槲皮素、异土木香内酯和土木内酯的结构修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分槲皮素的结构修饰及活性评价
     槲皮素是一种分布最广泛的黄酮类化合物,约有100多种植物中含有槲皮素。研究发现槲皮素具有广泛的药理作用和生物活性,如抗氧化、抗癌、抗菌、抗病毒及镇痛作用等,因此对槲皮素及其衍生物的生物活性研究越来越受到关注。然而槲皮素脂溶性较差、生物利用度较低,使其开发利用受到了限制。槲皮素-O-甲基化衍生物是在体内代谢的中间体并被认为是最有生物活性的结构,所以对槲皮素进行甲基化修饰及活性研究具有相当重要的意义。
     目的:以槲皮素为研究对象,通过直接甲基化和先用保护基对槲皮素的羟基进行保护,然后再甲基化两种途径,获取槲皮素甲基化衍生物,用1H NMR、13C NMR、HSQC和HMBC等鉴定化合物结构,对结构修饰的产物进行抗肝癌活性筛选,为发现新的药物先导化合物做出一些基础研究工作。
     方法:将精制后的槲皮素和适量的DMF置于三口烧瓶中,加入适量的无水碳酸钾,室温搅拌10min后加入甲基化试剂碘甲烷,在室温或0℃反应,TLC监测至反应结束,用稀盐酸将反应液调至中性,乙酸乙酯萃取3次,合并萃取液,水洗,无水硫酸钠干燥过夜,旋蒸除去溶剂,残液用硅胶柱色谱进行分离,根据反应温度和反应物投料比的不同,可得单甲基槲皮素至四甲基槲皮素。将槲皮素溶于DMF中,加入适量的无水碳酸钾,室温搅拌10min后加入苄基化试剂氯化苄,60℃反应,TLC监测至反应结束,用稀盐酸将反应液调至中性,乙酸乙酯萃取3次,合并萃取液,水洗,无水硫酸钠干燥过夜,旋蒸除去溶剂,残液用硅胶柱色谱进行分离,根据反应温度和氯化苄用量的不同,可主要得三苄基槲皮素和四苄基槲皮素,然后再用甲基化试剂碘甲烷对苄基槲皮素分别进行甲基化。用二氯二苯甲烷对槲皮素的邻二酚羟基进行保护,然后再用甲基化试剂碘甲烷对其进行甲基化。产物应用ESI-MS、1H NMR鉴定化合物的结构、部分化合物经13C NMR、HSQC和HMBC等鉴定结构。
     结果:不用保护基,直接用碘甲烷对槲皮素进行甲基化,室温条件下反应主要得3,7,3′,4′-O-四甲基槲皮素(2a)和3,7,4′-O-三甲基槲皮素(2b),0℃反应,主要得7,4′-O-二甲基槲皮素(2c)、3,7-O-二甲基槲皮素(2d)和3-O-甲基槲皮素(2e)。用氯化苄对槲皮素的羟基进行保护,在70℃、氯化苄是槲皮素的5倍(摩尔数)时,主要得四苄基槲皮素(3b);在60℃、氯化苄是槲皮素的3倍(摩尔数)时,主要得三苄基槲皮素(3a);用碘甲烷分别对三苄基槲皮素和四苄基槲皮素进行甲基化反应,得到了三苄基甲基槲皮素(4a),而未能得到四苄基甲基槲皮素(4b)。用二氯二苯甲烷对槲皮素的邻二酚羟基进行保护得化合物5,由于5的收率太低,而未对其进行甲基化反应。
     结论:本研究对槲皮素进行了结构修饰,直接用碘甲烷和槲皮素反应,在不同的温度及投料比条件下,共得到5个槲皮素甲基化衍生物;先将槲皮素的羟基保护起来,然后再进行甲基反应的实验方案和直接甲基化的实验方案相比,反应步骤多,分离提纯困难、收率低。抗肝癌活性实验结果表明,槲皮素的甲基化程度越高,抗肝癌细胞(人肝癌细胞株Bel-7402、人肝癌细胞株Hep G2、大鼠肝癌细胞株SMMC-7721)增殖能力越弱。
     第二部分土木香的提取分离
     目的:以中药材土木香根为研究对象,利用硅胶柱色谱、硝酸银硅胶柱色谱等分离技术对其进行分离,获得异土木香内酯和土木香内酯单体化合物,用1H NMR鉴定化合物结构,为下一步的结构修饰奠定物质基础。
     方法:取粉碎后的药材约5Kg,用99%乙醇加热回流2小时提取3次,合并滤液,除去溶剂得浸膏,即土木香根的粗提物,约600g。将得到的土木香浸膏分散于氯化钠饱和水溶液中,依次用石油醚、二氯甲烷进行萃取,得石油醚提取物浸膏约135g、二氯甲烷提取物浸膏约70g。采用硅胶柱色谱、硝酸银硅胶柱色谱对以上部两种浸膏进行分离可得异土木香内酯和土木香内酯两个化合物,用1H NMR对化合物的结构进行鉴定。
     结果:通过乙醇提取、石油醚和二氯甲烷萃取和柱色谱等步骤从土木香根中分离得到异土木香内酯和土木香内酯两个化合物,为下一步的结构修饰奠定了物质基础。
     结论:本研究主要是从土木香根中提取其主要活性成分异土木香内酯和土木香内酯,经过乙醇提取、石油醚和二氯甲烷萃取、柱色谱分离等步步骤可以得到异土木香内酯和土木香内酯。
     第三部分异土木香内酯的结构修饰—Heck反应
     目的:以异土木香内酯为研究对象,通过Heck反应对其进行结构修饰,通过1H NMR数据对化合物的结构进行鉴定。对结构修饰的产物进行抗肝癌活性筛选,为发现新的药物先导化合物做出一些基础研究工作。
     方法:在醋酸钯和三(邻甲苯基)膦的催化下和三乙胺的存在下,在DMF溶液中加入碘代芳烃对异土木香内酯进行结构修饰,120°C加热反应10-12h,反应完毕后用乙酸乙酯萃取,最后通过硅胶柱色谱进行分离纯化,洗脱剂为石油醚-乙酸乙酯(15:1)。用MTT法测定异土木香内酯衍生物3a-3d对三种肝癌细胞的抑制活性。
     结果:优化了Heck反应的合成条件:醋酸钯和三(邻甲苯基)膦是最佳的催化体系,温度120℃反应10-12h。反应物萃取之后用硅胶柱层析法进行分离纯化,得对氯苯异土木香内酯(9a)、对苯异土木香内酯(9b)、对甲苯异土木香内酯(9c)和对甲氧基苯异土木香内酯(9d)4个化合物,收率60-91%。
     结论:本研究建立了用碘代芳烃对异土木香内酯进行结构修饰的方法,优化了反应条件。用MTT法测定异土木香内酯衍生物9a-9d,对氯苯异土木香内酯(9a)和对甲氧基苯异土木香内酯(9d)对Hep G2肿瘤细胞的增殖抑制活性和紫杉醇基本相同,优于顺铂。
     第四部分异土木香内酯的结构修饰—Michael加成反应
     目的:以异土木香内酯为研究对象,用活性亚甲基化合物通过Michael加成反应对其进行结构修饰,产物通过1H NMR、13C NMR、HRMS进行结构鉴定。对结构修饰的产物进行抗肝癌活性筛选,为发现新的药物先导化合物做出一些基础研究工作。
     方法:将活性亚甲基化合物溶于乙醇中,加入适量的碱催化剂后室温搅拌,然后再加异土木香内酯,室温搅拌反应,TLC监测反应进程,反应混合物调为中性用后乙酸乙酯萃取、然后通过硅胶柱色谱进行纯化,洗脱剂为石油醚-乙酸乙酯(15:1)。用MTT法测定异土木香内酯衍生物11a-11g对三种肝癌细胞(人肝癌细胞株Bel-7402、人肝癌细胞株Hep G2、大鼠肝癌细胞株SMMC-7721)的抑制活性。
     结果:以异土木香内酯为底物,用7种活性亚甲基化合物通过Michael加成反应对其进行结构修饰,共得到了7个异土木香内酯衍生物,即氰乙酸甲酯异土木香内酯(11a)、氰乙酸乙酯异土木香内酯(11b)、丙二酸二甲酯异土木香内酯(11c)、丙二酸二乙酯异土木香内酯(11d),硝基甲烷异土木香内酯(11e)、硝基乙烷异土木香内酯(11f)、乙酰乙酸乙酯异土木香内酯(11g)所有化合物经核磁氢谱、碳谱和高分辨质谱进行结构鉴定。以化合物11a和11c为例优化了反应条件,目标化合物收率可达71~94%。
     结论:本研究建立了用活性亚甲基化合物对异土木香内酯进行结构修饰的方法,优化了反应条件,合成了7个未见文献报道的化合物11a-11g。用MTT法测定合成的7个异土木香内酯衍生物的抗肝癌活性,氰乙酸甲酯(11a)异土木香内酯和氰乙酸乙酯异土木香内酯(11b)对Hep G2肿瘤细胞增殖有一定的抑制作用,其抑制活性大于顺铂,小于紫杉醇。
     第五部分土木香内酯的结构修饰—Michael加成反应
     目的:以土木香内酯为研究对象,用活性亚甲基化合物通过Michael加成反应对其进行结构修饰,所合成的化合物通过1H NMR、13C NMR对化合物的结构进行鉴定。
     方法:将活性亚甲基化合物溶于乙醇中,加入适量的碱催化剂,室温搅拌,然后再加土木香内酯,室温搅拌反应,TLC监测反应进程,反应混合物调为中性用后乙酸乙酯萃取、然后通过硅胶柱色谱进行纯化,洗脱剂为石油醚-乙酸乙酯(15:1)。
     结果:以土木香内酯为底物,用活性亚甲基化合物通过Michael加成反应对其进行结构修饰,共得到了6个土木香内酯衍生物,即氰乙酸甲酯土木香内酯(13a)、丙二酸二甲酯异土木香内酯(13b)、丙二酸二乙酯异土木香内酯(13c),硝基甲烷异土木香内酯(13d)、硝基乙烷异土木香内酯(13e)、乙酰乙酸乙酯异土木香内酯(13f),所有化合物经核磁氢谱、碳谱进行结构鉴定。
     结论:本研究建立了用活性亚甲基化合物对土木香内酯进行结构修饰的方法,优化了反应条件,合成了6个未见文献报道的化合物13a-13f。
Part one Structural modification of quercetin and their activityevaluation
     Quercetin is one of the most widely distributed of flavonoids, and about100types of plants contain quercetin. It was reported that quercetin hasextensive pharmacological effects and biological activities, such asantioxidant, anticancer, antibacterial, antiviral, analgesic action and so on.Therefore, the research on biological activities of quercetin and its derivativeshas attached more and more attention. However, the development andutilization of quercetin is limited due to its poor fat-solubility and lowbioavailability. Methylated derivatives of quercetin are proposed to be themost biologically active intermediates in the metabolism of the body, so it isof great importance to develop the methylation routes of quercetin and thecorresponding biological activities.
     Objective: The objective of this project is to synthesize methylatedderivatives of quercetin via direct or indirect two methods, followed by thebioactivity screening against tumor cells to provide basic information forfurther drug discovery. The structures of the synthesized compounds wereelucidated by means of1H NMR,13C NMR, HSQC and HMBC. To exploidthe activities of synthesized quercetin derivatives for tumor cells by bissayscreen. We do some base research works for discovering new drug lead
     compounds.
     Methods: The refined quercetin in DMF was added anhydrous K2CO3.After stirring at room temperature for10min, methyl iodide was added, andthe reaction was kept at room temperature or0°C until the TLC showed a fullconversion. The mixture was neutralized with HCl, extracted with EtOAc,washed with H2O and dried over anhydrous Na2SO4. After concentration and column chromatography, mono-, di-, tri-, or tetra-methylated quercetins wereobtained based on the ratio of reactants. The refined quercetin in DMF wasadded anhydrous K2CO3. After stirring at room temperature for10min,benzyl iodide was added, and the reaction was kept at room60°C until theTLC showed a full conversion. The mixture was neutralized with HCl,extracted with EtOAc, washed with H2O and dried over anhydrous Na2SO4.After concentration and column chromatography, tri-or tetra-methylatedquercetins were obtained based on the ratio of reactants. The obtainedcompounds were methylated with methyl iodide. The two ortho OH groupsof quercetin were protected with dichlorodiphenylmethane, followed bymethylation with methyl iodide. The products were characterized withESI-MS and NMR.
     Results: The direct methylation of quercetin without protection mainlyafforded3,7,3′,4′-O-tertmethylquercetin and3,7,4′-O-trimethylquercetin whenthe reaction was carried out at room temperature, while when it was done at0℃, the products were mainly7,4′-O-dimethylquercetin,3,7,-O-dimethylquercetin and3-O-methylquercetin. Benzylation of quercetinaffored3,7,3′,4′-O-tertbenzylquercetin when5equiv. benzyl chloride wasadded at70℃, and3,7,4′-O-tritbenzylquercetin when3equiv. benzylchloride was added at60℃. Methylation of Compound3a with methyl iodideafforded Compound4a. However, methylation of Compound3b under thesame conditions failed to produce Compound4b. Protection of the ortho OHgroups of quercetin with dichlorodiphenylmethane to obtain Compound5withreally low yield, so further methylation was not carried out.
     Conclusion: The structural modification of quercetin was carried out.Five methylated derivatives are synthesized from quercetin and methyl iodideunder different conditions. The indirect methylation route via protection led toseparation difficulty and low yield. The liver cancer efficacy tests showed thatmethylated quercetins are less active than the parent compound. Higher degreeof methylation led to lower bioactivity.
     Part Two The Extraction and Separation of Inula heleium Roots
     Objective: The objective of this project is to obtain isoalantolactone andalantolactone from the root of I. helenium, we used the technologies of Silicagel column chromatography, Silver nitrate silica gel column chromatography,and HPLC, etc. The structures of the pure compounds were elucidated bymeans of1H NMR. Material basis were provided for the further structuralmodification of isoalantolactone and alantolactone.
     Methods: The crushed roots of Inula helenium (5.0Kg) in99%ethanolwas reflux for2hr. After filtered, the alcohol extract was concentrated to yield600g crude product, which was suspended in brine and extracted withpetroleum ether, dichloromethane in turn. Two fractions were obtained:petroleum ether fraction135g and dichloromethane fraction70g. Thefractions were subjected to silica gel column chromatography and silvernitrate silica gel column chromatography to get pure compounds. Thecompounds were1H NMR, and13C NMR.
     Results: Isoalantolactone and alantolactone were isolated from the rootsof I.helenium through extraction and silica gel column chromatographyfurtherstructural modification.
     Conclusion: The main active ingredients isoalantolactone andalantolactone were isolated from the roots of I. helenium through extractionand silica gel column chromatography.
     Part Three Structural Modification of Isoalantolactone–Heck Reaction
     Objective: Structural modification of isoalantolactone was proceededthrough Heck Reaction and the synthesized compounds were elucidated bymeans of1H NMR. These compounds were evaluated toxic activities againstthree different hepatoma cell lines, Bel-7402, SMMC-7721and Hep G2so asto provide information for further drug discovery.
     Methods: Aromatic iodide, Pd(OAc)2, were added to a solution ofisoalantolactone in DMF. Then, add a small amount of triethylamine. Thereaction mixture was heated for10-12h at120°C. The mixture was cooledroom temperature and poured into water and extracted with ethyl acetate. After evaporation of the solvent, the residue was purified by silica gel columnchromatography. These compounds were evaluated for toxic activities againstthree different hepatoma cell lines by MTT method.
     Results: Optimizing the Heck reaction conditions: Pd(OAc)2, andtris(o-tolyl)phosphine was the best catalytic systems, reacted10-12hours at120℃. Compounds9a-9d were purified by silica gel column chromatography,the yields from60%to91%. Inhibitory activity of9a and9d on theproliferation of tumor cells are basically same to taxinol, supor to cisplatin andMTX.
     Conclusion: This study established a method to modify the structure ofisoalantolactone with aryl iodides and optimized the reaction conditions.Compounds9a-9d were evaluated for toxic activities against three differenthepatoma cell lines by MTT method. The results showed that compounds9aand9d had good inhibitory activity against hepatoma cell lines.
     Part Four Structural Modification of Isoalantolactone–MichaelReaction
     Objective: The objective of this project is to modify isoalantolactonethrough Michael reaction and the synthesized compounds were elucidated bymeans of1H NMR,13C NMR and HRMS. These compounds were evaluatedtoxic activities against three different hepatoma cell lines, Bel-7402,SMMC-7721and Hep G2so as to provide information for further drugdiscovery.
     Methods: Active methylene compounds and proper base were added to asolution of isoalantolactone in anhydrous EtOH. The mixture was stirred atroom temperature for2h. The reaction mixture was adjusted to neutral withdilute hydrochloric acid solution. After evaporation of the solvent, the residuewas purified by silica gel column chromatography. The synthesizedcompounds were evaluated for toxic activities against three different hepatomacell lines by MTT method.
     Results: Seven isoalantolactone derivatives11a-11g were synthesizedthrough Michael reaction. These compounds were elucidated by means of1H NMR,13C NMR and HRMS. To exploid the active constituents for tumor cellsby activity screen. The reaction conditions were optimized, the yields from71%to94%.
     Conclusion: This study established a method to modify the structure ofisoalantolactone with active methylene compounds and optimized the reactionconditions. Six new compounds11a-11g were synthesized. These compoundswere evaluated for toxic activities against three different hepatoma cell lines.The results showed that compounds11a and11b have inhibitory activity onthe proliferation of tumor cells. Inhibitory activity on tumor cells was greaterthan less than cisplatin a, less than taxinol.
     Part Five Structural Modification of Alantolactone–Michael Reaction
     Objective: Structural modification of alantolactone was proceededthrough Michael reaction and the synthesized compounds were elucidated bymeans of1H NMR and13C NMR. These compounds were evaluated for toxicactivities against three different hepatoma cell lines, Bel-7402, SMMC-7721and Hep G2. To laid the groundwork for discoverying lead compounds in drugstudy.
     Methods: Active methylene compounds and proper base were added to asolution of isoalantolactone in anhydrous EtOH. The mixture was stirred atroom temperature. The reaction mixture was adjusted to neutral with dilutehydrochloric acid solution. After evaporation of the solvent, the residue waspurified by silica gel column chromatography.
     Results: Six alantolactone derivatives13a-13f were synthesized throughMichael reaction. These compounds were elucidated by means of1H NMRand13C NMR.
     Conclusions: This study established a method to modify the structure ofalantolactone with active methylene compounds and optimized the reactionconditions. Six new compounds13a-13f were synthesized.
引文
1杨博,吴茜,李志裕.黄酮化合物的合成研究进展.化学通报,2009,20~26
    2Sandhar H K, Kumar B, Prasher S, et al. A review of phytochemistry andpharmacology of flavonoids. Internationale PharmaceuticaSciencia,2011,1:25~41
    3Tomas-Barberan F A, The Flavonoids-Advances in Research since1986.Phytochem. Anal.1995,6:55
    4Larocca L M, Maggiano N. Differential sensitivity of leukemic and normalhematopoietic progenitors progenitors to the killing effect of hyperthermiaand quercetin used in combination, role of heat-shock protein-70. Int JCancer,1997,73:75~83
    5Robert J N, van Nood E, van Hoorn D E C, et al. A review of probablemechanisms of action and potential applications. Am J Clin Nutr,2001,74:418~425
    6金越,吕勇,韩国柱,等.槲皮素及其糖苷对缺氧缺糖损伤的HEK293细胞保护作用及其构效关系研究.中草药,2009,40:618~620
    7郭瑞霞,李力更,霍长虹,等.槲皮素甲基化衍生物的半合成及构-效关系,中草药,2013,44:359~369
    8曾佑伟,赵金莲,彭永宏.黄酮的吸收和代谢研究进展.中草药,2008,39:460~464
    9裴利宽,郭宝林.黄酮类化合物吸收和代谢研究进展.中国药学杂志,2006,41:568~572
    10Heijnen C G M, Haenen G R M M, Vekemans J A J M, et al. Peroxynitritescavenging of flavonoids: structure activity relationship. EnvironmentalToxicology and Pharmacology,2001,10:199~206
    11Jurd L. Plant polyphenols IV. Migration of acetyl groups during alkylationof the partial acetates of flavonoid compounds. J Am Chem Soc,1958,80:5527~5531
    12Farkas L, Vermes B, Nogradi M. First synthesis of three natural quercetinglucosides (spiraeoside, quercetin5-and3'-O-β-D-glucopyranoside).Chemische Berichte,1972,105:3505~3510
    13Pacheco, H, Grouiller A. Chemistry of flavone compounds. I. Synthesis ofmono-and di-O-methylflavonols. Study of their ultraviolet and infraredspectral properties. Bulletin de la Societe Chimique de France,1965,3:779~785
    14Bouktaib M, Lebrun S, Atmani A, et al. Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites,through selective protection of phenolic functions. Tetrahedron,2002,58:10001~10009
    15方专.微波辅助选择性脱甲基反应及槲皮素甲基化反应研究.四川:四川大学,2007
    16Wu Y B, Ni ZY, Huo C H, et al. Xylomexicanins C and D, newmexicanolide-type limonoids from Xylocarpus granatum. Biosci.Biotechnol. Biochem.2013,77:736~740
    17Jung Y H,Park G S, Park H R, et al. Quercetin conjugate as anticanceragent, and method for the preparation thereof. Repub. Korean KongkaeTaeho Kongbo, KR2011064006A,2011
    18Mora A. Structure activity relationship of polymathoxy flavones and otherflavonoids as inhibitors of non enzymic lipid peroxidation. Biochem Phar-macol,1990,40:793-797
    1李雪莲,朴慧善.土木香的化学成分及药理作用研究进展,中国现代中药,2007,9:28~30
    2中国科学院中国植物志编辑委员会.中国植物志,北京:科学出版社,19793李勇,丛斌,董玫,等.土木香中倍半萜内酯抗肿瘤活性及构效关系研究.中草药,2010,41:1336~1338
    4Huo Y, Shi H, Wang M Y, et al. Chemical constituents and pharmacologi-cal properties of Radix Inulae. Pharmazie,2008,63:699~703
    5丘翠嫦,戴斌.新疆木香中土木香内醋与异土木香内醋的分离鉴定.中药材,1995,18:30~31
    6Bohlmann F, Mahanta P K, Jakupovic J, et al. New sesquiterpene lactonesfrom Inula species, Phytochemistry,1978,17:1165~1172
    1Huo Y, Shi H M, Wang M Y, et al. Chemical constituents and pharmacolo-gical properties of Radix Inulae. Pharmazie,2008,63:699-703
    2Schomburg C, Schuehly W, Da Costa F, et al. Natural sesquiterpenelactones as inhibitors of Myb-dependent gene expression: Structure-activity relationships. European Journal of MedicinalChemistry,2013,63:313~320
    3陈星晗,Heck反应合成1,3取代吲哚衍生物,南昌:南昌大学,2007
    4王宗廷,张云山,王书超等. He c k反应最新研究进展,有机化学,2007,27:143~152
    5Dounay Amy B, Overman Larry E. The asymmetric intramolecular Heckreaction in natural product total synthesis. Chemicalreviews,2003,103:2945~2964
    6Nicolaou K C, Bulger Paul G, Sarlah David. Palladium-catalyzed cross-coupling reactions in total synthesis. Angewandte Chemie, InternationalEdition,2005,44:4442~4489
    7Klochkov S G, Afanas’eva S V, Ermatova A B, et al. Modification ofalantolactones by natural alkaloids. Chemistry of Natural Compounds,2011,47:716-725
    8杜会静,史海明,王梦月,等.异土木香内酯及土木香内酯的结构修饰研究,2013,25:156~160
    9Kalsi P S, Goyal R, Talwar K K, Chhabra B R. Epoxy alantolides:isoinunal-a new potent plant growth regulator from Inula racemosa.Phytochemistry,1988,27:2079~2081
    10Belovodskii A V, Shul'ts E E, Shakirov M M, et al. Synthetic trans-formations of methylenelactones of eudesmanic type. Behavior ofisoalantolactone under the conitions of heck reaction. Russ J Org Chem,2010,46:1719~1734
    11Belovodskii A V, Shul'ts E E, Shakirov M M, et al. Sesquiterpenemetylenelactones in a palladium-catalyzed cross-coupling reaction.Doklady Chemistry,2009,426:138~142
    12Wu Y B, Ni ZY, Huo C H, et al. Xylomexicanins C and D, newmexicanolide-type limonoids from Xylocarpus granatum. BiosciBiotechnol Biochem,2013,77:736~740
    1Huo Y, Shi H M, Wang M Y, et al. Chemical constituents andpharmacological properties of Radix Inulae. Pharmazie,2008,63:699~703
    2Belovodskii A V, Shults E E, Shakirov M M, et al. Synthetictransformations of methylenelactones of eudesmanic type. Behavior ofisoalantolactone under the conditions of Heck reaction. Russian Journal ofOrganic Chemistry,2010,46:1719~1734
    3杜会静,史海明,王梦月,等.异土木香内酯及土木香内酯的结构修饰研究,2013,25:156~160
    4Kalsi P S, Goyal R, Talwar K K, Chhabra B R. Epoxy alantolides:isoinunal-a new potent plant growth regulator from Inula racemosa.Phytochemistry,1988,27:2079~2081
    5Naidu B N, LiW Y, Sorenson M E, et al. Organic reactions in frozen water:Michael addition of amines and thiols to the dehydroalanine side chainofnocathiacins. Tetrahedron Lett,2004,45:1059~1063
    6Rossiter B C, Swingglen M. Asymmetric Conjugate Addition. Chem Rev,1992,92:771~806
    7郭雄明,王心良,蒋宗林,等.一种手性金鸡纳季铵盐的合成及催化α,β-不饱和酮的M i chael加成反应研究,2009,30:104~107
    8Wu Y B, Ni ZY, Huo C H, et al. Xylomexicanins C and D, newmexicanolide-type limonoids from Xylocarpus granatum. BiosciBiotechnol Biochem,2013,77:736~740
    1Huo Y, Shi H M, Wang M Y, et al. Chemical constituents and pharmacolo-gical properties of Radix Inulae. Pharmazie,2008,63:699~703
    2Kulyyasov A T, Seitembetov T S, Turdybekov K M, et al. Epoxidation ofalantolactone and isoalantolactone. Khimiya PrirodnykhSoedinenii,1996,6:879~884
    3Hussain S, Sharma M, Meenakshi. Highly selective oxygenations ofolefins over selenium dioxide using urea hydrogen peroxide as oxidisingagent with sesquiterpene lactones. Journal of Global PharmaTechnology,2010,2:88~92
    4杜会静,史海明,王梦月,等.异土木香内酯及土木香内酯的结构修饰研究,2013,25:156~160
    5Kalsi P S, Goyal R, Talwar K K, Chhabra B R. Epoxy alantolides:isoinunal-a new potent plant growth regulator from Inula racemosa.Phytochemistry,1988,27:2079~2081
    6Naidu B N, LiW Y, Sorenson M E, et al. Organic reactions in frozen water:Michael addition of amines and thiols to the dehydroalanine side chainofnocathiacins. Tetrahedron Lett,2004,45:1059~1063
    7Rossiter B C, Swingglen M. Asymmetric conjugate addition. Chem Rev,
    1992,92:771~806
    8郭雄明,王心良,蒋宗林,等.一种手性金鸡纳季铵盐的合成及催化α,β-不饱和酮的Michael加成反应研究,2009,30:104~107
    1Ollis W D, Weight D. The synthesis of3-substituted chromones byrearrangenment of O-acyloxyacetophenones. J Chem Soc,1952:3826~3830
    2Ullah M E,Ayaz M,Hussain Z,et a1. Synthesis and antibacterial activityof substituted flavones,4-thioflavones and4-iminoflavones. Bioorganic&Medicinal Chemistry,2006,14:4704~4711
    3Ares J J, Outt P E, Kakodkar S V, et al. A convenient large-scale synthesisof5-methoxyflavone and its application to analog preparation. Journal ofOrganic Chemistry,1993,58:7903~7905
    4Ares J J, Wehmeyer K R. A simple synthesis of13C6-labeled flavone and5-methoxyflavone. Journal of Labelled Compounds andadiopharmaceuticals,1994,34:635~641
    5Cushman M, Nagarathnam D. A method for the facile synthesis of ring-Ahydroxylated flavones. Tetrahedron Letter,1990,31:6497~6500
    6Riva C, Toma C D, Donafel L, et al. New DBU-{1,8-diazabicyclo[5.4.0]undec-7-ene}-assisted one-pot synthesis of2,8-disubstituted4H-1-benzopyran-4-ones. Synthesis,1997:195~201
    7Bios F, Beney C, Mariotte A M. et al. A one-step synthesis of5-hudroxyflavones. Synlett.1999,9:1480~1482
    8Varma R S, Saini R K, Kumar D. An expeditious synthesis of flavones onmontmorillonite K10clay with microvaves. Journal of Chemical Research,Synopses,1998,6:348~349
    9Ganguly A K, Kaur S, Mahata P K, et al. Synthesis and properties of3-acyl-g-pyrones, a novel class of flavones and chromones. TetrahedronLetters.2005,46:4119~4121
    10段新方,张站斌,段新红.5,3’,4’-三羟基-6,7-二甲氧基黄酮的另法全合成.有机化学,2003,23:353~355
    11石强,张丽洁,姚转乐.相转移催化法合成7-羟基黄酮的研究.应用化工,2009,38:1479~1481
    12Chen Z, Hu Y, Wu H. et al. Synthesis and biological evaluation offlavonoids as vasorelaxant agents. Bioorganic&Medicinal ChemistryLetters,2004,14:3949~3952
    13Joo Y H, Kim J K, Kang S H, et al.2,3-Diarylbenzopyran derivatives as anovel selective cyclooxygenase-2-inhibitors. Bioorganic&MedicinalChemisry Letters.2003,13:413~417
    14李更新,吕以仙,刘俊以,等.黄酮类化合物研究—用I2-DMSO-H2SO4系统由2’-羟基查尔酮合成黄酮.科学通报,1985,12:953~955
    15Gupta M, Psul S, Gupta R, et al. A rapid method for the cyclization of2’-hydroxychalcones into flavones. Organic Preparations and ProceduresInternational,2000,32:280~283
    16Zhao L Y. A simple and rapid method for synthesis of N,2-diaryldiazeneearboxyamide. Chinese Chemical Letters,1998,19:351~352
    17Kim S, Sohn D W, Kim Y C, et al. Fine tuning of a reported synthetic routefor biologically active flavonoid, baicalein. Archives of PharmacalResearch,2007,30:18~21
    18Miyake H, Takizawa E, Sasaki M. Syntheses of flavones via theiodine-mediated oxidative cyclization of1,3-diphenylprop-2-en-1-ones. Bulletin of the Chemical Society of Japan,2003,76:835~836
    19Garcia H, Iborra S, Primo S, et al.6-Endo-dig5-exo-dig ring closure inO-hydroxyaryl phenylethynyl ketones. A new approach to the synthesis offlavones and aurones. J Org Chem,1986,51:4432~4436
    20Mcgarry L W, Detty M R. Synthesis of highly functionalized flavones andchromones using cycloacylation reactions and C-3fuctionalization. A totalsynthesis of hormothamnione. J Org Chem,1990,55:4349~4356
    21Singh O V, Muthukrishnan M, Raj G. Manganese(III) acetate-mediatedoxidation of flavanones. A facile synthesis of flavones. Synth Commun,2005,35:2723~2728
    22Zhou Z Z, Zhao P L, Huang W, et al. A selective transformation offlavanones to3-bromoflavones and flavones under microwave irradiation.Adv Synth Catal,2006,348:63~67
    23Kalinin V N, Shostakovsky M V, Ponomaryov A B. Palladium-catalyzedsynthesis of flavones and chromones via carbonylative coupling of o-iodophenols with terminal acetylenes. Tetrahedron Lett,1990,31:4073~4076
    24X Huang, E Tang, W M Xu. Lewis acid catalyzed solid-phase synthesis offlavonoids using selenium-bound resin. J Comb Chem,2005,7:802~805
    25Bianco A, Cavarischia C, Guiso M. An example of total synthesis offlavones by Heck-Sonogashira-Cassar reaction. Letters in Organic Chemi-stry,2008,5:257~261
    26Caldwell S T, Crozier A, Hartley R C. Isotopic labelling of quercetin4′-O-β-D-glucoside. Tetrahedron,2000,56:4101~4106
    27Urgaonkar S, Shaw J T. Synthesis of kaempferitrin. J Org Chem,2007,72:4582~4585
    28徐鲁斌,罗爱民,曹正白.黄酮-4′-O-糖苷的合成.苏州大学学报(自然科学版),2003,19:95~100
    29Kumazawa T, Kimura T, Matsuba S, et al. Synthesis of8-C-glucosylflavones. Carbohydrate Research,2001,334:183~193
    30Lee D Y W, Zhang W, Karnati V V R. Total synthesis of puerarin, anisoflavone C-glycoside. Tetrahedron Letters,2003:6857~6859
    31Furuta T, kimura T, Kondo S, e t a l. Concise total synthesis of flavoneC-glycoside having potent and anti-inflammatory activity. Tetrahedron,2004,60:9375~397
    32王朝霞,任志华,闫静.黄酮糖苷Parkinsonin B的全合成.有机化学,2006,26:1254~1258
    33汪秋安,吴峥,刘莉.柑橘生物活性多甲氧基黄酮及其糖苷类的合成研究[J].有机化学,2010,30:1682~1688
    34杨易成,雷英杰,宋慧芳.异黄酮7-O-葡萄糖苷的全合成研究.天津理工大学学报,2006,22:62~64
    35Sato S, Hiroe K, Kumazawa T, et al. Total synthesis of two isoflavoneC-glycosides: genistein and orobol8-C-β-D-glucopyranosides. CarbohydRes,2006,341:1091~1095
    36Zavodnik L B, Zavodnik I B, Lapshina E A, et al. Hypochlorousacid-induced lysis of human erythrocytes. Inhibition of cellular damage bythe isoflavonoid genistein-8-C-glucoside. Biochemistry,2000,65:946~951
    37Zavodnik L B, Radiat B. Izoflavone genistein-8-C-glycoside prevents theoxidative damages to structure and function in rat liver microsomalmembranes. Radiatsionnaya Biol Radioekol,2003,43:432~438
    38Sato S, Akiya T, Suzuki T, et al. Environmentally friendly C-glycosylationof phloroacetophenone with unprotected D-glucose usingscandium(III)trifluoromethanesulfonate in aqueous media: key compoundsfor the syntheses of mono-and di-C-glucosylflavonoids. Carbohyd Res,2004,339:2611~2614
    39Wu Z T, Lian G Y, Yu B, et al. Synthesis of talosin A and B, two bioactiveisoflavonoid glycosides. Chin J Chem,2010,28:1725~1730
    40Oyamaa K, Kondob T. Total synthesis of apigenin7,4′-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens,and seven chiral analogues. Tetrahedron,2004,60:2025~2034
    41Koenigs W, Konrr E. Some derivatives of grape sugars and galactose.Berichte Deutschen Chemischen Gesellschaft,1901,34:957~981
    42雷英杰,刘福德,陈宝泉.相转移催化法合成黄酮糖苷的研究.天津理工大学学报,2008,24:53~55
    43Lewis P, Kaltia S, W h l K. The phase transfer catalysed synthesis ofisoflavone-O-glucosides. J Chem Soc, Perkin Trans1: OrganicBio-Organic Chem,1998:2481~2484
    44Demetzos C, Skaltsounis A L, Razanamahefa B, et al. Synthesis ofquercetin-3-O-β-D-glucopyranosyl-(1→2)-β-D-xylopyranoside viaorthoester methodology. J Nat Prod,1994,57:1234~1238
    45Demetzos C,Skaltsounis K,Tillequi F,KochK. Phase-transfer-catalyzedsynthesis of flavonoid glycosides. Carbohydr Res,1990,207:131~137
    46Zhang Y, Wang K, Zhan Z, et al. Synthesis of quercetin3-O-β-D-apiofuranosyl-(1→2)-[a-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside,Tetrahedron Letters,2011,52:3154-3157
    47Peng W, Li Y, Zhu C. Synthesis of tamarixetin and isorhamnetin3-O-neohesperidoside. Carbohydrate Research,2005,340:1682~1688
    48Zhu C, Peng W, Li Y. Synthesis of3-O-(β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl)-3′-O-(β-D-glucopyranosyl)tamarixetin, the putativestructure of aescuflavoside A from the seeds of Aesculus chinensis.Carbohydrate Research,2006,341:1047~1051
    49雷英杰,刘福德,陈宝泉.相转移催化法合成黄酮糖苷的研究.2008,24:53~55
    50David J. M., Sidney M. Synthesis of a potent and selective inhibitor of p90rsk. Oranic Letters,2005,7:1097~1099
    51Yang W., Sun J., Lu W. Synthesis of kaempferol3-O-(3′′,6′′-Di-O-E-p-coumaroyl)-β-D-glucopyranoside, Efficient Glycosylation of Flavonol3-OH with Glycosyl O-Alkynylbenzoates as Donors. J org chem,2010,75:6879~6888
    52Li Y, Yang W, Ma Y. Synthesis of kaempferol3-O-[2'',3''-and2'',4''-Di-O-(E)-p-coumaroyl]-L-rhamnopyranosides. Synlett,2011,7:915~918
    53Semeniuchenko V, Garazd Y, Myroslav Garazd, Highly efficientglucosylation of flavonoids. Monatsh Chem,2009,140:1503~1512
    54Gao Q, Lian G, Lin F. The first total synthesis of7-O-β-D-glucopyranosyl-4′-O-α-L-rhamnopyranosylapigenin via a hexanoyl ester-based protectionstrategy. Carbohydrate Research,2009,344:511~515
    55Schmidt R R, Michael J. Facile synthesis of α-and β-O-glycosyl imidates:preparation of glycosides and disaccharides. Angew Chem Int Ed Engl,1980,19:731~732
    56Du Y, Wei G, Linhardt R J. The First Total Synthesis of calabricoside A.Tetrahedron Letters,2003,44:6887~6890
    57Du Y, Wei G, Linhardt R J. Total Synthesis of quercetin3-sophorotrioside,J Org Chem,2004,69:2206~2209
    58Shie J, Chen C, Lin C, et al. Regioselective synthesis of di-C-glycosyl-flavones possessing anti-inflammation activities. Organic&BiomolecularChemistry,2010,8:4451~4462
    59Schmidt R R, Michael J. Facile synthesis of α-and β-O-glycosyl imidates:preparation of glycosides and disaccharides. Angew Chem Int,1980,19:731~732
    60Lemieux R U, Hendriks K B, Halide ion catalyzed glycosidation reactionsSyntheses of alpha-linked disaccharides. J Am Chem Soc,1975,97:4056~4062
    61Adinolfi M, Barone G, Iadonisi A, et al. Iodine/triethylsilane as a con-venient promoter system for the activation of disarmed glycosyltrichloro-and N-(phenyl) trifluoroacetimidates. Synlett,2002,2:269-270
    62Thomas M, Gesson J P, Papot S. First O-glycosylation of hydroxamicacids. J Org Chem,2007,72:4262~4264
    63Al-Maharik N, Botting N P. An efficient method for the glycosylation ofisoflavones. Eur J Org Chem,2008,33:5622~5629
    64Dianjie Hou, Hashem A, Taha L. et al.2,3-Anhydrosugars in glycosidebond synthesis: mechanism of2-deoxy-2-thioaryl glycoside formation. JAm Chem Soc,2009,131:12937~12948
    65Rusin A, Gogler A, G owala-Kosin M, et al. Unsaturated genisteindisaccharide glycoside as a novel agent affecting microtubules. BioorgMed Chem Lett,2009,19:4939~4943
    66Popiolkiewicz J, Polkowski K, Skierski J S, et al. In vitro toxicityevaluation in the development of new anticancer drugs-genisteinglycosides. Cancer Lett,2005,229:67~75
    67Eren V, Ulrichova J, Kosina P, et al. Chemoenzymatic preparation ofsilybin β-glucuronides and their biological evaluation. Drug Metabolismand Disposition,2000,28:1513~1517
    68宁正祥,战宇,高建华.二氢杨梅素葡萄糖苷的合成及对糖尿病的疗效.食品与生物技术学报,2005,24:92~93
    69Yang M, Davies G J, Davis B G. A Glycosynthase Catalyst for theSynthesis of Flavonoid Glycosides. Angewandte Chemie,2007,46:3885~3888
    70He X Z, Li W S, Blount J W, et al. Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli. Appl Microbiol Biot,2008,80:253~260
    71Shimoda K, Kobayashi T, Akagi M, et al. Synthesis of oligosaccharides ofgenistein and quercetin as potential anti-inflammatory agents. Chem Lett,2008,37:876~877
    72Shimoda K, Kubota N, Hamada H, et al. Synthesis of gentiooligosa-ccharides of genistein and glycitein and their radical scavenging andanti-allergic activity. Molecules,2011,16:4740~4747
    73Gantt R W, Peltier-Pain Pau, Cournoyer W J, et al. Using simple donors todrive the equilibria of glycosyltransferase-catalyzed reactions. Nat ChemBiol,2011,7:685~691
    74Shan M, O′Doherty G A. De Novo asymmetric syntheses of SL0101and itsanalogues via a palladium-catalyzed glycosylation. Oganic Letters,2006,8:5149~5152
    75Rusin A, Chrubasik M, Papaj K, et al. C-glycosidic genistein conjugatesand their antiproliferative activity. J Chem,2013,951392.
    76Das, N.P., Pereira, T.A., Effects of flavonoids on thermal autoxidation ofpalm oil: structure activity relationships. Journal of American OilChemists Society,1990,67:255~258.
    77Dziedzic S Z, Hudson B J F, Hydroxyisoflavones as antioxidants for edibleoils. Food Chemistry,1983,11:161~166
    78马志茹,袁倬斌.用电化学方法研究槲皮素等的抗超氧阴离子自由基作用.中国药学杂志,1998,33:363~365
    79Spencer J P E, Schroeter H, Crossthwaithe A J, et al. Contrastinginfluences of glucuronidation and O-methylation of epicatechin onhydrogen peroxide-induced cell death in neurons and fibroblasts. FreeRadical Biol Med,2001,31:1139~1146
    80Loke W M, Proudfoot J M, Mckinley A J, et al. Quercetin and its in vivometabolites inhibit neutrophil-Mediated low-density lipoprotein oxidationJournal of Agricultural and Food Chemistry,2008,56:3609~3615
    81Kuklm ann M K. Inhibition of oxidant induced lipidperoxidation inrenaltubular epithelial cells(LIC-PK1)by quercetin. Free Radic Res,1998,295:451~460
    82Kuo S M,Leaitt P S, Lin C P. Dietary flavonoids interact with trace metalsand affect metallothionein level in human intestinal cell. Bio Trace ElemRes,1998,62:135~153
    83Zielinska M. Antioxidative activity of flavonoids in stinulated humanneutrophils. Folia H Istochem Cytobiol,2000,38:25~31
    84徐向进,张家庆,黄庆玲.槲皮素对糖尿病大鼠肾脏非酶糖化及氧化的抑制作用.中华内分泌代谢杂志,1998,14:34~37
    85邢国秀,李楠,王童,等.甘草中黄酮类化学成分的研究进展.中国中药杂志,2003,28:593~597
    86邓杨梅,张水娟,陈季强,等.可用于SARS治疗的抗病毒药物.世界临床药物,2005,26:11-15
    87Cowan M M. Plant products as antimicrobial agents. Clinical MicrobiologyReviews,1999,12:564~582
    88Borris R. P. Natural products research: perspectives from a majorpharmaceutical company, Journal of Ethnopharmacology,1996,51:29–38
    89Ohemeng K A, Schwender C F, Fu K P, et al. DNA gyrase inhibitory andantibacterial activity of some lavones(1), Bioorganic and MedicinalChemistry Letters,1993,3:225~230
    90Tsuchiya H, Iinuma M. Reduction of membrane luidity by antibacterialsophoralavanone G isolated from Sophora exigua, Phytomedicine,2000,7:161~165
    91Osawa K, Yasuda H, Maruyama T, et al. Isolavanones from the heartwoodof Swartzia polyphylla and their antibacterial activity against cariogenicbacteria. Chemical and Pharmaceutical Bulletin,1992,40:2970~2974
    92Davis W L, Matthew S B, Antioxidants and cancer III: quercetin,Alternative Medicine Review,2000,53:196~208
    93D. R. Ferry, A. Smith, and J.Malkhandi, Phase I clinical trial of thelavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosinekinase inhibition, Clinical Cancer Research,1996,2:659~668
    94Koen B, Ruth V, Guido V, et al. Induction of cancer cell apoptosis bylavonoids is associated with their ability to inhibit fatty acid synthaseactivity, Journal of Biological Chemistry,2005,280,7:5636~5645
    95Brusselmans K, Schrijver E, Heyns W, et al. Epigallocatechin-3-gallate isa potent natural inhibitor of fatty acid synthase in intact cells andselectively induces apoptosis in prostate cancer cells, International Journalof Cancer,2003,106,6:856~862
    96Siess M H, Le Bon A M, Canivenc-Lavier M C. et al, Flavonoids of honeyand propolis: characterization and effects on hepatic drug-metabolizingenzymes and benzo[a]pyrene DNA binding in rats, Journal of Agriculturaland Food Chemistry,1996,44,:2297~2301
    97Sawa T, Nakao M, Akaike T, et al. Alkylperoxyl radical-scavenging activityof various lavonoids and other phenolic compounds: implications for theantitumor-promoter efect of vegetables, Journal of Agricultural and FoodChemistry,1999,47:397~402
    98张琼,徐明娟,宋亮年,等.槲皮素对人卵巢癌细胞系增殖的影响.第二军医大学学报,1999,20:380~382
    99Lu J, Papp L V, Fang J G, et al. Inhibition of mammalian thioredox inreductase by some flavonoids: implications for myricetin and quercetinanticancer activity. Cancer Res,2006,66:4410~44181
    100李岩松,康铁邦,梁念慈.槲皮素对HL-60细胞中P53,bcl-2基因表达的影响.中国药理学通报,1995,15:255~257
    101Tsyrlov I B, Mikhailenko V M, Gelboin H V. Isoensyme andspecies-specific susceptibility of cDNA expressed CYPIA P450S todifferent flavonoids. Biochim Biophys Acta,1994,1250:325~334
    102Walle T, Eaton E A,Walle U K. Quercetin, a potent and specific inhibitorof the human P-form phenolsulfotransferase. Biochem Pharmacol,1995,50:731~734
    103康铁邦,梁念慈.槲皮素对HL-60细胞中蛋白激酶C和骼氨酸蛋白激酶活性的影响.中国药理学报,1997,18:374~376
    104Hodnick W F, Duval D L, Pardini R S, Inhibition of mitochondrialrespiration and cyanide-stimulated generation of reactive oxygen speciesby selective flavonoids. Biochemical Pharmacology,1994,47:573~580
    105Cos P, Ying L, Calomme M, et al. Structure-activity relationship andclassication of flavonoids as inhibitors of xanthine oxidase andsuperoxide scavengers. Journal of Natural Products,1998,61:71~76.
    106宋杰云,刘亚平,胡菊英,等.石吊兰素对心脏的作用.贵州医药,1985,6:30
    107王昌明,张珍详.槲皮素对肺动脉平滑肌增殖及大鼠地氧性肺动脉高压的影响.中国循环杂志,1997,12:453~455
    108秦泰春,顾振伦,刘世增.槲皮素对兔球囊血管成形术后管壁增生及培养的动脉平滑肌细胞增殖的影响.中国循环杂志,1997,12:453~455
    109宋芝娟,刘问,梁念慈,等.槲皮素二硫酸酯二钠对猪血小板F-肌动脉蛋白生成的影响.中草药,1997,15:477~479
    110Kim Y-W, Hackett J C, Brueggemeier R W. Synthesis and AromataseInhibitory Activity of Novel Pyridine-Containing Isoflavones. J MedChem,2004,47:4032~4040
    111陈国有,齐鹤,徐东花.黄酮类化合物的生物活性研究进展.黑龙江医药,2008,21:81~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700