异丁烯、异戊烯及其下游产品制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着乙烯工业的持续发展,作为副产物的异丁烯、异戊烯资源量显现快速增长的态势。异丁烯和异戊烯分别是C4及C5馏份中非常具有价值的成份。目前高纯度的异丁烯和异戊烯的生产工艺基本相同,都采用选择加氢、醚化、醚裂解工艺来生产。高纯度的异丁烯作为单体可用于生产丁基橡胶、聚异丁烯等聚合物,甲基丙烯酸甲酯、叔丁胺、对叔丁基苯酚系列抗氧剂和异戊烯醇等精细化工产品;而异戊烯则侧重于精细化工领域,用作农药和香料生产的中间体。
     在异丁烯和异戊烯生产过程中,除了对生产工艺要进行不断的优化,降低生产成本和提高反应收率外,还要在提升产品质量、抽余后C4及C5馏份的综合利用以及下游产品的开发方面开展有关的研究工作,以达到原料的有效且充分的利用,增强装置的综合竞争能力。为此本文对异丁烯、异戊烯及其下游产品制备工艺的进行了研究,研究内容主要包括MTBE醚裂解制备异丁烯、异丁烯二聚工艺及动力学、C4烯烃加氢催化剂及工艺、TAME醚裂解催化剂和工艺、2M1B异构化工艺他粗异戊烯加氢工艺。主要结论如下:
     1.使用SPC-01催化剂,MTBE裂解制异丁烯反应的适宜操作条件为:反应压力0.4MPa,温度210~230℃,LHSV为0.5~1.0h-1,在该条件下MTBE单程转化率大于92.2%,异丁烯选择性大于99.9%。
     2.以强酸性阳离子交换树脂为催化剂,在高压釜内考察了异丁烯二聚反应工艺条件对DIB选择性的影响。当反应温度为75~95℃、原料中IB质量分数为17%-20%、TBA质量分数为0.6%、搅拌速率750r/min、反应时间为3h时,IB的转化率达到60%左右,DIB的选择性在80%左右。
     3.通过IB齐聚动力学实验及模型分析表明,IB齐聚过程为一级串联不可逆反应。根据实验结果,IB齐聚反应速率方程可写成:
     4.通过加入TBA时,IB齐聚动力学实验及过程分析表明,IB齐聚具有一级串联不可逆反应特征。加入的TBA使IB齐聚机理发生了变化,所测得的IB反应活化能其实是IB水合反应活化能。根据实验结果,IB齐聚反应速率方程可写成:
     5.Ni/Al2O3-SiO2催化剂是一种C4馏分加氢适应性非常广泛的催化剂,具有良好的加氢活性和活性稳定性。对于单烯烃含量约为20%的C4馏分进行加氢时,当LHSV为5.5h-1、进口温度为室温、反应压力为2.0MPa、v(H2)/v(C4)=219时,丁烯转化率均接近98%。
     6.SPC-01型催化剂在上海石化异戊烯装置首次工业应用获得成功,3年运行结果表明:该催化剂对TAME裂解生产异戊烯具有良好的活性和稳定性,TAME转化率和异戊烯选择性均超过99%。通过对新鲜和卸出催化剂的表征,发现导致活性降低的主要原因是催化剂的结焦、比表面积和酸强度的降低。
     7.在异构化原料中加入TAA后,降低了磺酸基阳离子交换树脂催化剂表面的酸性,提高了催化剂对2M1B的吸附选择性,可以有效降低2M1B二聚反应速率,达到提高目标产物选择性的目的,并使异构化反应平稳进行,易于控制。与现有异戊烯装置的异构化反应相比较,在反应温度为28~33℃,系统压力为0.5MPa,粗异戊烯质量空速为8.0h-1和TAA加入量为进料质量0.7%~0.9%的条件下,2M1B平均转化率由0.5474增加到0.72~0.73,2M2B选择性则由0.6864上升至0.95以上,在产物中二聚物的含量从4.38%降至1.0%以下,产品中2M2B与2M1B质量比由7.32提高至12以上。
     8.所开发的粗异戊烯加氢工艺的工业化获得了成功,加氢产物中烷烃的含量可以保持在99%以上,其中异戊烷和正戊烷含量平均值分别为32.53%及67.11%,是一种提高裂解装置“双烯”收率的优良裂解原料。装置目前运行平稳,加氢效果与小试数据基本吻合。与常规的高压高温加氢工艺相比较,使用Ni/Al2O3-SiO2催化剂后,加氢工艺更加缓和,催化剂的活性稳定性较为理想。
With the continuous development of the ethylene industry, the resource amount of by-product, isobutene and isopentene was increasing rapidly. The isobutene and isopentene was the highly valuable composition of C4 and C5 fraction respectively. The production technology of isobutene and isopentene with high purity was basically similar at present, the hydrogenation, etherification and decomposition technology were used in the two productions. The isobutene with high purity which was used as monomer to product the polymer such as butyl-rubber and polyisobutene, and also could to product the fine chemical productions such as methyl methacrylate, tert-butylamine, p-tert-butylphenol series antionxidant and allylic alcohols, however, the isopentene was profile to fine chemical field, which was used as the intermediate in the production of pesticide and perfume.
     Besides the optimization of production technology constantly, reducing the production costs and improving the reaction yield, the research works on lifting production quality, the comprehensive utilization on raffinate C4/C5 fraction and development of downstream production were carried out in the production process of isobutene and isopentene to utilize the raw material effectively and adequately, to enhance the comprehensive competence ability of plant. The preparation technology of isobutene, isopentene and its downstream products was studied in the paper, main research contents including:(1) the preparation of isobutene by ether-solution from MTBE, (2) dimerization process of isobutene and its kinetics, (3) hydrogenation catalyst and process of C4-olefins, (4) decomposition catalyst of TAME and decomposition process, (5)isomerization process of 2M1B, (6)hydrogenation process of crude isopentene. The main conclusions were as follows:
     1. The optimum operation conditions of product isobutene by cracking from MTBE with the SPC-01 catalyst:reaction pressure of 0.4MPa, temperature was ranging from 210~230℃, liquid hourly space velocity was ranging from 0.5~1.0h-1, the single conversion of MTBE was more than 92.2%, the selectivity of isobutene was more than 99.9%.
     2. The influence of dimerization process of isobutene conditions on the selectivity of DIB was investigated in the high pressure autoclave with catalyst of strong acid cation exchange resin. The conversion of IB was around 60%, the selectivity of DIB was around 80% at the conditions of the reaction temperature was ranging from 75~95℃, the mass fraction of IB in the raw material was ranging from 17%~20%, the mass fraction of TBA was 0.6%, the stirring rate was 750r/min, and the reaction time was 3h.
     3. The kinetics experiments of IB oligomerization and model analysis showed that the IB oligomerization was irreversible first-order series reaction. According to the experiments results, the rate equation of IB oligomerization was:
     4. The kinetics experiments of IB oligomerization with the adding of TBA and process analysis showed that the IB oligomerization was in accord with the characteristics of irreversible first-order series reaction. The IB oligomerization mechanism was changed as the adding of TBA, the measured IB oligomerization reaction activation energy was the IB hydration reaction activation energy in fact. According to the experiments results, the rate equation of IB oligomerization was:
     5. The Ni/Al2O3-SiO2 catalyst has relatively high hydrogenation activity and excellent stability was used very extensively on hydrogenation of C4 fractions. The conversion of C4-olifiens were all close to 98% at the reaction pressure of 2.0MPa when the mass fraction of mono-olefins in C4 fraction was about 20%, the LHSV was 5.5h-1, the inlet temperature was room-temperature, the ratio of H2 to C4 was 219.
     6. First industrial application of SPC-01 catalyst in the IA plant in SINOPEC Shanghai Petrochemical Company Limited was rewarded by success,3 years operation results showed that:the catalyst has favorable activity and stability on cracking of TAME to product isobutene, both the conversion of TAME and the selectivity of isobutene were more than 99%. The characterization of fresh and used catalyst found that the coking of catalyst, reducing of specific surface area and acid strength was the main reason of the activity decreased, however the catalyst had a certain activity remained.
     7. Addition of TAA in the isomerization raw material was regarded to decrease the surface acidity of the strongly acidic ion exchange resin catalyst, thus improved its adsorption ability for 2M1B and effectively suppressed the dimerization. Therefore, the yield of objective product was enhanced and the reaction process was apt to stabilization. The process was applied in a 3.5kt/a industrial isobutene plant, the operation results was basically same to the laboratory. The conclusions were as follows:
     1) The based theory of isomerization reaction was established. For the isomerization of 2M1B, The mass exchange capacity (acid concentration) and the surface-SO3H (acid strength) acidity of the resin were important factors to determine the isomerization reaction. Only by the favorable matching ability between the acid concentration of resin and the TAA concentration in the raw material, the tenability of conversion and selectivity in the isomerization reaction could realize.
     2) The selectivity of 2M2B at a high conversion level for the isomerization of crude isobutene was significantly increased by the adding of a small amount of tertiary amyl alcohol in the reaction raw material. Compared with the results from the current isobutene units, the average conversion of 2M1B, the selectivity of 2M2B and the mass ratio of 2M2B to 2M1B were increased from 0.5474,0.6864 and 7.32 to 0.72~0.73,0.95 and 12, respectively, while the dimmers content in the products decreased from 4.38%to below 1.0%. Optimized conditions for isobutene isomerization consisted of temperature between 28 and 33℃, and system pressure of 0.5 MPa, crude isobutene mass hourly space velocity of 8.0h-1 with mass fraction of 0.7~0.9% in raw material.
     3) Industrial application:the average concentrations of 2M1B,2M2B and dimmer consisted of 7.19%,89.41% and 0.62% in the liquid products after the addition of TAA in the 3.5kt/a industrial isobutene plant, while the concentration of dimmer in raw material was 0.23%, the average conversion of 2M1B was 0.6651, the average selectivity of 2M2B was 0.9727, the average mass ratio of 2M2B and 2M1B was 12.45. The addition of TAA increased the activity of catalyst and the selectivity of objective product, the mass ratio of 2M2B and 2M1B was also significantly increased.
     8. The industrialization of hydrogenation process on crude isopentene achieved success, the concentrations of alkanes in the hydrogenation products remained at more than 99%, the average concentrations of isopentane and n-pentane was 32.53% and 67.11% respectively, which was superior cracking raw material to improve yield of“two-olefins”in cracking plant. The plant operating stationary at present, the results of hydrogenation were basically agreed with the small experiment. Compared with the results from the conventional hydrogenation process with high temperature and high pressure, the hydrogenation process was more inirritative, and the activity and stability of catalyst was comparatively ideal after the using of Ni/Al2O3-SiO2 catalyst.
引文
[1]Levin D,Luo S F, Vartuli J C,et al. Selective decomposition of ethers[P].WO:2005066101,2005.
    [2]张治国,王万成,黄伟,等.甲基叔丁基醚裂解制异丁烯的催化剂及其制备方法[P].CN:101020142A,2007.
    [3]王筠松,金仙丽.卢冠忠,等.用于制备异丁烯的固体酸催化剂及其制备方法[P].CN:1915506A,2007.
    [4]韩春国,周继东,李学雷,等.一种生产异丁烯联产二甲醚的方法[P].CN:1426986A,2003.
    [5]周继东,韩春国,姚振卫,等.一种生产异丁烯联产二甲醚和二聚异丁烯的方法[P].CN:1493552,2004.
    [6]于庚涛.醚裂解制异丁烯催化剂及其应用[P].CN:1185992,1998.
    [7]Song I K, Lee W Y.Heteropolyacid (HPA)-polymer composite films as heterogeneous catalysts and catalytic membranes[J].Applied Catalysis,A:General,2003,256(1-2):77-98.
    [8]问智高,韩春国,王桂茹.醚裂解制叔烯烃用催化剂、其制备方法及应用[P].CN:1432431,2003.
    [9]王评,何美琴.甲基叔戊基醚裂解催化剂的研究[J].精细石油化工,2001,(6):26-28.
    [10]Keyworth D A,McFarland C G. Production of isobutene from methyl tertiary butyl ether[P]. US:4570026,1980.
    [11]Smith J L A.Deetherification process[P].US:4551567,1980.
    [12]Marion M-C F, Alain B A.Process for the production of tertiary olefin(s) by decomposition of the corresponding ether using a particular catalyst[P]. US:6028239,1990.
    [13]孙承林,刘中民,贾卫民,等.一种由甲基叔丁醚裂解制异丁烯反应用改性硅胶催化剂[P].CN:1161881A,2008.
    [14]Juguin B M,Jean, H, Michel T B.Process for producing an olefin by decomposition of the corresponding ether[P]. US:4395580,1978.
    [15]帕特里克.肖梅特,热尔曼.马蒂诺,凯瑟琳.韦尔东,等.通过相应的醚的分解制备至少一种烯烃的方法[P].CN:1056299A,1991.
    [16]Chaumette P M,Germain V,Catherine L.Process for obtaining at least one tertiary olefin by decomposition of the corresponding ether[P]. US5171920,1992.
    [17]Manara G F,Vittorio T, Marco N.Process for the preparation of tertiary olefins[P].US:4254296,1981.
    [18]奥弗奥·弗拉尼,瓦利里奥·彼科利,布鲁诺·诺塔里.通过裂解烷基—叔烷基—醚制备叔烯烃的方法[P].CN:86104627,1987.
    [19]张淑梅,吕志辉,翟庆铜,等.甲基叔丁基醚裂解制备高纯度异丁烯[J].燃料化学学 报,2003,31(2):156-160.
    [20]张淑梅,翟庆铜,王春梅,等.用于甲基叔丁基醚裂解制异丁烯的催化剂[P].CN:1853772,2009.
    [21]Juguin B M, Jean H,Michel T.Process for producing an olefin by decomposition of the corresponding ether[P]. US:4395580,1983.
    [22]Herwig J S,Bernhard S.Process for the preparation of tertiary olefins and n-alkanols[P].US:4371725,1983.
    [23]Chen S. C, Chu C. C, Lin F S,et al.. Process for the preparation of tertiary olefins[P] US:5227564,1993.
    [24]Piel W J. Diversify future fuel needs with ether[J].Fuel Reformulation,1994,4(2):28-33.
    [25]Kolb A, Puttmann W. Methyl tert-butyl ether (MTBE) in finished drinking water in Germany[J]. Environmental Pollution,2006,140(2):294-303.
    [26]Tanabe A, Tsuchida Y. Investigation of methyl tert-butyl ether levels in river-, ground-, and sewage-waters analyzed using a purge-and-trap interfaced to a gas chromatograph-mass spectrometer[J]. Journal of Chromatography A, 2005,1066(1-2):159-164.
    [27]Schmidt T C, Haderlein S B, Pfister R. Occurrence and fate modeling of MTBE and BTEX compounds in a Swiss Lake used as drinking water supply [J]. Water Research, 2004,38(6):1520-1529.
    [28]Executive order D-52-02 by the Governor of the State of California,15 March 2002.
    [29]李明辉.碳四烃的综合利用[J].石油化工,2003,32(9):808-814.
    [30]Di Girolamo M, Lami M, Marchionna M. Liquid-phase etherification/dimerization of isobutene over sulfonic acid resin[J].Ind.Eng.Chem.Res,1997,36:4452-4458.
    [31]丰洋.甲基叔丁基醚装置可改产异辛烷[J].石油炼制与化工,2003,34(2):44-48.
    [32]Rameswaran R, Evans T I,Karas L J. Isobutylene oligomerization using isooctane diluent[P].US:5877372,1999.
    [33]Di Girolamo M, Marchionna M. Acid and basic ion exchange resins for industrial application[J] Journal of Molecular Catalysis A:Chemical,2001,177:33-40.
    [34]张听,王建伟,钟进.丁烯齐聚反应催化剂及其工艺的研究进展[J].石油化工,2004,3:76-82.
    [35]Meister J M, Black S M, Muldoon B S, et al. Hydrocarbon Processing [J].2000, 79(5):63-75.
    [36]Chakrarti A, Sharma M M. Cationic ion exchange resins as catalyst[J].React.Polym,1993,20:1-45.
    [37]Jacobeli H,Bartholin M,Guyot A. Styrene benzene copolymers. Ⅰ.Texture of macroporous copolymers with ethyl-2-hexanoic acid in diluent[J].J.Appl.Polym.Sci,1979,23:927-939.
    [38]Anon. Europe Chemical News [J],2000,72(1893):35.
    [39]Sahay N, McGurik T, Marchionna M, et al. Low cost conversion of MTBE units to alternative gasoline blending components production,NPRA 2002 Annual Meeting,San Antonio,Texas,March 17-19,2002, AM-02-18.
    [40]Thomas E, Lawrence J K, Ramesh R. Selective olefin oligomerization[P]. US: 6376731,2002.
    [41]Rameswaran R, Evans T I, Karas L J. Isobutylene oligomerization using isooctane diluent[P].US:5877372,1999.
    [42]Jianhua W, Nishit S, Mitchell E L, et al. Separation of tertiary butyl alcohol from diisobutylene[P]. US Appl:20040020758,2004.
    [43]Hauge K, Bergene E, Chen D,et al., Oligomerization of isobutene over solid acid catalysts[J].Catalysis Today,2005,100(3-4):463-466.
    [44]Hunszinger P, Jarvelin H, Nurminen M, et al. Case histo-ry:converting an MTBE unit to isooctane operation[J]. Hydrocarbon Processing,2003,82:57.
    [45]Alcantara R,Alcantara E,Canoira L. Trimerization of isobutene over Amberlyst-15 catalyst[J]. Reactive and Functional Polymers,2000,45(1):19-27.
    [46]Di Girolamo M, Lami M, Marchionna M. Liquid-Phase Etherification/Dimerization of Isobutene over Sulfonic Acid Resins[J]. Ind. Eng. Chem. Res,1997,36 (11):4452-4458.
    [47]Talwalkar S, Chauhan M, Aghalayam P. Kinetic Studies on the Dimerization of Isobutene with Ion-Exchange Resin in the Presence of Water as a Selectivity Enhancer[J]. Ind. Eng. Chem. Res,2006,45 (4):1312-1323.
    [48]Honkela M L,Krause A O I. Influence of Linear Butenes in the Dimerization of Isobutene[J]. Ind. Eng. Chem. Res,2005,44 (14):5291-5297.
    [49]Honkela M L,Krause A O I. Influence of polar components in the dimerization of isobutene[J].Catalysis Letters,2003,87(3-4):113-119.
    [50]Gildert G R,Loescher M E. Catalytic distillation process for the production of C8 alkanes[P].US:6274783,2001.
    [51]Loescher M.Recovery of tertiary butyl alcohol[P].US:6734333,2004.
    [52]Girolamo M D, Marchionna M, Tagliabue L. Process for the production of hydrocarbons with a high octane number by means of the selective dimerization of isobutene with acid catalysts[P].US:20020002316,2002.
    [53]Thomas E, Lawrence J K, Ramesh R. Selective olefin oligomerization[P]. US:6376731,2002.
    [54]Rameswaran R, Evans T I,Karas L J. Isobutylene oligomerization using isooctane diluent[P].US:5877372,1999.
    [55]Mario M, Di Girolamo M, Domenico S, et al.Process for the production of hydrocarbons with a high octane number starting from mixtures of n-butane/isobutane such as field butanes[P].US:6897345,2004.
    [56]T-H Chao, Fiona P W, Mark R F, et al. Catalytic condensation process[P].US:5059737,1991.
    [57]Dakka,Mohammed J. Process for the selective dimerisation of isobutene[P].US: 20030100811,2003.
    [58]Wichterlova B,Zilkova N, Uvarova E. Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization of n-butenes[J]. Applied Catalysis A:General,1999,182(2):297-308.
    [59]Prinsloo N M., Solid phosphoric acid oligomerisation:Manipulating diesel selectivity by controlling catalyst hydration[J]. Fuel Processing Technology,2006,87(5):437-442.
    [60]温陵生,刘雅娟,张武阳,等.固体磷酸催化剂的活性相[J].高等学校化学学报,1994,3:428-430.
    61] Charles A D. Catalyst supports,catalyst systems, and olefin dimerization[P].US:5118900, 1992.
    [62]王英,淳远,朱建华,等.MgO在NaY沸石上的分散及其催化性能[J].催化学报,1999,20(4):414-417.
    [63]张明森,柯丽,杨菁,等.丙烯二聚合成4-甲基-1-戊烯[J].石油化工,2002,31(9):49-52.
    [64]Erping Bi, Haderlein,S B, Schmidt T C. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins[J]. Water Research,2005,39(17):4164-4176.
    [65]Muja I, Toma A, Popescu D C, et al. Thermodynamic study of the methanol addition to isoamylen[J]. Chemical Engineering and Processing,2005,44(6):645-651.
    [66]Bielanski A, Lubanska A, Pozniczek J,et al. The formation of MTBE on supported and unsupported H4SiW12O40[J].Applied Catalysis A:General,2003,256(1-2):153-171.
    [67]Sharma M M. Some novel aspects of cationic ion-exchange resins as catalysts[J]. Rreactive & Functional Polymers,1995,26:3-23.
    [68]Honkela M L, Root A, Lindblad M,et al. Comparison of ion-exchange resin catalysts in the dimerisation of isobutene[J]. Applied Catalysis A:General,2005,295(2):216-223.
    [69]Lange J P, Petrus L. Solid acid catalyst for converting alkenes and alkanols to carboxylic acid[J].Appl.Catal A,2001,216:285-294.
    [70]Scharfe G. Convert butenes to high octane oligomers[J].Hydrocarbon Process,1973,53(4):171-173.
    [71]Popwic M,Deckwer W D. Absorption and reaction of isobutene in sulfuric acid—Ⅰ,The effect of tert-butanol on the absorption rate in a bubble column[J].Chemical Engineering Sciece,1975,30:913-920.
    [72]Deckwer W D,Allenbach U, Bretschneider H. Absorption and reaction of isobutene in sulfuric acid—Ⅱ,Determination of parameters and optimal conditions in a bubble column[J].Chemical Engineering Sciece,1977,32:43-50.
    [73]Honkela M L,Tuomas O,Kraus A O I.Thermodynamics and kinetics of the dehydration of tert-butyl alcohol[J].Ind.Eng.Chem.Res,2004,43:4060-4065.
    [74]Talwalkar S, Chauhan M, Aghalayam P,et al. Kinetic Studies on the Dimerization of Isobutene with Ion-Exchange Resin in the Presence of Water as a Selectivity Enhancer[J]. Ind. Eng. Chem. Res.,2006,45 (4):1312-1323.
    [75]Ishikawa H, Yoda E, Kondo J N, et al. Stable Dimerized Alkoxy Species of 2-Methylpropene on Mordenite Zeolite Studied by FT-IR[J]. J. Phys. Chem. B, 1999,103 (27):5681-5686.
    [76]Kondo J N,Domen K. IR observation of adsorption and reactions of olefins on H-form zeolites[J].Journal of Molecular Catalysis A,2003,199:27-38.
    [77]Ngandjui T L, Thyrion F C. Kinetic study of the oligomerization of isobutene over H-mordenite[J].Chemical Engineering and Processing,1992,31:1-6.
    [78]Dong X C,Salhi N B,Lunell S. A theoretical study of the cationic dimerization and polymerization of isobutene[J] Journal of Molecular Structure(Theochem),1997,392:111-124.
    [79]Ouni T,Honkela M, Kolah A,et al. Isobutene dimerisation in a miniplant-scale reactor[J].Chemical Engineering and Processing,2006,45:329-339.
    [80]Hoffinann U. Kinetics of methyl tertiary butyl, ether liquid phase synthesis catalyzed by ion exchange resin—Ⅱ. Macropore diffusion of methanol as rate-controlling step[J]. Chemical Engineering Science,1990,45(6):1619-1926.
    [81]Haag W O. Oligomerization of isobutylene on cation exchange resins[J].Chem.Eng.Progr.Symp.ser,1967,63:140-147.
    [82]Honkela M L,Krause A O I. Kinetic modeling of the dimerization of isobutene[J].Ind.Eng.Chem.Res,2004,43:3251-3260.
    [83]Rehfinger A, Hoffmann U. Formation of di-isobutene, main by-product of methyl tertiary butyl ether synthesis catalyzed by ion exchange resin[J], Chem.Eng.Technol, 1990,13:150-156.
    [84]Kgelbauer A,Nikolopoulos A A,Goodwin J G. reactant adsorption and its impact upon甲基叔丁基醚synthesis on zeolites[J].J.Catal,1995,152:122-129.
    [85]Shah N F,Sharma M M. Dimerization of isoamylene:Ion exchange resin and acid-treated clay as catalysts[J].React.Polym,1993,19:181-190.
    [86]Hauge K. Oligomerization of isobutene over solid acid catalysts[J].Catal.Today,2005,100:463-466.
    [87]Zhang C M,Adesina A A,Wainwright M S. Isobutene hydration over Amberlyst-15 in a slurry reactor[J].Chem.Eng.Process,2003,42:985-991.
    [88]Leung P,Zorrilla C,Recasens F, et al. Hydration of isobutene in liquid-full and trickle-bed reactors[J].AIChE,1986,32:1893-1847.
    [89]Kamath R S, Qi Z, Sundmacher K,et al. Comparison of Reactive Distillation with Process Alternatives for the Isobutene Dimerization Reaction[J]. Ind. Eng. Chem. Res,2006,45(8):2707-2714.
    [90]Kamath R S, Qi Z, Sundmacher K,et al. Process Analysis for Dimerization of Isobutene by Reactive Distillation[J]. Ind. Eng. Chem. Res,2006,45(5):1575-1582.
    [91]石亚华,李人东.加氢脱硫的技术进展[J].炼油设计,1999,29(8):16-20.
    [92]尾崎萃.催化剂手册[M].北京:化学工业出版社.1982,587-622.
    [93]郑存,梁均方,曾育才.制备方法对镍催化剂重整活性的影响.天然气化工[J],2002,27:4-8.
    [94]谢有畅,杨乃芳,刘英峻,等.某些催化剂活性组分在载体表面分散的自发倾向.中国科学(B辑)[J],1982,8:673-682.
    [95]Khan H R, Freay H. Plasma spray deposition of LaMOx(M=Co, Mn, Ni) films and the investigations of structure, morphology and the catalytic oxidation of CO and C3H8.J.Alloys Compounds,1993,10:209.
    [96]张勇,储伟,罗春容,等.等离子体技术制备Ni/α-Al2O3催化剂[J].天然气化T,2000,25(1):15-18
    [97]张玉红,熊国兴,盛世喜.NiO/γ-Al2O3催化剂中NiO和γ-Al2O3间的相互作用[J].物理化学学报,1999,15(8):735-741.
    [98]Scheffer B,Molhoek P,Moulijn J A,Temperature-programmed reduction of NiO-WO3/Al2O3 hydrodesulphurization catalysts[J]. Appl Catal,1989,46:11-16.
    [99]Rynkowski J M, paryjczak T, Lenik M. On the nature of oxidicnickle phase in NiO/γ-Al2O3 catalysts[J].Appl.Catal,A:General,1993,106:73-78.
    [100]P.M.马萨古托夫著.油加工与石油化学中催化剂再生[M].刘忠惠译.北京:中国石油化工出版社,1992.
    [101]孙连霞,孙明永,张东平,等.RDD-1选择性加氢催化剂的工业应用.石油炼制与化工[J],1999,30(5):77-80.
    [102]于守智,杨连栋.一种加氢催化剂的制备方法.ZL:1 140748A,1997.
    [103]崔建明,郭俊玲,胡婉英.柴油加氢精制装置的技术改造[J].炼油设计,1999,29:25-29.
    [104]廖士纲,韩崇仁.面向21世纪的加氢裂化技术(续)[J].炼油设计,1999,29(6):1-5.
    [105]Niyama H, Imai T. Hysteresis of Catalytic Activity in Hydrogenation of Ethylene on Ni/Al2O3[J].Journal of Chemical Engineering of Japan,1986,19(6):531-536.
    [106]Angel G D, Bertin V, Perez A, et al. Selective Hydrogenation of oxylene on Nobe lMetals:Thermal Effect in selectivity [J]. React. Kinet. Catal. Lett,1992,48(1):259-264.
    [107]李建卫,黄星亮.低温选择性加氢镍催化剂的研究[J].石油化工,2001,30(9):673-678.
    [108]Teicher S J,Nicolan G A. Aerogels and related porous materials[J].Chem Rev,1989, 89:765-769.
    [109]徐泽辉,叶军明,瞿卫国,等.异丁烯在强酸性阳离子交换树脂上的齐聚动力学[J].华东理工大学学报(自然科学版).2007,33(2):158-162.
    [110]徐泽辉,叶军明,瞿卫国,等.叔丁醇中强酸性阳离子交换树脂催化异丁烯齐聚动力学[J].石油化工.2007,36(3):261-266.
    [111]斯科特.福格勤.化学反应工程[M].2005.化学工业出版社,北京.467-468.
    [112]曹贵平,朱中南,薜英芝,等.数据处理与实验设计电子教材和通用软件[M].2002.中国石化出版社,北京.
    [113]刘迎新,陈吉祥,张继炎.Ni/SiO2催化剂上间二硝基苯液相加氢制间苯二胺[J].催化学报,2003,24(3):224-228.
    [114]雷鸣,阳铁军,赵岚,等.甲基叔丁基醚裂解制异丁烯催化剂表面酸性与活性的研究[J].石油化工,2001,30(11):838-840.
    [115]Alves J A, Bressa S P, Martinez O M, et al. Selective hydrogenation of 1,3-butadiene: improvement of selectivity by using additives[J].Chemical Engineering Journal, 2004,99(1):45-51.
    [116]Baur R, Taylor R, Krishna R. Bifurcation analysis for MTBE synthesis in a reactive distillation column:comparison of pseudo-homogeneous and heterogeneous reaction kinetics models[J]. Chemical Engineering and Processing,2003,42(3):211-221.
    [117]Baur R, Krishna R. Hardware selection and design aspects for reactive distillation columns. A case study on synthesis of TAME[J].Chemical Engineering and Processing, 2002,41(5):445-462.
    [118]Paakkonen P K, Krause A O I. Comparative study of TAME synthesis on ion-exchange resin beads and a fibrous ion-exchange catalyst[J].Reactive and Functional Polymers,2003,55(2):139-150.
    [119]Marie-Claire M, Alain F, Armand B. Process for the production of tertiary olefin(s) by decomposition of the corresponding ether using a particular catalyst[P].US: 6028239,2000.
    [120]于庚涛.醚裂解制异丁烯催化剂及其应用[P].CN:96123535,2002.
    [121]李莹.从异戊烯联合装置看C5资源综合利用的发展[J].石油化工技术经济,2007,23(1):57-61.
    [122]Mao Wei, Wang Xiaolei, Wang Hua, et al. Thermodynamic and kinetic study of tert-amyl methyl ether (TAME) synthesis[J]. Chemical Engineering and Processing: Process Intensification,2008,47(5):761-769.
    [123]Katariya A M, Kamath R S, Mahajani S M, et al. Study of non-linear dynamics in reactive distillation for TAME synthesis using equilibrium and non-equilibrium models[J].Computer Aided Chemical Engineering,2006,21, Part 1:469-474.
    [124]Boz N, Dogu T, Murtezaoglu K, et al. Mechanism of TAME and TAEE synthesis from diffuse-reflectance FTIR analysis[J].Catalysis Today,2005,100(3-4):419-424.
    [125]Kolodziej A, Jaroszynski M, Salacki W, et al. Catalytic Distillation for TAME Synthesis with Structured Catalytic Packings[J].Chemical Engineering Research and Design,2004, 82(2):175-184.
    [126]Muhammad A. A A. Design of extraction column methanol recovery system for the TAME reactive distillation process[J].Computer Aided Chemical Engineering,2004, 18:319-324.
    [127]Paakkonen P K, Krause A O I. Comparative study of TAME synthesis on ion-exchange resin beads and a fibrous ion-exchange catalyst[J].Reactive and Functional Polymers,2003,55(2):139-150.
    [128]Baur R, Taylor R, Krishna R. Bifurcation analysis for TAme synthesis in a reactive distillation column:comparison of pseudo-homogeneous and heterogeneous reaction kinetics models[J].Chemical Engineering and Processing,2003,42(3):211-221.
    [129]Bozga G, Bumbac G, Plesu V, et al. Modelling and simulation of kinetics and operation for the TAME synthesis by catalytic distillation[J].Computer Aided Chemical Engineering,2003,14:575-580.
    [130]Kloker M,Kenig E, Gorak A, et al.Experimental and theoretical studies of the TAME synthesis by reactive distillation[J].Computer Aided Chemical Engineering,2003, 14:713-718.
    [131]Oost C,Kai S, Hoffmann M U. Synthesis of tertiary amyl methyl ether (TAME): Equilibrium of the multiple reactions[J]. Chemical Engineering & Technology,2004,18(2):110-117.
    [132]谢家明,徐泽辉.甲基叔戊基醚裂解催化剂的催化性能[J].现代化工,2006,26(1):51-54.
    [133]Gustavo C, Robert C M. Increasing the level of 2-methyl-2-butene in isoamylene[P].US:5073663,1991.
    [134]安源,朱岳中,刘华婷,等.由甲基叔戊基醚制备高含量2-甲基-丁烯-2的异戊烯方法[P].CN:1371894,2002.
    (AN Yuang,Zhu Zhuzhong, Liu Huating,et al. The method for isoamylene of high content 2-methyl-2-butene from tert-amyl methyl ether[P].CN:1371894,2002.
    [135]徐泽辉,房鼎业.异丁烯二聚反应[J].化学进展,2007,19(9):1413-1418.
    [136]徐泽辉,叶军明,瞿卫国等.叔丁醇对异丁烯二聚反应选择性的影响[J].化学反应工程与工艺,2007,23(2):152-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700