无有机模板晶种法合成沸石催化材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究在无有机模板条件下,向碱性硅铝凝胶中加入一定量的Beta沸石晶种,合成出Beta-OTF沸石的整个晶体生长的机理过程。详细研究了各种合成条件对Beta-OTF沸石的合成影响,以及Beta-OTF沸石在催化方面的一些性能表征。而且根据Beta-OTF沸石的机理,在无有机模板条件下设计合成了HEU和EON分子筛,说明了该方法在一定条件下的普遍性;设计合成了COE系列分子筛,对其合成以及催化性能进行了测试和表征。
     第一章绪论部分,主要介绍无机多孔材料,尤其是微孔硅铝沸石的发展背景、合成方法及沸石分子筛在工业催化方面的一些应用,说明了沸石分子筛的价值以及未来可能的主的要发展方向。
     第二章中,初步介绍了使用Beta沸石作为晶种,在140°C无有机模板条件下,合成出了Beta-OTF沸石。使用XRD谱图配合SEM图片,以及TEM照片描述了Beta-OTF的生长过程;并对合成因素,如温度、时间、晶种量、硅铝比以及杂晶生长特点等做了详尽的阐述,提出Beta沸石晶种必不可少的重要性。
     第三章中,系统地研究了Beta-OTF沸石的整个生长过程,根据上一章的结论提出Beta-OTF的生长机理为:“核-壳”生长。并使用XRD、高分辨TEM配合EDS分析、SEM配合EDX分析、XPS配合氩离子刻蚀技术加以论证,证实了Beta-OTF为中部为硅铝比较高,外围为硅铝比较低的“核-壳”结构。并设计合成了具有高比表面积,高铝稳定性的高质量Beta-OTF沸石。
     第四章中,在无有机模板的条件下合成了Heulandite(HEU)和ECR-1(EON)两种沸石,并根据Beta-OTF沸石的生长机理,在无有机模板条件下设计合成了Heulandite(HEU)和ECR-1(EON)两种沸石,显示了该合成方法在一定条件下的普遍性。
     第五章中,采用IEZ系列分子筛的常规合成法,设计合成了具有新型骨架和孔结构的COE系列微孔材料,并对其催化性能进行了初步测试。
Zeolites with intricate micropores as an important class of industrial materials in different areas of the chemical industries such as gas adsorption, ion exchange, shape selective catalysis have been extensively studied for a long time. The early works for synthesis of zeolites such as LTA and FAU zeolites are carried out in aluminosilicate gels containing inorganic cations, and mordern synthesis methodologies typically involve the use of organic structure-directing agents (SDA) that direct the assembly pathway and ultimately fill the pore space. For example, ZSM-5 and Beta zeolites are generally templated from tetrapropylammonium (TPA+) and tetraethylammonium (TEA+) cations, respectively. Notably, the use of organic templates not only increases the cost of zeolites but also results in consumption of energy as well as produces the harmful gas during the removal of the templates normally carried out by high temperature combustion. In some cases, the high temperature is also detrimental to the inorganic framework of zeolites.
     To reduce the use of organic templates, the scientists are to recycle organic templates in the syntheses of zeolites. For examples, Takewaki et al. reported that partial tetraethylammonium cations (TEA+) in the synthesis of BEA-type zeolite can be recycled by ion-exchange procedure, but the organic cations interacted strongly with the zeoltie framework still cannot be removed. Jones et al summarized SDA removal in BEA-type zeolites containing various heteroatoms via solvent extraction, and it was found that organic cations strongly bonded to the framework through charge-balancing interactions at the heteroatom sites can only removed with concomitant hydrolysis of the Si-O-M (where M=B, Zn, Al) bonds in acidic media. Furthermore, Lee et al. showed a complete recycle of organic template in the synthesis of ZSM-5. They use a SDA that can be disassembled within the zeolite pore space to allow removal of their fragments for use again by reassembly. This SDA contains a cyclic ketal group that could be removed inside the zeolite without destruction of the inorganic framework.
     The alternative route for solving the problems brought with organic templates is to avoid the use of organic templates for synthesizing zeolites normally requried organic templates (organotemplate-free synthesis). The first example for organotemplate-free synthesis of ZSM-5 was discovered by Li et al., and they found that ZSM-5 with good crystallinity was successfully prepared in Na2O-SiO2-Al2O3-H2O system. Later, Clearfield et al. reported that the factors of Si/Al and Na/Al ratios are key for the organotemplate-free synthesis of ZSM-5 zeolite. Recently, Song et al. showed a successful organotemplate-free synthesis of large-pore aluminosilicate zeolite of ECR-1 by carefully adjusting the molar ratio of Na2O/SiO2 in the synthesis, and Wu et al. reported an organotemplate-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution. ZSM-34 and ECR-1normally synthesized in the presence of organic templates of choline [(CH3)3NCH2CH2OH] and bis-(2-hydroxyethyl)dimethylammonium chloride.
     Beta Zeolite with unique three-dimensional network of large pores (12-ring) 19 exhibits excellent properties in a series of catalytic reactions such as the petroleum refining and fine chemical synthesis, but its wide applications are still challenging by the use of organic templates such as TEAOH in the synthesis, compared with Y zeolite usually synthesized in the absence of organic templates. Notably, Beta structure as one of natural zeolites has been found in the mineral in the last decade, which offers a possibility to synthesize Beta zeolite in the absence of organic templates because natural zeolites do not contain organic compounds such as TEA cations.
     In chapter two, we reported primary results for organotemplate-free route for synthesizing Beta zeolite by addition of about 8.8 % seeding crystals (weight ratio of the seeds with aluminosilicate solid) in the starting aluminosilicate gels at 140°C. And the whole crystallization process of Beta-OTF samples based on XRD and SEM technique. According to the XRD intensity points of Beta-OTF140 samples crystallized at 140°C for certain time on the amount of Beta seeds (2.8-16.1%) stood on a line, the line almost pass through coordinate origin (0,0), suggesting that the Beta seeds are necessary for the synthesis of Beta-OTF. And the experiment proved that also.
     In the chapter three, we show a careful investigation on organotemplate-free synthesis of Beta zeolite (Beta-OTF), served as a model for the seeded synthesis of zeolites in the absence of organic templates. The results show that Beta-OTF crystals with core-shell structure grow up from Beta seeds (core) in amorphous aluminosilicate gels, which proved by XRD, HRTEM, EDS, SEM, EDX and XPS technique. According to the ICP analysis, the Si/Al in Beta-OTF was near to 5.4, which was very similar with the natral Beta zeolite in Tschernichite. Compared with conventional Beta templated by TEAOH, Beta-OTF exhibits large BET micropore surface area and stable 4-coordinated Al sites, which would be potentially important for design and preparation of stable and active zeolite catalysts.
     In chapter four, we used the proposed core-shell growth mechanism successfully synthesized EON and HEU zeolites by organotemplate-free method. The EON and HEU zeolites 1st synthesized were also can be recycled as seeds for the 2nd run, which supplied good evidence on avoiding organic template for zeolites synthesis.
     In chapter five, we synthesized four new micropous materials and two titanosilicat micropous materials by IEZ (Interlayer Expanded Zeolites) method, which named COE-1, COE-2, COE-3, COE-4, Ti-COE-3 and Ti-COE-4 (BASF-International Network of Centers Of Excellence). The nitrogen isotherm shows the COE samples have characteristic of Langmuir adsorption, which due to the filling of micropores. Further more, Ti-COE-4 was very active for oxidation of cyclohexene reaction compared with Ti-MWW. Finally, because of the relative position of the silane fixed, the framework of COE-1 was showed by Prof. Gies H in the use of XRD refinement method, which was the first example framework of zeolites gotten by IEZ method.
引文
[1] Everett, D. H. IUPAC manual of symbols and terminologyManual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry [J] Pure Appl. Chem., 1972, 31, 578-638.
    [2] Cronstedt, A. F. Ron och beskrifning om en obekant barg art, som kallas zeolites . Kongl. Vetenskaps Acad [J] Handl. Stockholm, 1756, 17, 120-123.
    [3] Barrer, R. M. Syntheses and reactions of mordenite [J] J. Chem. Soc., 1948, 10, 2158-2163.
    [4] Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J] Chem. Rev., 1995, 95, 559-614.
    [5] Barrer, R. M, Denny P J. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J] J. Chem. Soc., 1961, 201, 971-982.
    [6] Yang. P.; Deng. T.; Zhao. D.; Feng. P.; Pine. D.; Chmelka. B. F.; Whitesides G. M.; Stucky, G.. D. Hierarchically Ordered Oxides [J] Science, 1998, 282, 2244-2246
    [7] Lebeau, B.; Fowler, C. E.; Mann, S.; Farcet, C.; Charleux, B. and Sanchez, C. Synthesis of hierarchically ordered dye-functionalised mesoporous silica with macroporous architecture by dual templating [J] J. Mater. Chem.; 2000, 10, 2105-2108
    [8] Daibin Kuang, Torsten Brezesinski, and Bernd Smarsly; Hierarchical Porous Silica Materials with a Trimodal Pore System Uing Surfactant Templates [J] J. Am. Chem. Soc.; 2004, 126, 10534-10535.
    [9]李赫咺,项寿鹤,吴德明,刘月婷,张晓森,刘述铨.高等学校化学学报, 1981,2,517
    [10] Niichl Narlta; Keiichi Sato; Noboru Yatabe and Taljiro Okabe; Ind. Eng. Chem. Prod. Res. Dev.; 1985, 24, 507-512
    [11] Wilson S T, Lok B M, Flanigen E M. U.S. patent 4, 310,440 (1982)
    [12] Lok, B. M.; Messina, C. A.; Patton, R.L.; Gajek, R. T.; Cannan, T. M.; Flanigen, R. E. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids [J] J. Am. Chem. Soc., 1984, 106, 6092-6093.
    [13] Flanigen, E. M.; Lok, B. M.; Patton, R. L.; Wilson S. T. Aluminophosphate molecular sieves and the periodic table [J] Pure Appl. Chem., 1986, 58,1351-1358.
    [14] (a)Haw, J.F., Song, W.; Marcus, D. M.; Nicholas, J. B. The Mechanism of Methanol to Hydrocarbon Catalysis [J] Acc. Chem. Res., 2003, 36, 317-326; (b)Gayubo, A.; Aguayoi, A.; Olazar, M.; Viverco, R.; Billbo, J. Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process [J] Chem. Eng. Sci., 2003, 58, 5239-5249
    [15] Davis, M. E.; Saldarriaga, C.; Montes, C.; et al. A molecular sieve with eighteen-membered rings [J] Nature, 1988, 331, 698-699.
    [16] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J] Nature, 1992, 359, 710-712.
    [17] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson. D. H.; Sheppard, E. W. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J] J. Am. Chem. Soc., 1992, 114, 10834-10843
    [18] Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Mesoporous Zeolite Single Crystals [J] J. Am. Chem. Soc., 2000, 122, 7116-7117
    [19] Xiao, F.-S.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J.; Xu, R. R.; Su, D. S.; Schlogl R, Yokoi T, Tatsumi T. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammoniun Salts and Mesoscale Cationic Polymers [J] Angew. Chem. Int. Ed., 2006, 45, 3090-3093
    [20] Choi, M.; Cho, S.H.; Srivastava, R.; Venkatesan, C.; Choi, D. H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J] Nature Materials, 2006, 5, 718-723.
    [21] Choi, M., Srivastava, R.; Ryoo, R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks [J] Chem. Commum., 2006, 4380-4382.
    [22] Srivastava, R., Choi, M.; Ryoo, R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation [J] Chem. Commum., 2006, 4489-4491.
    [23] Lowenstein W. The distribution of aluminium in the tetrahedra of silicates and aluminosilicates [J]. Am. Mineral, 1954, 9: 92-96.
    [24]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,2001.
    [25] Thompsom, R. W.; Hnber, M. J. Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system [J] J. Cryst. Gr., 1982, 56, 711-722
    [26] Treacy, M. M. J.; Higgins, J. B.; Collection of Simulated XRD Powder Patterns for Zeolite, Elsevier, 2007
    [27]徐如人,庞文琴等编著,分子筛与多孔材料化学,北京,科学出版社,2004
    [28] Lawton, S. L.; Rohrbaugh, W. J. The Framework Topology of ZSM-18, a Novel Zeolite Containing Rings of Three (Si,Al)-O Species [J] Science , 1990, 247, 1319-1322
    [29] Ciric, J.; U. S. Patent, 1976, 3950496
    [30] Davis, M. E.; Lobo, R. F. Zeolite and molecular sieve synthesis [J] Chem. Mater.; 1992, 4, 756-768
    [31] Jansen, J. C.; Wilson, S. T. Chapter 5A The preparation of oxide molecular sieves A. Synthesis of zeolites [J] Studies in Surface Science and Catalysis, 2001, 137, 175-227
    [32] Blackwell, C. S.; Broach, R. W.; Gatter, M. G.; Holmgren, J. S.; Jan, D.-Y.; Lewis, G.. J.; Mezza, B. J.; Mezza, T. M.; Miller, M. A.; Moscoso, J. G.; Patton, R. L.; Rohde, L. M.; Schoonover, M. W.; Sinkler, W.; Wilson, B. A.; Wilson, S. T. Open-Framework Materials Synthesized in the TMA+/TEA+ Mixed-Template System: The New Low Si/Al Ratio Zeolites UZM-4 and UZM-5 [J] Angew. Chem. Int. Ed., 2003, 42, 1737-1740
    [33] Corma, A.; Rey, F.; Rius, J.; Sabater, M. J.; Valencia, S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites [J] Nature, 2004, 431, 287-290
    [34] Balkus, K. J. Jr.; Hargis, C. D.; Kowalak, S.; Synthesis of NaX Zeolites with Metallophthalocyanines [J] ACS Symp. Ser., 1992, 499, 347-354
    [35] Wessels, T.; Baerlocher, C.; McCusker, L. B.; Creyghton, E. J. An Ordered Form of the Extra-Large-Pore Zeolite UTD-1: Synthesis and Structure Analysis from Powder Diffraction Data [J] J. Am. Chem. Soc., 1999, 121, 6242-6247
    [36] Lobo, R. F.; Tsapatsis, M.; Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C. Y.; Balkus, K. J.; Zones, S. I.; Davis, M. E. Characterization of the Extra-Large-Pore Zeolite UTD-1 [J] J. Am. Chem. Soc., 1997, 119, 8474-8484
    [37] Flanigen, M. E.; Patton, R. L.; U. S. Patent, 1978, 4073864
    [38] Oliver, S.; Kuperman, A.; Lough, A.; Ozin, G. A. Influence of crystalline seeds onthe zeolitization of volcanic ashes: a calorimetric study [J] Stud. Sur. Sci. Catal., 1994, 84, 291-298
    [39] Cantin, A.; Corma, A.; Diaz-Cabanas, M. J.; Jorda, J. L.; Moliner, M.; Rey, F. Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta [J] Angew. Chem. Int. Ed., 2006, 45, 8013-8015
    [40] Corma, A.; Diaz-Cabanas, M. J.; Martinez-Triguero, J.; Rey, F.; Rius, J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst [J] Nature, 2002, 418, 514-517
    [41] Breck, D. W.; Flanigen, E. M.; Molecular Sieves, 1968, 49
    [42] McNicol, B. D. Spectroscopic studies of zeolite synthesis [J] J. Phys. Chem. 1972, 76, 3388-3390
    [43] McNicol, B. D.; Adv. Chem. Ser. 1973, 121, 152
    [44] Tsapatsis, M., Lorallo, M.; Davis, M. E. High-resolution electron microscopy study on the growth of zeolite L nanoclusters [J] Microp. Mater., 1996, 5, 381-388
    [45] Serrano, D. P.; Uguina, U. A.; Ovejero, G., Van Grieken, R.; Camacho, M. Evidence of solid-solid transformations during the TS-1 crystallization from amorphous wetness impregnated SiO2---TiO2 xerogels [J] Microp. Mater., 1996, 7, 309-321
    [46] Kerr, G. T. Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A [J] J. Phys. Chem., 1966, 70, 1047-1050
    [47] Ciric, J. Kinetics of zeolite A crystallization [J] J. Colloid Interf. Sci., 1968, 28, 315-324
    [48] Zhdanov, S. P., Adv. Chem. Series 101 Washington D. C., 1971, 20
    [49] Ueda, S.; Kageyama, N.; Koizumi, M.; Proc. of the 6th Intl. Zeolite Comf. Olson D. Bidio A. (Eds.) Butterworths, 1984, 905
    [50] Gabelica, Z. Appl. Catal.; 1980, 1, 201
    [51] Iton, L. E.; Trouw, F.; Rum, T. O. Epperson, J. E.; White, J. W.; Henderson, S. J. Small-angle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite [J] Langmuir, 1992, 8, 1045-1048
    [52]《沸石分子筛的结构与合成》徐如人,庞文琴,屠昆岗编,吉林大学出版, 1987
    [53] Bibby, D. M.; Dale, M. P. Synthesis of silica-sodalite from non-aqueous systems [J] Nature, 1985, 317, 157-158
    [54] Michael, D.; Mingo, P. Microwave syntheses of inorganic materials [J] Adv. Mater., 1993, 5, 857-859
    [55] Arafat, A.; Jansen, J. C.; Ebaid, A. R.; Van Bekkum, H. Microwave preparation of zeolite Y and ZSM-5 [J] Zeolites, 1993, 13, 162-165
    [56] Girnus, I.; Janvke, K.; Vetter, R.; Richer-Mendau, J.; Caro, J. Large AlPO4-5 crystals by microwave heating [J] Zeolites, 1995, 15, 33-39
    [57] Wu, C. G.; Bein, T., J. Chem. Soc. Chem. Commun., 1996, 8, 925
    [58] Zhao, J. P.; Cundy, C.; Dwyer, J. Synthesis of zeolites in a microwave heating environment [J] Studies in Surface Science and Catalysis, 1997, 105, 181-187
    [59] Fang, M.; Du, H.; Xu, W.; Meng, X.; Pang, W. Microwave preparation of molecular sieve AlPO4-5 with nanometer sizes [J] Microporous Mater., 1997, 9, 59-61
    [60] Han, Y.; Ma, H.; Qiu, S.; Xiao, F.-S. Preparation of zeolite A membranes by microwave heating [J] Microporous and Mesoporous Mater., 1999, 30, 321-326
    [61]霍启升,吉林大学博士论文,1992
    [62] Argauer, R. J.; Landolt, G. R. U. S. Patent, 1972, 3702886
    [63] Crea, F.; Aiello, R.; Nastro, A., Nagy, J. B. Synthesis of ZSM-5 zeolite from very dense systems: Formation of pelleted ZSM-5 zeolite from (Na, Li, TPA, Si, Al) hydrogels [J] Zeolites, 1991, 11, 521-527
    [64] Borade, R. B.; Clearfield, A. Synthesis of zeolite Beta from dense system containing a minimum of template [J] Catal. Lett. 1994, 26, 285-289
    [65] Davis, M. E. Ordered porous materials for emerging applications [J] Nature, 2002, 417, 813-821
    [66] Schmidt, I.; Krogh, A.; Wienberg, K.; Carlsson, A.; Brorso, M. N.; Jacobsen C. J. H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J] Chem. Commun., 2000, 2157-2158
    [67] Schmidt, I.; Boisen, A.; Gustavsson, E.;Stahl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. J. H.; Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J] Chem. Mater., 2001, 13, 4416-4418
    [68] Jacobsen C. J. H.; Houzvicka, J.; Carlsson, A.; Schmidt, I.; Stud. Surf. Sci. Catal.,2001, 135, 471
    [69] Janssen, A. H.; Schmidt, I.; Jacobsen, C. H. J.; Koster, A. J.; de Jong, K. P. Exploratory study of mesopore templating with carbon during zeolite synthesis [J] Micropor Mesopor. Mater., 2003, 65, 59-75
    [70] Kustova, M.; Egeblad, K.; Zhu, K. K.; Christensen, C. H. Versatile Route to Zeolite Single Crystals with Controlled Mesoporosity: in situ Sugar Decomposition for Templating of Hierarchical Zeolites [J] Chem. Mater., 2007, 19, 2915-2917
    [71] Zhu, H. B.; Liu, Z. C.; Kong, D. J.; Wang, Y. D.; Xie, Z. K. Nanosized CaCO3 as Hard Template for Creation of Intracrystal Pores within Silicalite-1 Crystal [J] Chem. Mater., 2008, 20, 1134-1139
    [72] Selvaraj, M.; Kawi, S. Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles [J] Chem. Mater., 2004, 16, 6-11
    [73] Stocker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior [J] Micropor. Mesopor. Mater., 1999, 29, 3-48
    [74] Jones, C. W.; Tsuji, K.; Takewaki, T.; Beck, L. W.; Davis, M. E. Tailoring molecular sieve properties during SDA removal via solvent extraction [J] Micropor. Mesopor. Mater., 2001, 48, 57-64
    [75] Lee, H.; Zones, S. I.; Davis, M. E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J] Nature, 2003, 425, 385-388
    [76]《新结构高性能多孔催化材料》谢在库等著,北京:中国石化出版社,2009
    [77] Shiralkar, V. P.; Clearfield, A. Synthesis of the molecular sieve ZSM-5 without the aid of templates [J] Zeolites, 1989, 9, 363-370
    [78] Zhou, Q.; Li, B. Z.; Qiu, S. L.; Pang, W. Q. Synthesis of low Si Al beta-zeolite by using nucleation gel [J] Chemical Journal of Chinese Universities-Chinese, 1999, 20, 693-695
    [79] Zhou, Q.; Qiu, S. L.; Pang, W. Q. Studies on the crystallization mechanism of beta zeolite synthesized with nucleation gel [J] Chemical Journal of Chinese Universities-Chinese, 2000, 21, 1-4
    [80] Song, J. W.; Dai, L.; Ji, Y. Y.; Xiao, F.-S. Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1 [J] Chem. Mater., 2006, 18, 2775-2777
    [81] Wu, Z. F.; Song, J. W.; Ji, Y. Y.; Ren, L. M.; Xiao, F.-S. Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution [J]Chem. Mater., 2008, 20, 357-359
    [82]周群,吉林大学博士论文,1994
    [83] Vaughan, D. E. W.; Strohmaier, K. G.; US Patent , 1987, 4657748
    [84] Leonowicz, M. E.; Vaughan D. E. W. Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology [J] Nature, 1987, 329, 819-821
    [85] Vaughan, D. E. W.; Strohmaier, K. G.; Proceeding of the 7th International Zeolite Conference, 1986, 207
    [86] Gualtieri, A. F.; Ferrari, S.; Galli, E.; Renzo, F. D.; Beek, W. Rietveld Structure Refinement of Zeolite ECR-1 [J] Chem. Mater., 2006, 18, 76-84
    [87] Ding, H.; Song, J. W.; Ren, L. M.; Xiao, F.-S. Synthesis of Zeolite ECR-1 from Hydrothermal Phase Transition of Zeolite Y [J] Chemical Journal of Chinese Universities-Chinese, 2009, 30, 255-257
    [88]宋江伟,吉林大学博士论文,2008
    [89] Rubin, M. K.; Rosinski, E. J., Plank, C. J.; Patent 4086186, 2003
    [90] Vartuli, J. C.; Kennedy, G. J.; Yoon, B. A.; Malek, A. Zeolite syntheses using diamines: evidence for in situ directing agent modification [J] Microporous and Mesoporous Materials, 2000, 38, 247-254
    [91] Bessel, S. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts [J] Applied Catalysis A: General, 1995, 126, 235-244
    [92] Zhou, F.; Tian, P.; Liu, Z. M.; Liu, G. Y.; Chang, F. X.; Li, J. Z. Synthesis of ZSM-34 and its catalytic properties in methanol-to-olefins reaction [J] Chinese Journal of Catalysis, 2007, 28, 817-822
    [93] Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J] Nature, 2009, 461, 246-249
    [94] Corma, A; Diaz, U.; Fornes, V.; Jorda, J. L.; Domine, M.; Rey, F.; Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides [J] Chem. Commun., 1999, 779-780
    [95] Fan, W; Wu, P; Namba, S.; Tatsumi, T A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor [J] Angew. Chem. Int. Ed., 2004, 43, 236-240
    [96] Ruan, J.; Wu, P.; Slater, B.; Terasaki, O. Structure Elucidation of the HighlyActive Titanosilicate Catalyst Ti-YNU-1 [J] Angew. Chem. Int. Ed., 2005, 44, 6719-6723
    [97] Inagaki, S.; Yokoi, T.; Kubota, Y.; Tatsumi, T.; Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moietiesElectronic supplementary information (ESI) available: 29Si MAS NMR, N2 adsorption isotherm. [J] Chem. Commun., 2007, 5188-5190
    [98] Wu, P.; Ruan, J.; Wang, L.; Wu L.; Wang, Y.; Liu, Y.; Fan, W.; He, M.; Terasaki, O.; Tatsumi, T. Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors [J] J. Am. Chem. Soc., 2008, 130, 8178-8187
    (1) Treacy, M. M. J.; Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth [J] Nature 1988, 332, 249-251.
    (2) (a) van Bekkum, H., Flanigen, E. M., Jacobs, P. A., Jansen, J. C., Eds. Introdcution to Zeolite Science and Practice; Elsevier: Amsterdam, 2001. (b) Xu, R., Pang, W., Yu, J., Huo, Q., Chen, J., Eds. Chemistry of Zeolite and Related Porous Materials; Wiley: Singapore, 2007.
    (3) Baerlocher, Ch.; McCusker, L. B.; Olson, D. H. Atlas of ZeoliteFramework Types; Elsevier: Amsterdam, 2007; pp 72-75.
    (4) (a) Xu, R., Gao, Z., Chen, J., Yan, W., Eds. From Zeolite to Porous MOF Materials-the 40th AnniVersary of International Zeolite Conference; Elsevier: Amsterdam, 2007. (b) Pittman, R. M.; Upson, L. L. U.S. Patent 7,312,370, 2007. (c) Frey, S. J.; Towler, G. P. U.S. Patent 7,288,687, 2007. (d) Fischer, R. H.; LaPierre, R. B.; Owens, P. J.; Varghese, P. U.S. Patent 4,738,766, 1988. (e) Bellussi, G.; Pazzuconi, G.; Perego, C.; Girotti, G.; Terzoni, G. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed byβ-Zeolites [J] J. Catal. 1995, 157, 227-234. (f) Halgeri, A. B.; Das, J. Novel catalytic aspects of beta zeolite for alkyl aromatics transformation [J] Appl. Catal., A 1999, 181, 347-354. (g) Yoon, J. W.; Chang, J.-S.; Lee, H.-D.; Kim, T.-J.; Jhung, S. H. Trimerization of isobutene over a zeolite beta catalyst [J] J. Catal. 2007, 245, 253-256.
    (5) Jones, C. W.; Tsuji, K.; Takewaki, T.; Beck, L. W.; Davis, M. E. Tailoring molecular sieve properties during SDA removal via solvent extraction [J] Micropor. Mesopor. Mater., 2001, 48, 57-64
    (6) Lee, H.; Zones, S. I.; Davis, M. E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J] Nature, 2003, 425, 385-388
    (7) Breck, D. W. Zeolite Molecular SieVes; Wiley: New York, 1974.
    (8) Shiralkar, V. P.; Clearfield, A. Synthesis of the molecular sieve ZSM-5 without the aid of templates [J] Zeolites 1989, 9, 363-370.
    (9) Song, J. W.; Dai, L.; Ji, Y. Y.; Xiao, F.-S. Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1 [J] Chem. Mater. 2006, 18, 2775-2777.
    (10) Wu, Z. F.; Song, J. W.; Ji, Y. Y.; Ren, L. M.; Xiao, F.-S. Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution [J] Chem.Mater. 2008, 20, 357-359.
    (11) (a) Kerr, G. T. Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B [J] J. Phys. Chem. 1968, 72, 1385-1386. (b) Traa, Y.; Thompson, R. W. Controlled co-crystallization of zeolites A and X [J] J. Mater. Chem. 2002, 12, 496-499. (c) Xu, X. C.; Yang, W. S.; Liu, J.; Lin, L. W. Synthesis and perfection evaluation of NaA zeolite membrane [J] Sep. Purif. Technol. 2001, 25, 475-485. (d) Bonaccorsi, L.; Proverbio, E. Synthesis of thick zeolite 4A coatings on stainless steel [J] Microporous Mesoporous Mater. 2004, 74, 221-229
    (12) Hincapie, B. O.; Garces, L. J.; Zhang, Q. H.; Sacco, A.; Suib, S. L. Synthesis of mordenite nanocrystals [J] Microporous Mesoporous Mater. 2004, 67, 19-26.
    (13) (a) Chu, P.; LaPierre, R. B. U.S. Patent 4,650,655, 1984. (b) Hedlund, J.; Jareman, F. Texture of MFI films grown from seeds [J] Curr. Opin. Colloid Interface Sci. 2005, 10, 226-232.
    (14) Cannan, T. R.; Hinchey, R. J. U.S. Patent 1992, 5, 139-759.
    (15) (a) Bouizi, Y.; Paillaud, J.-L.; Simon, L.; Valtchev, V. Seeded Synthesis of Very High Silica Zeolite A [J] Chem. Mater. 2007, 19, 652-654. (b) Valtchev, V.; Paillaud, J.-L.; Kessler, H.; Creyghton, E. J. Inductive effect of template containing UTD-1 seeds on the synthesis of zeolite SSZ-24 [J] Microporous Mesoporous Mater. 1999, 33, 143-148.
    (16) (a) Dorset, D. L.; Kennedy, G. J.; Strohmaier, K. G.; Diaz-Cabanas, M. J.; Rey, F.; Corma, A. P-Derived Organic Cations as Structure-Directing Agents: Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System [J] J. Am. Chem. Soc. 2006, 128, 8862-8867. (b) Diaz, U.; Fornes, V.; Corma, A.On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites [J] Microporous Mesoporous Mater. 2006, 90, 73-80.
    (17) Corma, A.; Navarro, M. T.; Rey, F.; Rius, J.; Valencia, S. Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism [J] Angew. Chem. Int. Ed., 2001, 40, 2277-2280
    (18)李赫咺,项寿鹤,吴德明,刘月婷,张晓森,刘述铨.高等学校化学学报, 1981,2,517
    (19)徐如人,庞文琴主编《无机合成与制备化学》,北京:高等教育出版社,2001
    (20) Zhou, Q.; Li, B. Z.; Qiu, S. L.; Pang, W. Q.; Synthesis of low Si Al beta-zeolite by using nucleation gel [J] Chemical Journal of Chinese Universities-Chinese, 1999, 20, 693-695
    (21) Zhou, Q.; Qiu, S. L.; Pang, W. Q.; Studies on the crystallization mechanism of beta zeolite synthesized with nucleation gel [J] Chemical Journal of Chinese Universities-Chinese, 2000, 21, 1-4
    (22) Karirek, H.; Lechert, H. Growth of the zeolite type NaY J. Phys. Chem. 1975, 79, 1589-1593.
    (23) Karirek, H.; Lechert, H. Rates of crystallization and a model for the growth of sodium-Y zeolites [J] J. Phys. Chem. 1976, 80, 1291-1296.
    (24) (a) Mintova, S.; Olson, N. H.; Valtchev, V.; Bein, T. Mechanism of Zeolite a Nanocrystal Growth from Colloids at Room Temperature [J] Science 1999, 283, 958-960. (b) Pelster, S. A.; Kalamajka, R.; Schrader, W.; Schüth, F. Dynamics of Silicate Species in Solution Studied by Mass Spectrometry with Isotopically Labeled Compounds [J] Angew. Chem. 2007, 119, 6794-6797.
    1. Baerlocher, C.; Meier, W. M.; Olson, D. H., Atlas of Zeolite Frameork Types. Sixth Revised Edition, Elsevier, Amsterdam, 2007.
    2. Breck, D. W. Editor, Zeolite Molecular Sieves, Krieger, Malabar (Florida), 1984.
    3. van Bekkum, H.; Flanigen, E. M.; Jacobs, P. A.; Jansen, J. C. Editors, Introdcution to Zeolite Science and Practice, Elsevier, Amsterdam, 2001.
    4. Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Editors, Chemitry of Zeolite and Related Porous Materials, Wiley, Singapore, 2007.
    5. Barrer, R. M. Editor, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    6. Rabo, J. A. Editor, Zeolite Chemistry and Catalysis, ACS Monograph1, Am. Chem. Soc., Washington, DC, 1976.
    7. Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J] Chem. Rev., 1995, 95, 559-614.
    8. Davis, M. E. Ordered porous materials for emerging applications [J] Nature, 2002, 417, 813-821.
    9. Tsapatsis, M. Molecular sieves in the nanotechnology era [J] AIChE J., 2002, 48, 654-660.
    10. Cundy C. S.; Cox P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time [J] Chem. Rev., 2003, 103, 663-702.
    11. Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M. ; Vlachos, D. G. Microstructural optimization of a zeolite membrane for organic vapor separation [J] Science, 2003, 300, 456-460.
    12. Degnan, T. F. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. [J] J. Catal., 2003, 216, 32-46.
    13. Lok, B. M.; Cannan, T. R.; Messina, C. A. The role of organic molecules inmolecular sieve synthesis. [J] Zeolites 1983, 3, 282-291.
    14. Gies, H.; Marler, B. The structure-controlling role of organic templates for the synthesis of prosils in the systems SiO/templates/H2O [J] Zeolites 1992, 12, 42-49.
    15. Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Structure of synthetic zeolite ZSM-5 [J] Nature, 1978, 272, 437-438.
    16. Treacy, M. M. J.; Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth [J] Nature 1988, 332, 249-251.
    17. (a) Lee, H.; Zone, S. I.; Davis, M. E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J] Nature 2003, 425, 385-388 ; (b) Lee, H.; Zone, S. I.; Davis, M. E. Zeolite Synthesis Using Degradable Structure-Directing Agents and Pore-Filling Agents [J] J. Phys. Chem. B 2005, 109, 2187-2191.
    18. Kuehl, G. H.; Timken, H. K. C. Acid sites in zeolite Beta: effects of ammonium exchange and steaming [J] Micropor. Mesopor. Mater. 2000, 35-36, 521-532.
    19. Takewaki, T.; Beck, L. W.; Davis, M. E. Zincosilicate CIT-6: A Precursor to a Family of *BEA-Type Molecular Sieves [J] J. Phys. Chem. B 1999, 103, 2674-2679.
    20. Jones, C. W.; Tsuji, K.; Takewaki, T.; Beck, L. W.; Davis, M. E. Tailoring molecular sieve properties during SDA removal via solvent extraction [J] Micropor. Mesopor. Mater. 2001, 48, 57-64.
    21. Takewaki, T.; Hwang, S. J.; Yamashita, H.; Davis, M. E. Micropor. Mesopor. Mater. 1999, 32, 265-278.
    22. Jones, C. W.; Tsuji, K.; Davis, M. E. Organic-functionalized molecular sieves (OFMSs). II. Synthesis, characterization and the transformation of OFMSscontaining non-polar functional groups into solid acids [J] Micropor. Mesopor. Mater. 1999, 33, 223-240.
    23. Li, H. X.; Xiang, S. H.; Wu, D. M.; Liu, Y. T.; Zhang, X. S.; Liu, S. S. Synthesis of ZSM-5 zeolite in the absence of organic templates [J] Chem J Chin Univ, 1981, 2, 517.
    24. Shiralkar, V. P.; Clearfield, A. Synthesis of the molecular sieve ZSM-5 without the aid of templates [J] Zeolites, 1989, 9, 363-370.
    25. Song, J. W.; Dai, L.; Ji, Y. Y.; Xiao, F.-S. Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1 [J] Chem. Mater. 2006, 18, 2775-2777.
    26. Wu, Z. F.; Song, J. W.; Ji, Y. Y.; Ren, L. M.; Xiao, F.-S. Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution [J] Chem Mater, 2008, 20, 357-359.
    27. Leonovicz, M. E.; Vaughan, D. E. W. Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology [J] Nature, 1987, 329, 819-821.
    28. Rubin; Mae K.; Rosinski; Edward J.; Plank; Charles J. U.S. Patent 4 086 186, 2003.
    29. Bellussi, G.; Pazzuconi, G.; Perego, C.; Girotti, G. ; Terzoni, G. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed byβ-Zeolites [J] J. Catal. 1995, 157, 227-234.
    30. Halgeri, A. B.; Das, J. Novel catalytic aspects of Beta zeolite for alkyl aromatics transformation [J] Appl. Catal. A, 1999, 181, 347-354.
    31. Corma, A.; Gonzalez-Alfaro, V.; Orchilles, A. V. The role of pore topology on the behavior of FCC zeolite additives [J] Appl. Catal. A, 1999, 187, 245-254.
    32. Yoon, J. W.; Chang, J.-S.; Lee, H.-D.; Kim, T.-J.; Jhung, S. H. Trimerization of isobutene over a zeolite Beta catalyst [J] J. Catal. 2007, 245, 253-256.
    33. Fischer, R. H.; LaPierre, R. B.; Owens, P. J.; Varghese, P. US Patent, 4738766, 1988.
    34. Pittman, R. M.; Upson, L. L. US Patent, 7312370, 2007.
    35. Frey, S. J.; Towler, G. P. US Patent, 7288687, 2007.
    36. Boggs, R. C.; Howard, D. G.; Smith, J. V.; Klein, G. L. Tschernichite, a new zeolite from Goble, Columbia County, Oregon [J] Am. Mineral 1993, 78, 822-825.
    37. Mintova, S., Olson, N. H., Valtchev, V. & Bein, T. Mechanism of zeolite a nanocrystal growth from colloids at room temperature [J] Science 1999, 283, 958-960
    38. Davis, M., Drews, T. O., Ramanan, H., He, C., Dong, J., Schnablegger, H., Katsoulakis, M. A., Kokkoli, E., Mccormick, A. V., R. L. Penn & Tsapatsis, A. M. Mechanistic principles of nanoparticle evolution to zeolite crystals [J] Nature Materials 2006, 5, 400-408.
    39. Corma A.; Davis M. E. Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures [J] ChemPhysChem 2004, 5, 304-313.
    40. Pelster, S. A., Kalamajka, R., Schrader, W. & Schuth, F. Minitoring the nucleation of zeolites by mass spectrometry [J] Angew. Chem. Int. Ed. 2007, 46, 2299-2302
    41. Mintova, S., Olson, N. H., Senker, J. & Bein, T. Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite [J] Angew. Chem. Int. Ed. 2002, 41, 2588-2560.
    42. Brent, R. & Anderson, M. W. Fundamental crystal growth mechanism in zeolite L revealed by atomic force microscopy [J] Angew. Chem. Int. Ed. 2008, 47, 5327-5330.
    43. Cheng, C. H. & Schantz, D. F. Nanoparticle formation and zeolite growth inTEOS/organocation/water solutions [J] J. Phys. Chem. B, 2005, 109, 7266-7274.
    44. Mintova, S., Olson, N. H. & Bein, T. Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids [J] Angew. Chem. Int. Ed. 1999, 38, 3201-3204.
    45. Corma, A.; Fornes, V.; Navarro, M. T.; Perez-Pariente, J. Acidity and Stability of MCM-41 Crystalline Aluminosilicates [J] J. Catal., 1994, 148, 569-574
    46. Bourgeat-Lami, E.; Fajula, F.; Anglerot, D.; Des Courieres, T. Single step dealumination of zeolite beta precursors for the preparation of hydrophobic adsorbents [J] Microporous Mater. 1993, 1, 237-245
    47. Perez-Pariente, J.; Sanz, J.; Fornes, V.; Corma, A. 29Si and 27Al MAS NMR study of zeoliteβwith different Si/Al Ratios [J] J. Catal. 1990, 124, 217-223
    48. Camblor, M. A.; Corma, A.; Valencia, S. Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta [J] J. Mater. Chem. 1998, 8, 2137-2145
    1. Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions [J] Chem. Rev., 1995, 95, 559-614
    2. Davis, M. E. Ordered porous materials for emerging applications [J] Nature, 2002, 417, 813-821
    3. Cundy C. S.; Cox P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time [J] Chem. Rev., 2003, 103, 663-702
    4. Treacy, M. M. J. ; Higgins, J.B. Collection of Simulation XRD Powder Patterns For Zeolites 2007, elsevier
    5. Lee, H.; Zone, S. I.; Davis, M. E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J] Nature 2003, 425, 385-388
    6. Lee, H.; Zone, S. I.; Davis, M. E. Zeolite Synthesis Using Degradable Structure-Directing Agents and Pore-Filling Agents [J] J. Phys. Chem. B 2005, 109, 2187-2191
    7. Vaughan, D. E. W.; Strohmaier, K. G.. U.S. Patent 1987, 4657748
    8. Leonovicz, M. E.; Vaughan, D. E. W. Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology [J] Nature, 1987, 329, 819-821
    9. Chen, C. S. H.; Schlender, J. L.; Wentzek, S. E.; Synthesis and characterization of synthetic zeolite ECR-1 [J] Zeolites, 1996, 17, 393-400
    10. Gualtieri, A. F.; Ferrair, S.; Galli, E. Rietveld Structure Refinement of Zeolite ECR-1 [J] Chem. Mater. 2006, 18, 76-84
    11. Song, J.W.; Dai, L.; Ji, Y.Y.; Xiao, F.-S. Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1 [J] Chem. Mater., 2006, 18, 2775-2777
    12. Merkle, A. B.; Slaughter, M. MINERALOGICAL NOTES: The crystal structure of heulandite (Ca,Na2)[Al2Si7O18]·6H2O [J] Am. Mineral. 1967, 52, 273-275
    13. Szostak, R. Handbook of Molecular Sieves, 1992, van Nostrand Reinhold, New York.
    14. Chiyoda, O.; Davis, M. E. Hydrothermal conversion of Y-zeolite using alkaline-earth cations [J] Microporous and Mesoporous Materials 1999, 32, 257-264
    15. Moteki, T. ; Chaikittisilp, W. ; Shimojima, A. ; Okubo, T. Silica Sodalite without Occluded Organic Matters by Topotactic Conversion of Lamellar Precursor [J] J. Am. Chem. Soc. 2008, 130, 15780-15781
    16. Wang, Y. X.; Gies, H.; Marler, B. Synthesis and Crystal Structure of Zeolite RUB-41 Obtained as Calcination Product of a Layered Precursor: a Systematic Approach to a New Synthesis Route [J] Chem. Mater. 2005, 17, 43-49
    [1]. Heinemann H. A retrospective view of advances in heterogeneous catalysis: 1956–1996 technology [J] Stud. Surf. Sci. Catal., 1996, 101, 69-75
    [2]. (a) Rubin, M. K.; Chu, P. US Patent, 1990, 4954325. (b) Leonowicz, M. E. ; Lawton, J. A. ; Lawton, S. L. ; Rubin, M. K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems [J] Science, 1994, 264, 1910-1913
    [3]. Ikeda, T. ; Akiyama, Y. ; Oumi, Y. ; Kawai, A. ; Mizukami, F. The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite [J] Angew. Chem. Int. Ed., 2004, 43, 4892-4896
    [4]. Zanadi, S. ; Alberti, A. ; Cruciani, G. ; Corma, A. ; Fornes, V. ; Brunelli, M. Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1) [J] Angew. Chem. Int. Ed., 2004, 43, 4933-4937
    [5]. Marler, B. ; Stroter, N. ; Gies, H. The structure of the new pure silica zeolite RUB-24, Si32O64, obtained by topotactic condensation of the intercalated layer silicate RUB-18 [J] Microporous Mesoporous Mater., 2005, 83, 201-211
    [6]. Wang, Y. X. ; Gies, H. ; Marler, B. ; Mueller, U. Synthesis and Crystal Structureof Zeolite RUB-41 Obtained as Calcination Product of a Layered Precursor: a Systematic Approach to a New Synthesis Route [J] Chem. Mater., 2005, 17, 43-49
    [7]. Inagaki, S. ; Yokoi, T. ; Kubota, Y. ; Tatsumi, T. Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moietiesElectronic supplementary information (ESI) available: 29Si MAS NMR, N2 adsorption isotherm. [J] Chem. Commun., 2007, 5188-5190
    [8]. Wu, P. ; Ruan, J. ; Wang, L. ;Wu, L. ; Wang, Y. ; Liu, Y. ; Fan, W. ; He, M. ; Terasaki, O. ; Tatsumi, T. Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors [J] J. Am. Chem. Soc., 2008, 130, 8178-8187
    [9]. Fan, W. ; Wu, P. ; Namba, S. ; Tatsumi, T. A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor [J] Angew. Chem. Int. Ed., 2004, 43, 236-240
    [10]. Ruan, J.; Wu, P.; Slater, B.; Terasaki, O. Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1 [J] Angew. Chem. Int. Ed., 2004, 44, 6719-6723
    [11]. Yamomoto, K.; Sakata, Y.; Nohara, Y.; Takahashi, Y.; Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks [J] Science, 2003, 300, 470-472

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700