富电性钴和铁配合物在C-X(X=H,F)键活化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴和铁属于过渡金属Ⅷ族元素,其化合物在有机合成、工业催化等方面被广泛应用。三价膦的化合物作为一种强支持配体与过渡金属能形成稳定的配合物,广泛存在于金属有机化合物中。三甲基膦支持的金属钴和铁配合物具有良好的反应活性和选择性。
     1.三甲基膦支持的含[S-Fe-H]结构单元的配合物与炔烃的反应
     过渡金属氢化物的M-H键可以同一系列烯烃或炔烃发生插入反应,这类的插入反应是合成σ-烷基和σ-烯基金属有机物的一条重要途径。金属硫配合物是普遍存在的生物电子转移的调节剂。金属硫配合物存在于基本的催化过程(如催化脱硫)和生物过程(如Fe-S蛋白质),所以含硫配体的金属氢化物的合成以及性能研究正在发展成为配位化学的研究热点。
     本课题利用含苯硫酚结构单元的铁氢配合物与端基炔烃反应没有得到预期的铁的烯基配合物而是制得了二炔基的铁的配合物(7,9,10),并对其进行了分离和表征。
     2.Co(PMe3)4Me在咖啡碱中的应用
     嘌呤衍生物是一类重要的医药中间体。在嘌呤环上的8位碳上以碳-碳键的形式引入某些取代集团后,所得的嘌呤具有抗病毒,抗癌和降血压等重要的生物医学活性,因此对嘌呤衍生物的研究具有重要意义。本课题利用Co(PMe3)4Me与咖啡碱反应,成功实现了咖啡碱8位的C-H键活化,并分离得到配合物11。利用配合物11分别与溴苯,邻溴吡啶,五氟溴苯和4,4’-二碘联苯反应得到配合物12和17,以及一系列的碳碳偶联产物14,15,和16,并对其进行了分离和表征。这为合成8位嘌呤衍生物提供了一种新方法。
     3.Co(PMe3)4与全氟代芳烃的反应
     C-F键活化的研究不仅对于寻求新的氟代有机物有很大的帮助,同时对于催化氟降解有很重要的指导意义,在环境保护和绿色化学方面有很好的应用前景。
     本课题组已经利用三甲基膦支持的零价钴Co(PMe3)4成功实现了不含锚定集团的全氟甲苯和全氟萘的C-F键活化。
     在此研究基础上本课题详细研究了Co(PMe3)4与全氟甲苯反应的机理以及氟的去向问题,并且首次提出了利用三甲基膦和Co(PMe3)4的协同效应实现C-F键活化的机理。
     利用Co(PMe3)4与其他的全氟代芳烃反应也得到了类似的C-F键活化产物,分离得到了一系列四配位一价钴的配合物(24,26,27,29),并对其进行了详细的表征。其中通过Co(PMe3)4与全氟吡啶反应成功分离出了同钻原子侧配位的双氮配合物28,对于它的性质有待研究,期望在固氮化学上有很好的应用前景。
     在对化合物22反应性质的研究过程中,通过与五氟溴苯反应虽然没有得到期望的碳碳偶联产物:对五氟苯基氟代甲苯,但是在用盐酸处理母液的过程中意外制得了三价钴的配合物33。
     Co(PMe3)4与一系列全氟代芳烃的反应产物通入CO后,都分别制得了二羰基配位的一价钴的配合物(35,36,37,38),并对产物进行了分离和表征。
     4.Fe(PMe3)4与全氟代芳烃的反应
     利用Fe(PMe3)4与一系列的全氟代芳烃反应,同样得到了与Co(PMe3)4反应类似的C-F键活化产物配合物(39,42,43,46),并对其进行了表征。其中Fe(PMe3)4与全氟吡啶反应还得到了Fe-H配合物44,对其分离并对其结构进行了表征,以及对它的机理进行了探索。在相同条件下,Fe(PMe3)4与全氟萘反应仅得到了简单π配位的配合物47。
     5.Co(PMe3)4和Co(PMe3)4Me与全氟代苯甲醛亚胺的反应
     本课题利用全氟代苯甲醛亚胺与三甲基膦支持的低价态钻的配合物发生反应。与Co(PMe3)4和二氟代苯甲醛亚胺的反应结果比较,Co(PMe3)4成功实现了全氟代苯甲醛亚胺的C-F键反应,说明了随着氟原子的增加,芳环上碳原子的亲电的能力加强。Co(PMe3)4与全氟代苯甲醛底物59,62和65分别实现了C-F键活化得到了配合物60,63,66,特别是配合物63是C-F键和C-H键同时活化的双螯合的钴的配合物。并对上述配合物进行了分离和表征。
     Co(PMe3)4Me也实现了全氟代苯甲醛亚胺的C-F键活化反应。与二氟代苯甲醛亚胺的反应结构类似,也是得到了新型的三价钴的配合物67和68,并对其进行了分离和表征。
     6.全氟甲苯和格式试剂的偶联反应
     真正实现C-F键的功能化才是我们追求的目标。文献上已经有报道的C-F键的功能化反应,但是大多数都是用Pd或Ni做催化剂,这些催化剂的优点是反应条件温和、产率较高、适用性广。同时它们也有着以下几条缺点:(1)Pd的价格高昂;(2)Pd和Ni毒性较强;(3)Pd和Ni催化的反应常常需要昂贵而且剧毒的膦配体来参与。1971年,Kochi等人发现廉价低毒的Fe可以催化格氏试剂与卤代烯烃或芳基卤化物发生碳-碳偶联反应,以此为契机,一类新兴的催化剂出现在了化学历史舞台上。
     利用FeCl2和PMe3分别作催化剂初步探讨了全氟甲苯和格式试剂的偶联反应,得出的结论是,当用FeCl2做催化剂时得到的主要产物是自身偶联产物,而用PMe3做催化剂,得到的是交叉偶联产物,并且分别推测了它们的反应机理。当然,对于催化反应只是初步的探索,还需要通过调整反应的时间,溶剂,催化剂的用量,以及添加助催化剂来继续优化反应条件。
Cobalt and Iron belong toⅧfamily of transition metals. Because of their fine coordination activity and relatively low price, they have been widely used in organic synthesis, industrial catalysis, etc. Trivalent phosphine as a strong ligand can form stable complexes with transition metals, and can be widely found in organometallic compouds. Organocobalt and Organoiron compounds supported by trimethylphosphine have high reaction activity and selectivity.
     1. Reaction of the complexes containing [S-Fe-H] fragment supported by trimethylphosphine with alkynes
     A [M-H] moiety in hydrido compounds of transition metals can react with alkenes or alkynes giving rise toσ-alkyl orσ-alkenyl metal compounds.
     Metallothionein complex is a common regulator in biological electron transfer, metallothionein complexes exist in the basic catalyst and biological processes. Therefore, the study of this domain has been a hotspot in the fields of coordination chemistry for recent years.
     Reactions of thiophenolato hydrido iron(Ⅱ) complexes with alkynes afforded bisalkynyl iron(Ⅱ) complexes (7,9,10). The novel complexes were isolated and characterized.
     2. Application of CoMe(PMe3)4 with caffeine
     Purine derivatives are an important class of pharmaceutical intermediates. Addition of 8-position substituent is of particular interest with reference to their bioavailability such as antivirus, anticancer and lowering blood pressure.
     The novel cobalt(Ⅰ) complex 11 was prepared by reaction of caffeine with CoMe(PMe3)4. Reactions of the cobalt(Ⅰ) complex 11 with bromobenzene, 2-bromopyridine, bromopentafluorobenzene and 4,4'-diiodobiphenyl afforded complex 12 and 17. At the same time, the expected C-C coupling products 14,15 and 16 were obtained. It was a stoichiometric reaction, however, it may be a synthetically useful route for the generation of 8-position substituent.
     3. Reation of Co(PMe3)4 with perfluoroarene
     The study of C-F bond activation has important significance and value. Mastery of the activation of C-F bond will help us to study the new fluorinated organic synthesis, and to solve the increasingly serious problem of environmental pollution.
     Our group has successfully achieved C-F bond activation using cobalt complexes supported by trimethylphosphine with octafluorotoluene and octafluoronaphthalene.
     In this study, based on a detailed study of the reaction of Co(PMe3)4 with octaflurotoluene, the reaction mechanism involving the synergistic effect between trimethyl phosphate and Co(PMe3)4 was proposed, for the first time.
     Reactions of Co(PMe3)4 with hexafluorobenzene, pentafluoropyridine and decafluorobiphenyl in mild conditions afforded C-F activated products(24,26,27,29). During the reaction of Co(PMe3)4 with pentafluoropyridine, a novel dinitrogen complex of cobalt with the dinitrogen molecule bonded in a "sideways" fashion to Cobalt atom, which will show favorable development prospects in the fixation of N2
     When we treated the Co(I) 22 with bromopentafluorobenzene, the expected C-C coupling products wasn't isolated. However, the Co(Ⅲ) complex 33 was unexpectedly obtained during the addition of hydrochloric acid into the reaction.
     Reaction of fluorinated arene with Co(PMe3)4 under 1 bar of CO prepared new dicarbonyl compounds(35,36,37,38).
     4. Reation of Fe(PMe3)4 with perfluoroarene
     Reactions of Fe(PMe3)4 with a series of perfluoroarene in mild conditions afforded C-F activated products (39,42,43,46), which are similar with the products of Co(PMe3)4 with perfluoroarene.
     Reactions of Fe(PMe3)4 with pentafluoropyridine afforded hydrido iron(Ⅱ) complex 43. A mechanism for the formation of 44 is proposed.
     During the reaction of Fe(PMe3)4 with octafluoronaphthalene, theπcoordinated intermediates (47) was isolated.
     5. Reation of Co(PMe3)4 and Co(PMe3)4Me with perfulorobenzaldimines
     Reaction of Cobalt complexes supported by trimethylphosphine with perfulorobenzaldimines instead of orthofulorobenzaldimines entirely afforded C-F activated products. It proved that the electrophilic capacity of aromatic ring carbon atom enhances with the increase of fluorine atoms. Reaction of Co(PMe3)4 with perfulorobenzaldimines gave rise to the new complexes(60,63,66). Specially, the complex 63 is the product of bicyclometalation reaction at the same central atom by the activation of C-H bond and C-F bond. Reactions of [CoMe(PMe3)4] with perfulorobenzaldimines proceed by oxidative addition of the C-F bond to give rise to the ortho-metalated diorgano cobalt (Ⅲ) fluorides 67 and 68.
     6. C-C Coupling reaction of octafluorotoluene with Grignard reagent
     Functionalization of C-F bond is the target of chemists. Literature reports on this kind of reaction are mainly concentrated on Palladium and Nickel compleses as catalysts. The catalysts have the advantage of mild reaction conditions, high yield, wide applicability, they also have the following several shortcomings:(1) the price of Palladium is expensive; (2)Palladium and Nickel complexes are toxic; (3) Catalytic reaction often requires expensive and highly toxic phosphorus ligands. In 1971, Kochi reported the cross-coupling reaction between Grignard reagents and alkenyl halides or aromatic halides in the.presence of catalyst of low-cost and low toxicity of iron. Take this opportunity to a class of new catalysts in the chemical stage of history.
     The C-C coupling reactions of octafluorotoluene with Grignard reagent were primarily studied using FeCl2 and PMe3 as the catalysts, respectively. Self-coupling products were mainly obtained with FeCl2 as the catalyst, while the cross-coupling products were prepared with PMe3 as the catalyst. A possible reaction mechanism was proposed. The catalytic reaction is only a preliminary exploration. The reaction conditions may be optimized by adjusting the reaction time, solvent, catalyst amount, and additives.
     All of the new complexes are characterized by IR,1H NMR,13C NMR and 31P NMR. Structures of some compounds have been confirmed by X-ray diffraction techniques.
引文
[1]K. I. GoldBerg, A. S. Goldman,Organometallic C-H Bond Activation:An Introduction. Activation and Functionalization of C-H Bond, ACS Symposium Series 2004, 885,1-43.
    [2]A. Sen, Catalytic Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds in Protic Media.Acc.Chem.Res.1998,31,550-557.
    [3]Y. Guari, S. Sabo-Etiennne, B. Chaudret, Catalytic Formation of Carbon-Carbon Bonds by Activation of Carbon-Hydrogen Bonds Eur.J.Inorg. Chem.1999,1047-1055.
    [4]W. D. Jones, Conquering the Carbon-Hydrogen Bond. Science 2000,287, 1942-1943.
    [5]R. H. Crabtree, Alkane C-H activation and functionalization with homogeneous transition metal catalysts:a century of progress-a new millennium in prospect. J.Chem.Soc.Dalton Trans.2001,17,2437-2450.
    [6]J. A. Labinger, J. E. Bercaw, Understanding and exploiting C-H bond activation. Nature,2002,417,507-514.
    [7]V. Ritling, C. Sirlin, M. Pfeffer, Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates:Reactions and Mechanistic Aspects. Chem.Rev.2002,102,1731-1770.
    [8]J. Chatt, J. M. Davidon, The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0), and the preparation of new types of hydrido-complexes of ruthenium(Ⅱ). J.Chem.Soc.1965,843-855.
    [9]M. Bruce, Cyclometalation Reactions. Angew. Chem,. Int. Ed. Engl.1977,16,73-86.
    [10]H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Regiospecific cyclometalation of diphenyl(2-substituted phenyl)phosphane with methyltetrakis(trimethylphosphane)-cobalt(Ⅰ). Eur. J. Inorg. Chem.,2003,853-862.
    [11]H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Five-and six-membered cobaltocycles with C,P-chelating ligands through regiospecific cyclometalation of mono(2-substituted) triphenylphosphane. Eur. J. Inorg. Chem.,2003,1380-1387.
    [12]H.-F. Klein, S. Camadanli, R. Beck, D. Leukel, U. Floerke, Cyclometalation of Substrates Containing Imine and Pyridyl Anchoring Groups by Iron and Cobalt Complexes. Angew. Chem. Int. Ed.2005,44,975-977.
    [13]H.-F. Klein, R. Beck, U. Floerke, H.-J. Haupt, Steric control of cyclometallation reactions in Schiff-base complexes of cobalt(Ⅰ) containing an anchoring diphenylphosphanyl group. Eur. J. Inorg. Chem.,2002,3305-3312.
    [14]H.-F. Klein, S. Camadanli, R.Beck, D. Leukel, U. Florke, Cyclometalation of Substrates Containing Imine and Pyridyl Anchoring Groups by Iron and Cobalt Complexes. Angew.Chem.Int.Ed.2005,44,975-977.
    [15]R. Beck, T. Zheng, X. Li, U. Floerke, H.-F. Klein,C-H activation of diphenylphosphinoaryl-derivatives with dimethyltetrakis (trimethylphosphine)iron(Ⅱ). J. Organomet. Chem.2008,693,3471-3478.
    [16]H. Normant, Alkenylmagnesium Halides, "Adv. In Org. Chem." Vol. Ⅱ, Interscience Pub., N.Y.,1960.
    [17]J. Schwartz, J.A. Labinger, Hydrozirconation:A New Transition Metal Reagent for Organic Synthesis. Angew.Chem.,Int. Ed.Engl.,1976,15,333-340.
    [18]H.-F. Klein, S. Haller, H. Sun and X. Li, Hydrido(acylphenolato)cobalt(Ⅲ) Compounds Containing Trimethylphosphane Ligands. Z. Naturforsch 1998,53 b,587-598.
    [19]H.-F. Klein, X. Li, U. Florke and H.-J. Haupt, Hydrido(acylenolato)cobalt(Ⅲ) Compounds Containing Trimethylphosphane Ligands:Insertion Reaction with Alkynes and the First Carbonylcobalt(Ⅲ) Complexes. Z. Naturforsch 2000,55b,707-717.
    [20]L, She, X. Li, H. Sun, J. Ding, M. Frey, H.-F. Klein,Insertion of Alkynes into Ni-H Bonds:Synthesis of Novel Vinyl Nickel() and Dinuclear Vinyl Nickel()Complexes Containing a [P,S]-Ligand. Organometallic 2007,26,556-570.
    [21]B. M. Trost, A. C. Lavoie, Enol thioethers as enol substitutes. An alkylation sequence. J.Am. Chem. Soc.1983,105,5075-5090.
    [22]R. D. Miller, R. Hassig, Eliminative deoxygenation:A facile synthesis of a-cyano and a-carboalkoxy substituted vinyl sulfides. Tetrahedron Lett.1985,26,2395-2398.
    [23]T. H. Morris, E. H. Smith, R, Walsh, Oxetane synthesis:methyl vinyl sulphides as new traps of excited benzophenone in a stereoselective and regiospecific paterno-Buchi reaction. J. Chem. Soc., Chem. Commun.,1987,964-965.
    [24]P. Magnus, D. Quagliato, Silicon in synthesis.21.Reagents for thiophenyl-functionalized cyclopentenone annulations and the total synthesis of (.+-.)-hirsutene. J.Org.Chem,1985,50,1621-1626.
    [25]H. Mizuno, K. Domon, K. Masuya, K. Tanino, I. Kuwajima, Total Synthesis of (-)-Coriolin. J.Org. Chem,1999,64,2648-2656.
    [26]E. Marcantoni, M. Massaccesi, M. Petrini, G. Bartoli, M. C. Bellucci, M. Bosco, L Sambri, A Novel Route to the Vinyl Sulfide Nine-Membered Macrocycle Moiety of Griseoviridin(?) J.Org.Chem,2000,65,4553-4559.
    [27]P. Johannesson, G. Lindeberg, A. Johansson, G. V. Nikiforovich, A. Gogoll, B. Synnergren, M. Le Greves, F. Nyberg, A. Karlen, A. Hallberg, Vinyl Sulfide Cyclized Analogues of Angiotensin Ⅱ with High Affinity and Full Agonist Activity at the ATl Receptor. J.Med.Chem.2002,45,1767-1777.
    [28]N. V. Zyk, E. K. Beloglazkina, M.A. Belova, N. S. Dubinina, Methods for the synthesis of vinyl sulfides. Russ. Chem. Rev.,2003,72,769-786.
    [29]T. Kondo, T. Mitsudo, Metal-Catalyzed Carbon-Sulfur Bond Formation. Chem. Rve. 2000,100,3205-3220.
    [30]T.Takeda,H. Furukawa, M. Fujimori, K. Suzuki, T. Fujiwara, Preparation and Reaction of 1-(Methylthio-and phenylthio)vinyllithium Reagents, Bull. Chem. Soc. Jpn. 1984,57,1863-1869.
    [31]O. De Lucchi, L. Pasquato, The role of sulfur functionalities in activating and directing olefins in cycloaddition reactions, Tetrahedron 1988,44,6755-6794.
    [32]M. Hojo, S. Tanimoto, Stereoselective reduction of α-alkoxycarbonylketene dithioacetals with the use of Me2Cu(CN)Li2, J. Chem. Soc., Chem. Commun.,1990, 1284-1285.
    [33]M. Hojo, H. Harada, J. Yoshizawa, A. Hosomi, Samarium diiodide-promoted reductive cleavage of carbon-sulfur bonds:a novel stereoselective generation of functionalized vinylsamarium species and synthesis of beta.-thiobutenolides, J. Org. Chem.1993,58,6541-6542.
    [34]V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, Efficient and Convenient Synthesis of β-Vinyl Sulfides in Nickel-Catalyzed Regioselective Addition of Thiols to Terminal Alkynes under Solvent-Free Conditions. Efficient and Convenient Synthesis of β-Vinyl Sulfides in Nickel-Catalyzed Regioselective Addition of Thiols to Terminal Alkynes under Solvent-Free Conditions, Organometallics 2006,25,1970-1977.
    [35]D. A. Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V. P. Ananikov, I. P. Beletskaya and S. P. Nolan, Homogeneous Nickel Catalysts for the Selective Transfer of a Single Arylthio Group in the Catalytic Hydrothiolation of Alkynes. Organometallics 2006, 25,4462-4470.
    [36]Y. Ichinose, K. Wakamatsu, K. Nozaki, J.-L. Birbaum, K.Oshima, K.Utimoto,Et3B Induced Radical Addition of Thiols to Acetylenes. Chem.Lett.1987,1647-1650.
    [37]L. Benati, L. Capella, P. C. Montevecchi, P. Spagnolo, A useful method for configurational assignment of vinyl sulfides; stereochemical reassessment of the radical addition of benzenethiol to alkynes. J. Chem. Soc., Perkin Trans.1,1995,1035-1038.
    [38]K. Griesbaum, Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds. Angew. Chem. Int. Ed. Engl.,1970,9,273-287.
    [39]Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda, N. The first example of transition-metal-catalyzed addition of aromangew. chem. int. ed. englatic thiols to acetylenes, J. Am. Chem. Soc.1992,114,5902-5903.
    [40]H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Sonoda, The first example of transition-metal-catalyzed hydroselenation of acetylenes. Tetrahedron Lett.1992,33, 5525-5528.
    [41]A. Ogawa, A. Kudo, T. Hirao, Palladium-catalyzed hydroselenation of allenes with benzeneselenol. Tetrahedron Lett.1998,39,5513-5516.
    [42]V.P. Ananikov, N.V. OrLov, I. P. Beletskaya, Efficient and Convenient Synthesis of β-Vinyl Sulfides in Nickl-Catalyzed Regioselective Addition of Thiols to Terminal Alkynes under Solvent-Free Conditions. Organometallics 2006,25,1970-1977.
    [43]邵碧霞,咖啡因对大鼠工作记忆促进作用及其机制的研究,中国医药杂志,2006.41,512-514。
    [44]Z. Huang, W. Qu, N. Eguchi, J. Chen, M. A Schwarzschild, B. B Fredholm, Y. Urade, O. Hayaishi, Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine Nature Neuroscience 2005,8,858-859.
    [45]任俊国,黄嘌呤类腺苷受体抑制剂的研究近况,药学进展,1990,14,65-69。
    [46]W. H. Harriet,et al Drug of Future 1988,13(4),333
    [47]F. W. Smellie, C. W. Davis, J. W. Daly, J. N. Wells, Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sciences 1979,24,2475-2481.
    [48]R. F. Bruns, Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts.1981,30,325-333
    [49]A. Nehlig, G. Lucignani, M. Kadekaro, L. Porrino, L. Sokoloff, Effects of acute administration of caffeine on local cerebral glucose utilization in the rat. Eur. J.Pharmacol.1984,101,91-100.
    [50]C. G.A. Persson, K.-E-Andersson, G. Kjellin, Effects of enprofylline and theophylline may show the role of adenosine Life Sci.1986,38,1057-1072.
    [51]M. Williams, Adenosine antagonists. Med. Res. Rev.1989,9,219-243.
    [52]T. V. Dunwiddie, A. S. Basile, M. R. Palmer, Electrophysiological responses to adenosine analogs in rat hippocampus and cerebellum:Evidence for mediation by adenosine receptors of the Ai subtype. Life Sci.1984,34,37-47.
    [53]G. Evoniuk, K.A. Jacobson,M.T. Shamim, J. W. Daly, R. J. Wurtman, Al-and A2-selective adenosine antagonists:in vivo characterization of cardiovascular effects. J.Pharmacol.Exp. Ther.1987,242,882-887.
    [54]张金枝,德国医学(近期论文选集)1989,6(1),5
    [55]Smits P, et al. JCardiovas Pharmacol 1998,10,136
    [56]G. Sagi, L. Otvos, S. Ikeda, G. Andrei, R. Snoeck, E. D. Clercq, Synthesis and Antiviral Activities of 8-Alkynyl-,8-Alkenyl-, and 8-Alkyl-2'-deoxyadenosine Analogs. J. Med. Chem.1994,37,1307-1311.
    [57]K. Vollmann, C. E. Muller, Synthesis of 8-Substituted Xanthine Derivatives by Suzuki Cross-Coupling Reaction. Heterocycles.2002,57,871-879.
    [58]H. A. Chiong,O. Daugulis, Palladium-Catalyzed Arylation of Electron-Rich Heterocycles With Aryl Chlorides. Org. Lett.2007,9,1449-1451.
    [59]T. Iwamura; Y. Okamoto, M. Yokomoto, H. Shimizu, M. Hori, T. Kataoka, Syntheses of 6-or 8-carbon-substituted 2-oxopurines. Synthesis 1994,203-206.
    [60]B.D. Key, R. D. Howell, Fluorinated Organics in the Biosphere [J], Environmental science & Technology,1997,31,2445-2454.
    [61]余慧,周琪,含氟有机化合物的生态迁移及转化,四川环境,2005,24,54-58。
    [62]张松涛,我国有机氟工业现状综述[J].上海化工,2002,24,25-29
    [63]宋春玉,氟化物:应用领域日益扩展[J].中国石油和化工,2003,2,55-57
    [64]张一宾,张泽.精细化学品系列丛书-农药[M] 北京:中国物资出版社1997,20-23
    [65]谢银保,有机氟表面活性剂的性能、合成与应用[J].辽宁化工,1995,3,3-7
    [66]王秀霞,曹成波,冯圣玉,有机氟织物整理剂的研究进展[J].化工进展,2002,21,908-913
    [67]刘金淘.有机氟化学研究40年[J].化学通报,2001,1,60-61
    [68]吕咏梅.含氟中间体及其精细化学品现状和展望[J].有机氟工业,2003,2,44-56
    [69]杜灿屏.我国在有机氟化学中的研究进展[J].化学进展,2001,13,10-11
    [70]汪汝洋.有机氟化物的毒性[J].有机氟工业,1990,2,18-26
    [71]王晓玲,邵金凤.氟化物的自然分布和在人体代谢及其生理作用[J]。中国地方病防治杂志,2002,17,314-316
    [72]J. Burdeniuc, B.Jedlicka, R.H. Crabtree, Recent Advances in C-F Bond Activation Chem. Ber.1997,130,145-154.
    [73]L. Kiplinger, T. G. Richmond, C. E. Osterberg, Activation of Carbon-Fluorine Bonds by Metal Complexes Chem. Rev.1994,94,373-431.
    [74]E. F. Murphy, R. Murugavel,H.W.Roesky, Organometallic Fluorides:Compounds Containing Carbon-Metal-Fluorine Fragments of d-Block Metals Chem. Rev.1997,97, 3425-3468.
    [75]T. G. Richmond, Topics in Organometallic Chemistry, vol.3, Springer, New York, 1999, p:243.
    [76]T. Braun, R. N. Perutz, Routes to fluorinated organic derivatives by nickel mediated C-F activation of heteroaromatics. Chem. Commun.2002,2749-2757.
    [77]M. K. Whittlesey, R. N. Perutz, M. H. Moore, Facile intermolecular aromatic C-F bond activation reactions of [Ru(dmpe)2H2] (dmpe=Me2PCH2CH2PMe2) Chem. Commun. (1996)787-788.
    [78]S. Camadanli, R. Beck, U. Florke, H.-F. Klein, First regioselective cyclometalation reactions of cobalt in arylketones:C-H versus C-F activation. Dalton Trans.,2008, 5701-5704.
    [79]Aizenberg, M. Milstein, D. Science 1994,265,359.
    [80]O. Blum, F. Frolow, D. Milstein, C-F bond activation by iridium(Ⅰ). A unique process involving P-C bond cleavage, P-F bond formation and net retention of oxidation state J. Chem. Soc., Chem. Commun.,1991,258-259.
    [81]A. Nova, S.Erhardt, N.A. Jasim, R.N. Perutz, S.A. Macgregor, J.E. Grady, A.C. Whitwood, Competing C-F Activation Pathways in the Reaction of Pt(0) with Fluoropyridines:Phosphine-Assistance versus Oxidative Addition J. Am. Chem. Soc. 2008,130,15499-15511.
    [82]B. L. Edelbach, W. D. Jones, Mechanism of Carbon-Fluorine Bond Activation by (C5Me5)Rh(Pme3)H2. J. Am. Chem. Soc.1997,119,7734-7742
    [83]T. Schaub, M. Backes, U. Radius, Catalytic C-C Bond Formation Accomplished by Selective C-F Activation of Perfluorinated Arenes J. Am. Chem. Soc.2006,128, 15964-15965.
    [84]J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, Activation of Carbon-Fluorine Bonds by Metal Complexes, Chem. Rev.1994,94,373-431
    [85]T. H. Peterson, J. T. Golden, R. G. Bergman, Deprotonation of the Transition Metal Hydride (η5-C5Me5)(PMe3)IrH2. Synthesis and Chemistry of the Strongly Basic Lithium Iridate (η5-C5Me5)(PMe3)Ir(H)(Li).Organometallics 1999,18,2005-2020
    [86]B. M. Kraft, R. J. Lachicotte, W. D. Jones.Aliphatic Carbon-Fluorine Bond Activation Using (C5Me5)2ZrH2. J. Am. Chem. Soc.2000,122,8559-8560.
    [87]M. S. Kirkham, M. F. Mahon, M. K. Whittlesey, C-F bond activation of perfluoroalkenes by ruthenium phosphine hydride complexes:X-ray crystal structures of cis-Ru(dmpe)2F(F…HF) and [Ru(dcpe)2H]+[(CF3)2C-C(O)CF2CF3]-. Chem. Commun., 2001,813-814.
    [88]L. Watson, T. H. Tulip, I. Williams,Defluorination of perfluoroolefins by divalent lanthanoid reagents:activating carbon-fluorine bonds. Organometallics 1990,9, 1999-2009.
    [89]T. Braun, D. Noveski, B. Neumann, H.-G. Stammler, Conversion of Hexafluoropropene into 1,1,1-Trifluoropropane by Rhodium-Mediated C-F Activation. Angew. Chem. Int. Ed.2002,41,2745-2748.
    [90]V. J. Scott, R. Celenligil-Cetin, O. V. Ozerov, Room-Temperature Catalytic Hydrodefluorination of C(sp3)-F Bonds. J. Am. Chem. Soc.2005,127,2852-2853.
    [91]Li, X.; Sun, H.; Yu, F.; Florke, U.; Klein, H.-F. C-F Bond Cleavage and Unexpected C-CN Activation by Cobalt Compounds Supported with Phosphine Ligands Organometallics 2006,25,4695-4697.
    [92]H.-F. Klein, M. Frey, S. Mao, Z.Anorg.Allg. Chem.2005,631,1516
    [93]R. Beck, T. Zheng, H. Sun, X. Li, U. Florke, H.-F. Klein, C-H activation of diphenylphosphinoaryl-derivatives with dimethyltetrakis(trimethylphosphine)iron(Ⅱ), Journal of Organometallic Chemistry,2008,693,3471-3478.
    [94]A. L. Seligson, R. L. Cowan, W. C. Trogler, Alkyl and hydrido phenoxo complexes of nickel(Ⅱ), palladium(Ⅱ), and platinum(Ⅱ). Hydrido amido complexes of palladium. Inorg. Chem.1991,30(18),3371-3381.
    [95]T. Mahmood and J. Shreeve Sulfinyl Fluoride:A reagent for fluorinarion and introduction of the-S(O)F group. Inorg. Chem.1985,24,1395-1398
    [96]T. zheng, H. Sun, Y. chen, X. Li, S. Durr, U. Radius, and K. Harms, Synergistic Effect of a Low-Valent Cobalt Complex and a Trimethylphosphine Ligand on Selective C-F Bond Activation of Perfluorinated Toluene, Organometallics,2009,28;5771-5776.
    [97]A. Yamamoto, S. Kitazume, L. S. Pu and S. Ikeda, Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine)cobalt complex co-ordinated with molecular nitrogen. Chem. Comm.,1967,79-80.
    [98]C. Kruger and Y.-H. Tsay,Angew. Chem.Int.Ed.Engl.,1973,12,998.
    [99]卢嘉锡,结构所通讯,1980,2,39.
    [100]J. Lu, "Nitrogen fixation", Free-living System and Chemical Models University park press,1980,1,343.
    [101]A. D. Allen and C.V.Senoff, Nitrogenopentammineruthenium(Ⅱ) complexes Chem.Comm.,1965,621-622.
    [102]A. D. Allen and F. Bottomly, Accts. Chem. Res.,1,360(1968).
    [103]R. Murray and D. C. Smith, Coord. Chem. Rev.,3,429(1968).
    [104]J. E. Fergusson and J. I. Love, Rev. Pure Appl. Chem.,20,33(1970).
    [105]J. Chatt and G. J. Leigh, Nitrogen fixation. Chem. Soc. Review,1972,1,121-144.
    [106]R. D. Sanner, J. M. Manriquez, R. E. Marsh and J. E. Bercaw, J. Am. Chem. Soc.,98, 8351(1976).
    [107]A. Yamamoto, K. Miura, T. Ito, H. L.Chen, K. Iri, F. Ozawa, K. Miki, T. Sei, N. Tanaka and N. Kasai, Organometallics,2,1429(1983).
    [108]A. Ozin and A. V. Voet "Sideways" Bonded Dinitrogen in Matrix Isolated Cobalt Dinitrogen, CoN2. Can. J. Chem.1973,51,637-640.
    [109]G. Jiao, X. Li, H. Sun and X. Xu, Synthesis and reactivity of a novel hydridocobalt(Ⅲ) complex containing trimethylphosphine and thiophenolato-ligandsJ. Organomet. Chem.692 (2007) 4251.
    [110]T. zheng, M. Li, H. Sun, K. Harms, X. Li, Synthesis of new thiophenolato hydrido iron(Ⅱ) complexes and their substitution reactions with alkynes, Polyhedron,28,2009, 3823-3827.
    [111]sebnem camadanli. Cyclometalation and Bicyclometalation Reactions of Trimethylphosphine Supported Iron, Cobalt and Nickel Compounds via C-H Activation with Imine and Carbonyl Anchoring Groups. Dissertative, Technische Universitt Darmstadt,2005,
    [112]S.Mao, Dissertative, Technische Universitt Darmstadt,1999
    [113]Y.Chen, H. Sun, U. Florke, X. Li. Cyclometalation Reactions Involving C-Cl Bond Activation of ortho-Chlorinated Substrates with Imine as Anchoring Groups by Cobalt Complexes. Organometallics,2008,27,270-275.
    [114]sebnem camadanl, Technische Universitt Darmstadt,2005,
    [115]Y. Kiso, K. Tamao, M. Kumada, J. Organmet. Chem.1973,50, C12.
    [116]J. W. Dankwardt, J. Organmet. Chem.2005,690,932.
    [117]M. Tamura, J. Kochi, Vinylation of Grignard reagents. Catalysis by iron J. Am. Chem. Soc.1971,93,1487-1489.
    [118]S. M. Neumann, J. K. Kochi, Synthesis of olefins. Cross-coupling of alkenyl halides and Grignard reagents catalyzed by iron complexes. J. Org. Chem.1975,40,599-606.
    [119]R. S. Smith, J. K. Kochi, Mechanistic studies of iron catalysis in the cross coupling of alkenyl halides and Grignard reagents J. Org. Chem.1976,41,502-509.
    [120]L. N. Markovskii, G. G. Furin, Yu. G. Shermolovich, G. G. Yakobson, Phosphorylation of polyfluoroaromatic compounds. Ⅱ. Reaction of triethyl phosphite with pentafluoro-substituted derivatives of benzene. Inst. Org. Khim., Kiev, USSR. Zhurnal Obshchei Khimii (1979),49(3),531-537.
    [121]L. N. Markovskii, G. G. Furin, Yu. G. Shermolovich, O. N. Tychkina, G. G. Yakobson, Phosphorylation of polyfluoroaromatic compounds.Reaction of hexaethylphosphorous triamide with pentafluoro-substituted derivatives of benzene. Inst. Org. Khim., Kiev, USSR. Zhurnal Obshchei Khimii (1979),49(3),710-711.
    [122]W. Wolfsberger and H. Schmidbaur, Eine Befriedigende darstellungsmethode fur trimethylphosphin Syn. React. Inorg. Metal-Org. Chem.1974,4,149-156.
    [123]H.-F. Klein and H. H. Karsch, Methylkobaltverbindungen mit nicht chelatisierenden Liganden, I. Methyltetrakis(trimethylphosphin)cobalt und seine Derivate, Chem. Ber.1975, 108,944-955.
    [124]H.-F. Klein and H. H. Karsch, Tris(trimethylphosphine)cobalt(I) Halides. Preparation and Properties. Inorg. Chem.1975,14,473-477.
    [125]H. H. Karsch; Funktionelle Trimethylphosphinderivate, IV. Hydrido(phosphin)eisen(II)-Komplexe, Chem. Ber.1977,110,2222-2235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700