem. Res.44,1380-1388.
    Yu, B., Edstrom, W.C., Benach, J., Hamuro, Y., Weber, P.C., Gibney, B.R., and Hunt, J.F. (2006). Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439,879-884.
    Yu, B., and Hunt, J.F. (2009). Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB. Proc. Natl. Acad. Sci. U.S.A.106, 14315-14320.
    Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C.J., Vagb(?), C.B., Shi, Y., Wang, W.-L., and Song, S.-H. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49,18-29.
    Zhong, S., Li, H., Bodi, Z., Button, J., Vespa, L., Herzog, M., and Fray, R.G. (2008). MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell Online 20,1278-1288.
    Zhou, B., and Han, Z. (2013). Crystallization and preliminary X-ray diffraction of the RNA demethylase ALKBH5. Acta Crystallogr. SectF Struct. Biol. Cryst. Commun.69 1231-1234.
    Zhu, C., and Yi, C. (2014). Switching Demethylation Activities between AlkB Family RNA/DNA Demethylases through Exchange of Active-Site Residues. Angew. Chem. Int. Ed. Engl.53, 3659-3662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700