新型[1,2,4]-三唑并-A-homo-甾体杂环化合物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾体化合物及其衍生物广泛的存在于自然界,与许多生命过程密切相关。随着对其需求量的大量增加,依靠提取天然产物的甾体已经无法满足人们的需要,目前已逐步走向人工合成。由于生物活性多样性伴随着化学结构多样性,当甾体中的某个或几个C被N取代的时候(azasteroids),往往会出现新的活性。甾体A氮杂卓就是其中的一类,本文发展了一种全新的甾体A氮杂卓合成方法,与以往的报道相比,本文所合成的产物具有新颖的稠合模式及取代种类。
     论文第一章介绍了天然甾体化合物的种类,对迄今为止甾体A氮杂卓的主要用途和合成方法进行了综述。此外,简述了1,3-偶极环加成和偶氮基碳正离子的研究概况和在构建含氮五员环中的应用。
     论文第二章介绍了[1R-[1α(R*),3aβ,3bα,5aβ,12aα,12bβ,14aα]]-1-(1,5-二甲基己基)-1,2,3,3a,3b,4,5,11,12,12a,12b,13,14,14a-十四氢-8-取代-12a,144a-二甲基-9-(2,4,6-三氯苯基)-环戊烷并[5,6]萘烷并[2,1-d][1,2,4]三唑并[1,5-a]氮杂卓六氯化锑盐58的合成研究。我们首先对二氢胆固酮的三氯苯腙,进行α-氯代,在Lewis酸作用下脱氯,原位生成活泼的偶氮基碳正离子,并与腈发生极化环加成,升温后发生1,2-迁移重排。经过该反应序列,在甾体六员A环插入了一个N原子,扩环成氮杂卓环,并以此N原子作为桥原子之一并合了一个1,2,4-三唑环。我们对其中的一个产物58a进行了单晶培养和X-单晶衍射,产物的结构得到确证,并据此推测了反应机理。
     在成功合成了三哗并氮杂卓六氯化锑盐的基础上,我们又成功的将该策略拓展,用于合成中性的三唑并氮杂卓66。以二氢胆固酮的乙氧羰基腙出发,经过类似的路线,最终合成另一系列的氮杂卓化合物。通过对比反应结果,我们发现不同的底物,其偶氮基正离子的反应活性不一样,此外不同的亲偶极体腈或炔,其反应能力也不一样。此后我们对合成路线中涉及到的关键步骤:1,3-偶极环加成和1,2-迁移重排,进行了机理讨论。
     本章的最后一节我们仍以二氢胆固酮,经过α酰基化和缩合环加成合成出另一种甾体A并杂环的衍生物:胆甾烷并[3,2-c]-吡化合物。
     论文第三章介绍了[1,2,4]-三唑并[1,5-a][1]苯并氮杂卓和[1,2,4]-三唑并[1,5-a]-喹啉的合成。我们希望把第二章介绍的合成三唑并杂环的路线方法推广到更多的环酮体系。从α-四氢萘酮的乙氧羰基腙74出发,经过乙酰氧基化、Lewis酸脱乙酰氧基、极化环加成、1,2-迁移重排,合成出相应的扩环产物:[1,2,4]-三唑并[1,5-a][1]苯并氮杂卓80。
     从2,3-二氢-1-茚酮腙81出发,经过相同的路线,合成出相应的扩环产物[1,2,4]-三唑并[1,5-a]-喹啉87。对比两组实验结果,我们发现相同条件下5→6扩环比6→7扩不环更容易。但是我们试图把这一路线方法推广到酮体系,期望得到4→5员环的扩环产物:[1,2,4]-三唑并[1.2-b]-吡咯烷。但尚未获得满意结果。
     论文第四章是实验部分,介绍了化合物的详细合成方法,记录了化合物的红外、核磁、高分辨质谱和元素分析数据。
Steroids and related derivatives occur widely in nature. Their significance connected with many life processes has well been documented. However, the traditional extraction method for achieving steroidal natural products cannot meet with the ever increasing utilities of this class of compounds, thus the development of new synthetic methods has become a necessity. The diversity of biological activity is associated with the diversity of chemical structure. For example, steroids in which one or several C replaced by one or more nitrogen atoms (leading to azasteroids) often put up a new activity. In particular, conversion of the steroidal A-ring into azepine ring has proved to be a valuable change. The present dissertation describes a novel and efficient methods for accessing a series of3-aza-A-homocholestane derivative, which show unprecedented characters both in the fusion mode and substitution pattern.
     The first chapter summarizes the classification of steroidal natural products, with focus on the uses and synthetic methods of A-azepine-steroids. In addition, the research in the field of1,3-dipolar cycloadditions with the1-aza-2-azoniaallenium ions as cationic1,3-dipoles are briefly reviewed. Especially, the application of these newly emerging reactive intermediates in the assembly of N-containing five-membered heterocycles is introduced.
     The second chapter describes firstly the synthesis of the precedentless pentacyclic compounds, i.e.[1R-[1α(R*),3aβ,3bα,5aβ,12aα,12bβ,14aα]]-1-(1,5-dimethylhexyl)-1,2,3,3a,3b,4,5,11.12,12a.12b.13.14,14a-tetradecahydro-8-sub stitued-12a,14a-dimethyl-9-(2,4,6-trichlorophenyl)-cyclopenta[5,6]naphtho[2,1-d][1,2,4]triazolo[1,5-a]azepinium hexachloroantimonates58. Starting from the easily available dihydrocholesteranone50, the2,4,6-trichlorophenyl hydrazone53was prepared by the usual condensation method. The a-chlorination of53with t-BuOCl as the chlorination agent gave the corresponding a-chloroazo compound55in96%yield. Then, dechlorination under the action of a Lewis acid like SbCl5generated the short-lived1-aza-2-azoniaallenium salt56, which underwent the cycloaddition with the pre-added nitrile with spontaneous1,2-shift rearrangement. This reaction sequently resulted in the insertion of an N atom in the six-membered A ring. Thus, this constitutes a new and efficient strategy leading to the formation of the triazolo fused A-aza-homocholesterane derivatives58. To ultimately ascertain the structural determination, single crystals of one of the products, namely58a, was grown and subjected to X-ray diffraction analysis, whereby providing unerring structural proof.
     On the bases of the above results, and for the sake of future physiological activity evaluation, we modified our method to the synthesis of the neutral [1,2.4]triazolo[1,5-a]azepine analogies. Thus. the (5α)-cholestan-3-one's ethoxycarbonyl hydrazone60was prepared and allowed to react as described for58. Under comparable conditions. a set of [1,2,4]-triazolo-annulated3-aza-A-homocholestane compounds65or their picrates66were obtained in moderate yields. It has been observed that different substituted1-aza-2-azoniaallenium salts exhibited variable reactivity in this polar cycloaddition. Similarly, the nitrile or alkyne dipolarophiles behaved quite differently depending on the different stereo and electronic feature. According to our experimental data, together with investigations from our previous work, the mechanism with respect to the polar1,3-dipolar cycloaddition and1,2-shift were discussed.
     Besides this study, we attempted the transformation of (5α)-cholestan-3-one to a-acylated products68which were condensed with hydrazine to furnish the pyrazolo fused cholestane derivatives70. Scope and limitations of this synthesis remains to be investigated.
     In the third chapter, the application of azocarbenium ions for the synthesis of1,2,4-triazolo annulated bi-or tricyclic heterocycles was explored.. Thus,[1,2,4]-triazolo-[1,5-a][1]benzazepines80and [1,2,4]triazolo-[1,5-a]quinoline derivatives86were successfully synthesized starting from a-tetralone and2,3-dihydro-1-indanone. Oxidation of a-tetralone ethoxycarbonylhydrazone74with lead tetraacetate afforded the bicyclic geminal ethyl azoester75. On addition of equimolecular aluminum trichloride, the azocarbenium salt76was believed to be generated in situ as a reactive intermediate, which could be trapped to the C=N triple bond of the pre-added nitriles by cycloaddition. These cycloadducts underwent smooth1,2-aryl-shift with concurrent ring enlargement and insertion of a nitrogen atom to the carbon skeleton to afford the [1,2,4]-triazolo-[1,5-a][1]benzazepinium picrates80in23~56%yields, upon hydrolytic removal of the N-ethoxycarbonyl group and subsequent treatment of the alkalescent heterocycles with picric acid finally. Analogously, the novel4,5-dihydro-[1,2,4]-triazolo-[1,5-a] quinolinium picrates87have also been prepared starting from2,3-dihydro-1-indanone in moderate overall yields. In light of the above results, we concluded that under the same conditions the ring-expansion5→6seems to proceed more readily than that of6→7. Efforts were also made to extend this approach to the cyclobutanone system, aiming at achieving4→5membered-ring expansion to yield [1.2.4]-triazolo-[1,2-b]-pyrrolidines. However, all experiments failed so far.
     The fourth chapter is the experiment part, providing the details both in the experimental procedures and characterization data including IR. NMR. HRMS and/or microelemental analysis.
引文
[1]谭仁祥;王剑文.甾体化学[M].化学工业出版社.2009.
    [2]周维浮;庄志平.甾体化学进展[M].科学出版社.2002.
    [3]Burbiel, J.; Bracher. F. Azasteroids as antifungals. Steroids.2003,68,587.
    [4](a) Romo, V. A.; Martinez, V. M.; Matsubara, C.; Perez-Sanchez, G.; Joseph-Nathan. P. Triterpenes in Parthenium argentatum, structures of argtntatins C and D. Phytochemistry 1990,29,915. (b) Parra-Delgado, H.; Compadre, C.; Ramirez-Apan, T.; Mun-Fambuena, G.; Compadre, R. L. Ostrosky-Wegmanc, P.; Martinez-Vazquez, M. Synthesis and comparative molecular field analysis (CoMFA) of argentatin B derivatives as growth inhibitors of human cancer cell lines. Bioorganic & Medicinal Chemistry.2006, 14,1889.
    [5]Endo. Y.; Shimazu, M.; Fukasawa, H.; Driedger, P. E.; Kimura, K.; Tomioka, N. Itai, A.; Shudo, K. Synthesis, computer modeling and biological evaluation of novel protein kinase C agonists based on a 7-membered lactam moiety. Bioorganic & Medicinal Chemistry Letters 1999,9,173.
    [6]Pairas, G.; Catsoulacos, P. Assessment of anti-HIV and antiproliferative activity of homo-aza-steroidal esters in culture. Eur. J. Med. Chem.1990,25,539.
    [7]Camoutsis, C.; Catsoulacos. P. Formation of bishomoazasteroids by the beckmann rearrangement. J. Heterocyclic Chem.1988.25,1617.
    [8]Rasmusson, G. H.; Reynolds, G. F.; Steinberg, N. G.; Walton, E.; Patel, G. F. Liang, T.; Cascieri, M. A.; Cheung, A. H.; Brooks, J. R.; Berman, C. Azasteroids: Structure-Activity Relationships for Inhibition of 5α-Reductase and of Androgen Receptor Binding. J. Med. Chem.1986,29,2298.
    [9]Dalmases, P.; Caselles, J. M.; Quintana, J. Nitrogen mustards of systematically modified steroidal ring A-homo lactams. Eur. J. Med. Chem.1985,20, 471.
    [10]Ahmad, M. S.; Alam, Z. Synthesis of Steroidal Tetrazoles:Schimidt Reaction on Steroidal Ketones. Indian J. Chem, Sect B:Org. Chem. Include Med. Chem. 1988,27B,1001.
    [11]Mohammad, M.; Nadeem, I. Schmidt Reaction of 3-Oxocholest-5-en-4α-yl Acetate and 6β-Chloro-5-hydroxy-5α-cholestan-3-one. J. Chem. Res-S.1986, 254.
    [12]Rao, R. B.; Weiler, L. Synthesis of samanine type alkaloids. Tetra. Lett.1973,49, 4971.
    [13]Cristofoli, W. A.; Benn, M. Synthesis of samanine. J. Chem. Soc. Perkin Trans 1. 1991.1825.
    [14]Shimizu, Y. Synthesis of Samandarine-Type Alkaloids and Analogues.J. Org. Chem.1976,41,1931.
    [15]Hara, S.; Oka, K. A Total Synthesis of Samandarone.J. Am. Chem. Soc.1967,89, 1041.
    [16]Desai, P.; Schildknegt, K.; Agrios, K. A.; Mossman, C.; Milligan, G. L.; Aube, J. Reactions of Alkyl Azides and Ketones as Mediated by Lewis Acids:Schmidt and Mannich Reactions Using Azide Precursors. J. Am. Chem. Soc.2000.122, 7226.
    [17]Ahmad, M. S.; Alam, Z. The Schmidt Reaction:Synthesis of Azasteroids. Indian J. Chem, Sect B:Org. Chem. Include Med. Chem.1988,27B,336
    [18]Craig, J. C.; Naik. A. R. THE BECKMANN REARRANGEMENT OF KETOXIMES:A NEW METHOD. J. Am. Chem. Soc.,1962,84,3410.
    [19]Nace, H. R.; Watterson, A. C. Application of the Beckmann Rearrangement to the Preparation of A-Azapregnane Derivatives. J. Org. Chem.1966,31,2109.
    [20]Cho, H.; Murakami, K.; Nakanishi, H.; Fujisawa, A. K.; Isoshima, H.; Niwa, M.; Hayakawa, K.; Hase, Y.; Uchida, I.; Watanabe, H.; Wakitani, K.; Aisaka, K. Synthesis and Structure-Activity Relationships of 5,6,7,8-Tetrahydro-4H-thieno [3,2-b]azepine Derivatives:Novel Arginine Vasopressin Antagonists. J. Med. Chem.2004,47,101.
    [21]Broggini, G.;Garanti, L.; Molteni, G.; Zecchi, G. A synthetic route to [1,2,4]triazolo[1,5-alpha] [4,1]benzoxazepines. Synthesis 1995,1483
    [22]Al-Soud, Y. A.; Qalalweh, M. N. A.; Al-Sa'doni, H. H.; Al-Masoudi, N. A. New benzylpiperazine derivatives bearing mono-and bis-dialkyl substituted 1,2,4-triazoles. Heteroatom Chem.2005,16,28.
    [23]Girgis, A. S.; Barsoum, F. F. Synthesis of [1,2,4]triazolo[1,5-a]pyridines of potential PGE2 inhibitory properties. Eur. J. Med. Chem.2009,44,1972.
    [24]Koltin, Y.; Hitchcock, C. A. The search for new triazole antifungal agents. Curr. Opin. Chem. Biol.1997,1,176.
    [25]Staben, S. T.; Blaquiere, N. Four-Component Synthesis of Fully Substituted 1,2,4-Triazoles. Angew. Chem. Int. Ed.2010,49,325.
    126] Houk, K. N. Regioselectivity and reactivity in the 1,3-dipolar cycloadditions of diazonium betaines (diazoalkanes, azides, and nitrous oxide). J. Am. Chem. Soc.1972,94,8953.
    [27]Houk. K. N.; Sims, J.; Watts, C.R.; Luskus, L, J. Origin of reactivity, regioselectivity. and periselectivity in 1,3-dipolar cycloadditions.J. Am.Chem. Soc.1973.95.7301.
    [28]Gothelf, K. V.; Jorgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev.1998,98.863.
    [29]Huisgen. R.1,3-Dipolar cycloadditions. Angew. Chem.1963,75,604.
    [30]Padwa, A. Comprehensive Organic Synthesis; Trost, B. M., Flemming, I., Eds.; Pergamon Press:Oxford,1991; Vol.4,1069.
    [31]Wade, P. A. Comprehensive Organic Synthesis; Trost, B. M., Flemming, I., Eds.; Pergamon Press:Oxford,1991; Vol.7,1111.
    [32](a) Huisgen, R. Mechanism of 1,3-dipolar cycloadditions. Reply. J. Org. Chem. 1968.33.2291. (b) Huisgen, R.1,3-Dipolar cycloadditions.76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates.J. Org. Chem.1976,41,403.
    [33](a) Firestone, R. A. Mechanism of 1,3-dipolar cycloadditions. J. Org. Chem. 1968,33,2285. (b) Firestone, R. A. Application of the Linnett electronic theory to organic chemistry. V. Orientation in 1,3-dipolar cycloadditions according to the diradical mechanism. Partial formal charges in the Linnett structures of the diradical intermediate.J. Org. Chem.1972,37,2181. (c) Firestone. R. A. The diradical mechanism for 1,3-dipolar cycloadditions and related thermal pericyclic reactions. Tetrahedron 1977,33,3009.
    [34]Poppinger, D. Concerted 1,3-dipolar addition of fulminic acid to acetylene and ethylene. AB initio molecular orbital study. J. Am. Chem. Soc.1975,97,7486.
    [35]Caramella. P.; Houk. K. N.; Domelsmith, L. N. V. The dichotomy between cycloaddition transition states calculated by semiempirical and ab initio techniques. J. Am. Chem. Soc.1977,99,4511.
    [36]Komornicki. A.; Goddard, J. D.; Schaefer, H. F. Reaction of acetylene with fulminic acid. The prototype 1,3-dipolar cycloaddition. J. Am. Chem. Soc.1980, 102,1763.
    [37]McKouall, J. J. W.; Robb, M. A.; Niazi, U,; Bernardi, F.; Schlegel, H. B. An MC-SCF study of the mechanisms for 1,3-dipolar cycloadditions. J. Am. Chem. Soc.1987,109,4642.
    [38]Hiberty, P. C.; Ohanessian, G.; Schlegel, H. B. Theoretical ab initio study of 1,3-dipolar cycloaddition of fulminic acid to acetylene. Support for Firestone's mechanism. J. Am. Chem. Soc.1983,105,719.
    [39]Su, M.; Liao, H.; Chung, W.; Chu, S. Cycloadditions of 16-Electron 1.3-Dipoles with Ethylene. A Density Functional and CCSD(T) Study.J. Org. Chem.1999. 64,6710.
    [40]Domingo, L. R.; Picher, M. T.; Arroyo, P.; Saez, J. A.1.3-Dipolar Cycloadditions of Electrophilically Activated Benzonitrile N-Oxides. Polar Cycloaddition versus Oxime Formation. J. Org. Chem.2006,71,9319.
    [41]Houk, K. N.; Gonzales, J.; Li, Y. Ace. Pericyclic Reaction Transition States: Passions and Punctilios,1935-1995. Chem. Res 1995,28.81.
    [42]Houk, K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. Origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditions. J. Am. Chem. Soc.1973,95,7301.
    [43]Houk, K. N.; Yamaguchi, K.1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed.; Wiley:New York,1984; Vol.2,407.
    [44]Sustmann, R. A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions. Tetrahedron Lett.1911,29,2717.
    [45]Sustmann, R. Orbital energy control of cycloaddition reactivity. Pure Appl. Chem. 1974,40,569.
    [46]Schmidt, R. R. Polar 1,4-cycloaddition. V.3,4-Dihydroquinazoline syntheses by polar 1,4-cycloaddition. Tetrahedron Lett.1968,30,3443.
    [47]March, J. Advanced Organic Chemistry, Wiley, New York,1985,141.
    [48]Reynilds, C. H. Structure and relative stability of halogenated carbocations:the C2H4X+ and C4H8X+(X= fluoro, chloro, bromo) cations. J. Am. Chem. Soc. 1992,114,8676.
    [49](a) Wirschun, W. G.; Al-Soud, Y. A.; Nusser, K. A.; Orama, O.; Maier, G. M.; Jochims, J. C. J.Chem. Soc, Perkin Trans.1 2000,4356. (b) Hassan, N. A. Mohamed, T. K.; Abdel Hafez, O. M.; Lutz, M.; Karl, C. C.; Wirschun, W.; Al-Soud, Y. A.; Jochims, J. C. Cycloadditions of 1-aza-2-azoniaallene salts derived from coumarin and camphor. J. Prakt. Chem.1998,340,151. (c) Al-Soud, Y. A.; Wirschun, W.; Hassan, N. A.; Maier, G.-M.; Jochims, J. C. Reaction of 1-(Chloroalkyl)-1-aza-2-azoniaallene Salts with Alkenes: Preparation of Cyclic Azo, (Azoalkyl)azonium, and Formazanium Compounds. Synthesis 1998,721.
    [50]Wang. Q.; Jochims. J. C.; Kohlbrandt, S.; Dahlenburg, L.; Al-Taib, M.; Hamed, A.; Ismail. A. E.1.2,4-Triazolium salts from the reaction of 1-aza-2-azoniaallene salts with nitriles. Synthesis 1992,710.
    [51]Wang. Q.; Al-Taib, M.; Jochims, J. C. On the reaction of 1-aza-2-azoniaallene salts with acetylenes. Chem. Ber.1994,127,541.
    [52]Wang, Q.; Amer, A,; Troll, C,; Fischer, H.; Jochims, J. C. On the reaction of 1-aza-2-azoniaallene salts with carbodiimides. Chem Ber.1993,126,2519.
    [53]Wang, Q.; Mohr, S.; Jochims, J. C. On the reaction of 1-aza-2-azoniaallene salts with isocyanates. Chem Ber.1994,127,947.
    [54]Al-Masoudi, N.; Hassan, N. A.; Al-Soud, Y. A.; Schmidt, P.; Gaafar, A.E.-D. M.; Weng, M.; Marino, S.; Schoch, A.; Amer, A.; Jochims, J. C. Syntheses of C-and N-nucleosides from 1-aza-2-azoniaallene and 1,3-diaza-2-azoniaallene salts. J. Chem. Soc., Perkin Trans.1.1998,5,947.
    [55]Al-Masoudi, N. A.; Al-Soud, Y. A.; Geyer, A. Synthesis and spectroscopic analysis of acyclic C-nucleosides and homo-C-analogs from 1-(chloroalkyl)-1-aza-2-azoniaallene salts. Tetrahedron 1999,55,751.
    [56]Ding, Z.; Xia, S.; Ji, X; Yang, H.; Tao, F.; Wang, Q. A general and efficient method for the synthesis of 9-trifluoromethylated [1,2,4]triazolo[1,5-a]azepine derivatives. Synthesis 2002,3,349.
    [57]Liu, X.; Liu, Y.; Wang, Q. An efficient approach to the [1,2,4]-triazolo[3,2-d] [1,5]benzoxazepine skeleton-a novel tricyclic ring system. Synth. Commun. 2000, 30,119.
    [58]Wang, Q.; Yang. H.; Liu, Y.; Ding, Z.; Tao, F. A facile route to poly[1-(2,4,6-tri-chlorophenyl)-1H-1,2,4-triazol-5-yl]alkane derivatives. J. Chem. Soc, Perkin. Trans 1.2002,7,991.
    [59]Liu, X.; Liu, Y.; Ding, Z.; Wang, Q. Synthesis of 1,2,4-triazolo[3,2-d][1,5] benzoxazepine compounds. Chem. J. Chin. Univ.2000,21,1052.
    [60]Liu, X.; Wang, Q.; Liu, Y.; Fan, Y.; Ding, Z. An expedient synthesis of novel [1,2,4]triazolo[3,2-d][1,5]benzothiazepine derivatives. Synthesis 2000,3,435.
    [61]Wang, Q.; Li, Z.; Yang, H.; Li, F.; Ding, Z.; Tao, F. Annulated 1,2,4-triazoles. A convenient synthesis of thieno[2,3-f][1,2,4]triazolo[1,5-a]azepines:A novel triheterocyclic ring system. Synthesis 2003,1231.
    [62]Meng, Q.; Bai, H.; Wang, Q.; Tao, F. A general synthesis of furo[3,2-c] [1,2,4]triazolo[1,5-a]azepine and furo[2,3:f][1,2.4]triazolo[1,5-a]azepine derivatives. Synthesis 2007,33.
    [63]Cho, H.; Murakami, K.; Nakanishi, H.; Fujisawa. A. K.; Isoshima. H.:Niwa. M; Hayakawa, K.; Hase, Y.; Uchida, I.; Watanabe, H.; Wakitani. K.; Aisaka, K. Synthesis and Structure-Activity Relationships of 5.6.7.8-Tetrahydro-4H-thieno[3,2-b] azepine Derivatives:Novel Arginine Vasopressin Antagonists. J. Med Chem.2004,47,101.
    [64]Cho, H.; Wakitani, K. Preparation of five-membered fused heterocyclic azepine derivatives as drugs. PCT Int. Appl. WO 9717349,1997; Chem. Abstr.1997.127 5023.
    [65]Cho, H.; Murakami, K.; Nakanishi, H.; Isoshima, H.; Hayakawa. K.; Uchida. I. Regioselective synthesis of several heterocyclic fused azepines using diisobutylaluminum hydride. Heterocycles 1998,48,919.
    [66]Hirschmann, R.; Buchschacher, P. Synthesis and Structure of Steroidal Pregn-4-eno-and 5a-Pregnano[3,2-c]pyrazoles. A Novel Class of Potent Anti-Inflammatory Steroids. J. Am. Chem. Soc.1964,86,1520.
    [67]John, H. Ger. Offen.2,237,218. (Chem. Abstr.1973,78,11514h).
    [68]Popper, T. L.; Draper, R. W.; Shapiro, E. L. Ger. Offen.2,516,937.(Chem. Abstr. 1976.84,59874a).
    [69]Arnold, A.; Beyler, A. L. Andro-stanazole, a new orally active anabolic steroid. Proc. Soc. Exp. Biol. Med.1959,102,184. (Chem. Abstr.1960,68.2578d).
    [70]Weintraub, P. M. Heterocycles.13. synthesis of [1,2-d]triazolo steroids. J. Heterocyclic Chem.1993,30,1635.
    [71]Clinton, R. O.; Manson, A. J.; Stonner, F. W. STEROIDAL [3,2-c]PYRAZOLES. J. Am. Chem. Soc.1959,81,1513.
    [72]Trost, B. M.; Keinan, E. Pyrrole annulation onto aldehydes and ketones via palladium-catalyzed reactions. J. Org. Chem.1980,45,2741.
    [73]Miller, T. C.; Christiansen, R. G.5α-Androstano[3,2-b]pyrroles. J. Org. Chem. 1964,29,3612.
    [74]Catsoulacos, P. On the mechanism of steroidal osazone formation. Synthesis of triazole. J. Heterocyclic Chem.1985,22,1671.
    [75]Ellames, G. J.; Johnston, D.; Smith, D. I. Synthesis of 17β-hydroxy-1'-H-5α-androst-2-eno[3,2-b]pyrrole and 17β-hydroxy-1'-H-5α-androst-3-eno [3,4-b]pyrrole from O-(2-hydroxyethyl)ketoxime precursors. J. Heterocyclic Chem.1990,27,1091.
    [76]Mueller. K. H.; Kluth, J.; Gesing, E. R. F.; Koening. K.; Dollinger. M.; Santel, H. J. Ger. DE 19,502,579(Chem. Ahstr.1996,125,167992).
    [77]Damn, W.; Mueller, K. H.; Schwamborn, M.; Babczinski. P.; Santel, H.J.; Schemidt, R. R.; Stang, H. Eur. Pat. Appl. Ep 341,489(Chem. Abstr.1990.112. 216935).
    [78]Manning, R. E.; Huang, H. C. U. S. US 5,426,105(Chem. Abstr.1995,123, 340134).
    [79]Watanabe, Y.; Usui, H,; Kobayashi, S.; Yoshiwara, H.; Shibano, T.; Tanaka, T.; Morishima, Y.; Yasuoka, M.; Kanao, M. Syntheses of 5-HT2 antagonist activity of bicyclic 1,2,4-triazol-3(2H)-one and 1,3,5-triazine-2,4(3H)-dione derivatives. J. Med. Chem.1992,35,189.
    [80]Daiichi Seiyaku Co., Ltd. Eur. Pat. Appl. EP401,707(Chem. Abstr.1991,114. 185570).
    [81]Elmegeed, G. A,; Wardakhan, W. W,; Baiuomy, A. R. Synthesis of thiazolyl and thieno cholestane derivatives:a novel class of potent antiinflammatory steroids. Pharmazie 2005,60,328.
    [82]Bruce, W. F.; Ralls, J. O. DIHYDROCHOLESTEROL. Org. Synth. Coll. Vol.2, Wiley, New York,1943,191.
    [83]Bruce, W. F. CHOLESTANONE. Org. Synth. Coll. Vol.2, Wiley, New York, 1943,193.
    [84]Wyman, G. M.; Jochum, S.; Brewer, M. Chlorodimethylsulfonium Chloride-Mediated Formation of Phenyl-a-chloroazoalkanes. Synthetic Communications, 2008,38,3623.
    [85]Laganis, E. D.; Lemal, D. M. Stereospecific 1,3-Dipolar Cycloelimination in Strained Pyrazolines. J. Am. Chem. Soc.1980,102,6634.
    [86]Grizzle, P. L.; Miller, D. W.; Scheppele, S. E. A Convenient Synthesis of Protiated and Specifically Deuterated Secondary Azoalkanes. J. Org. Chem. 1980,40,1902.
    [87]Javed, M. I.; Wyman, J. M.; Brewer, M. Synthesis of Fused and Bridged Bicyclic Diazenium Salts by Intramolecular Cycloaddition. Org. Lett.,2009,11,2189.
    [88]Molchanov, A. P.; Korotkov, V. S.; Kopf, J.; Kostikov, R. R. Reactions of Substituted Ethyl 1,2,3,4,4',5'-Hexahydrospiro-[naphthalene-2,5'-pyrazole]-3'-carboxylates with Halogens. Russian Journal of Organic Chemistry 2005,41, 1036.
    [89]Moon, M. W. Chlorination of alkyl glyoxylate phenylhydrazones and triketone phenylhydrazones.J. Org. Chem.1972,37.386.
    [90]Mintz, M. J.; Walling. C. t-Butyl hypochlorite. Org. Synth. Coll. Vol. V. Wiley. New York,1973,184.
    [91]Sheldrick, G. M (1997) SHELXL-97, Program for crystal structure refinement. University of Gottingen. Germany
    [92]Allen, F. H.; Kennard, O.; Watson. D. G.; Brammer. L.; Orpen. A. G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Per kin Trans Ⅱ 1987; S1.
    [93]Song, X. J.; Tan, X. H.; Wang. Y. G. Synthesis, Crystal Structure and Bioactivities of N-(2,6-Difluorobenzoyl)-N'-[5-(Pyrid-4-yl)-1,3,4-Thiadiazol-2-yl]Urea. J Chem Crystallogr.2008.38.479.
    [94]Schantl, J. G.; Rettenbacher, A. S.:Wurst, K. Azomethine Imines in Four-and Five-Membered Rings:Stable Cyclic Valence Isomers of an α-(Phenyldiazenyl) ketocarbene. Angew Chem Int Ed.1998,37.2229.
    [95]Dewar, M. J. S.; Thiel, W. Ground states of molecules.39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 1977; 99,4907.
    [96]Liu, X. J.; Liu, Y.; Ding, Z. B.; Wang, Q. R.; Zhang, C. Z. The crystal structure of 9-chloro-4,5-dihydro-2-ethyl-1-(2.4,6-trichlorophenyl)-1H-1.2.4-triazolo[3,2-d][ l,5]-benzoxazepinium hexachloroantimonate.J. Heterocyclic Chem.2000,37. 287.
    [97]Wei, M.; Fang, D.; Liu, R. Theoretical Studies on Cycloaddition Reactions between 1-Aza-2-azoniaallene Cation and Olefins.J. Org. Chem. 2002,67,7432.
    [98]LI, Z. M.; WANG, Q. R. A Theoretical Investigation on the Cycloaddition Reaction Between Azocarbenium Ions and Nitriles. Int. J. Quant. Chem.2008. 108,1067.
    [99]Kroemer, R. T.; Gstach, H.; Liedl, K. R.; Rode, B. M.1,2-Shift of Carbon to Electron-Deficient Nitrogen Is Not a Nucleophilic Rearrangement. Ab Initio Study on a 1,2-Rearrangement in 1,2,4-Triazolium Salts. J. Am. Chem. Soc.1994, 116,6277.
    [100](a) Schildknecht, H.; Hatzmann, G. Formation of Phenylazomethyl Isocyanates on Oxidation of 2-Phenylsemicarbazones Angew. Chem., Int. Ed.1968.7.293. (b) Schildknecht, H.; Hatzmann, G. Ring Contraction of 1-Thiochromans to Benzo[b]thiophenes. Angew. Chem., Int. Ed.1969,8,456.
    [101]Shubin, V. G. Rearrangements of carbocations by 1,2-shifts. Topics in Current Chemistry, Springer Verlag:Berlin,1984, Vol.116/117,261.
    [102]Wiley, R. H,; Hexner, P, E.3,5-DIMETHYLPYRAZOLE. Organic Syntheses Coll. Vol.31, Wiley, New York,1951,43.
    [103]Wiles, C.; Watts, P.; Haswell, S. J. The Application of Micro reactor Technology for the Synthesis of 1,2-Azoles. Organic Process Research & Development 2004,8,28.
    [104]Adam, W.; Librera, C. P. Rearrangement of Annelated Housanes to Triquinane-Like Hydrocarbons by Electron Transfer (1,3-Cyclopentanediyl Radical Cations) and Acid Catalysis (Cyclopentyl Carbenium Ions).J. Org. Chem.2002,67,576.
    [105]Khlebnicova, T. S.; Isakova, V. G.; Lakhvich, F. A.; Kurman, P. V. REGIOSELECTIVE SYNTHESIS OF FLUORINE-CONTAINING INDAZOLONES FROM 2-ACYLCYCLOHEXANE-1,3-DIONES. Chem. Heterocycl. Comp.2008,44,301.
    [106]Luo, Y.; Potvin, P. G. Chelation-Controlled Regioselectivity in the Synthesis of Substituted Pyrazolylpyridine Ligands.1. Bidentates.J. Org. Chem.1994,59 (7),1761.
    [107]HEYL, F. W.; HERR, M. E. "Enamine" Derivatives of Steroidal Carbonyl Compounds.J. Am. Chem. Soc.1952,75,1918.
    [108]Chen, H.; Kuo, S.; Teng, C.; Lee, F.; Wang, J.; Lee, Y.; Kuo, C.; Huang, C Wue, C.; Huang, L. Synthesis and antiplatelet activity of ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate(YD-3) derivatives. Bioorg. Med. Chem. 2008,16,1262.
    [109]FUJIYOTANOD, G. I.; LEDEEN, R. W. Acetylation of 17β-Acetoxy-5α-androstan-3-one. J. Org. Chem.,1964,29,2059.
    [110]Kashima, C.; Fukuchi, I.; Hosomi, A. Diastereoselective a-Alkylation of 2-Acyl-3-phen yl-1-menthopyrazoles. J. Org. Chem.1994,59,7821.
    [111]Kashima, C.; Fukuchi, I.; Takahashi, K.; Hosomi, A. Stereoselective N-acylation of a new chiral auxiliary compound; 3-phenyl-l-menthopyrazole. Tetrahedron Letters 1993,34,8305.
    [112]Adams. R.; Brown, B. K. HYDRAZINE SULFATE. Organic Syntheses, Coll. Vol.1, Wiley. New York,1941,309.
    [113]Savini. L.; Chiasserini, L.; Pellerano, C.;Filippelli. W.; Falcone. G. Synthesis and pharmacological activity of 1,2.4-triazolo[4.3-a]quinolines. IL Farmaco. 2001.55,939.
    [114]Wu, W. L.; Burnett. D. A.; Spring. R.; Greenlee. W. J.; Smith, M.; Favreau. L. Fawzi, A.; Zhang, H.; Lachowicz. J. E. Dopamine D1/D5 Receptor Antagonists with Improved Pharmacokinetics:Design. Synthesis, and Biological Evaluation of Phenol Bioisosteric Analogues of Benzazepine D1/D5 Antagonists. J. Med. Chem.2005,48,680.
    [115]Seto, M.; Miyamoto, N.; Aikawa, K.; Aramaki. Y.; Kanzaki. N.;Iizawa, Y. Baba, M.; Shiraishi, M. Orally active CCR5 antagonists as anti-HIV-1 agents. Part 3:Synthesis and biological activities of 1-benzazepine derivatives containing a sulfoxide moiety. Bioorgan. Med. Chem.2005,13,363.
    [116]Yang. M, G.; Shi, J. L.; Modi. D. P.; Wells. J.; Cochran. B. M.; Wolf, M. A, Thompson, L. A,; Ramanjulu, M. M,; Roach, A. H, Roach, Zaczek, R,; Robertson, D. W,; Wexler, R. R,; Olson. R. E. Design and synthesis of benzoazepinone-derived cyclic malonamides and aminoamides as potent y-secretase inhibitors. Bioorganic & Medicinal Chemistry Letters 2007.17, 3910.
    [117](a) Tahara, T.; Tsukada, J.; Tomura, Y.; Momose. K.; Suzuki. T.; Yatsu, T.; Shibasaki, M. Effects of YM218. a nonpeptide vasopressin VIA receptor-selective antagonist, on vasopressin-induced growth responses in human mesangial cells. Eur.J. Pharm.2006.538.32. (b) Tahara, A.; Tsukada, J.; Tomura, Y.; Yatsu, T.; Shibasaki, M. Vasopressin increases type Ⅳ collagen production through the induction of transforming growth factor-beta secretion in rat mesangial cells. Pharmacological Res.2008,57,142.
    [118]Tanaka, H.; Kuroita, T.; Ishibuchi. S. PCT Int. Appl. WO 97 03,986 (1997); Chem. Abstr.1997,126,199585
    [119]Buege, A.; Locke, C.; Koehler, T.; Nuhn. P. Lipoxygenase-Inhibitoren,3. Mitt. Synthese von Tetrahydrobenzazepinon-phenylhydrazonen. Arch. Pharm.1994, 327,99; Chem. Abstr.1994,121,108483.
    [120]Janssens, F. E.; Lacrampe, J. F. A.; Pilatte, I. N. C. PCT Int. Appl. WO 9413, 671 (1994); Chem. Abstr.1995,123,33075.
    [121]Huang, J. J.; Chen. K. L.; Lin. Y. S.:Yang. S. C.; Chuang. S. H.; Chiang. K. C.; Tseng, W. C.; Wong. F. F.; Ye. M. Y. Synthesis of 2-aryl-2H-[1.2.4] triazoloquinolin-3-one and 2-ary1-2H-[1.2,4]triazoloisoquinolin-3-one derivatives from a-chloroformylaryl hydrazines hydrochloride. Tetrahedron 2010, 66,930.
    [122]Ferlin, M. G.; Castagliuolo, I.; Chiarelotto. G. Synthesis and Characterization of some N-Mannich Bases of[1,2,3]Triazoloquinolines. J.Heterocycl. Chem.2002, 39,.631.
    [123]Elliott, J. M.; Carling, R. W.; Chambers. M.; Chicchi. G. G.; Hutson. P. H.; Jones, A. B.; MacLeod, A.; Marwood, R.; Meneses-Lorente, G.; Mezzogori, E.; Murray, F.; Rigby, M.; Royo, I.; Russell. M. G. N.; Sohal. B.; Tsao, K. L. Williams, B.N',2-Diphenylquinoline-4-carbohydrazide based NK3 receptor antagonists. Bioorg. Med. Chem. Lett.2006,16.5748.
    [124]Ballesteros-Garrido, R.; Leroux, F. R.; Ballesteros, R.; Abarca. B.:Colobert. F. The deprotonative metalation of [1,2,3]triazolo[1,5-a]quinoline. Synthesis of 8-haloquinolin-2-carboxaldehydes. Tetrahedron 2009,65,4410.
    [125]Abarca, B.; Ballesteros, R.; Houari, N. Triazolopyridines.19. Synthesis and reactions of ylides derived from [1,2,3]triazolo[1.5-a]quinoline and [1,2,3]triazolo[5,1-a]isoquinoline with methyl propiolate. Tetrahedron 1997,53, 12765.
    [126]Zhu, Y. H.; Li, S. S.; Xu, Y. H.; Ma, C. A.4-(Diphenylmethylene)-3-pentyl-5,6-dihydro-4H-pyrrolo[1,2-e][1,2,3]triazole. Acta Cryst.2007, E63, o4863.
    [127]Moderhack, M.; Schneider, J. A New Series of Non-classical Type C Heteropentalenes:2H-Pyrrolo[2,1-c][1,2,4]triazoles.J. Heterocycl.Chem.2007. 44,393.
    [128]Furniss. B. S.; Hannaford. A. J. Vogel's Textbook of Organic Chemistry. Longman Group Limited (London).1978,1031.
    [129]Hunang, M. L. A Simple Modification of the Wolff-Kishner Reduction. J. Am. Chem. Soc.1946,68,2487.
    [130]陶凤岗,许临晓,邵黎明,吴世晖.线型聚氧乙烯化合物的相转移催化反应.有机化学1983,1,26.
    [131]MacDowell, D. W. H.; Greenwood, T. D. A synthesis of 7-substituted benzo[b]thiophene derivatives.J. Heterocycl. chem.1965,2,44.
    [132]Nishimura, S.; Nakamura, M.; Suzuki, M.; Imoto, E. Nippon Kagaku Zasshi 1962,83,343. (Chem. Ahstr:1963.59,3862).
    [133]Cho. H.; Matsuki. S. Ring Construction of Several Heterocycles with Phosphorus Pentoxide-Methanesulfonic Acid (PPMA). Heterocycles 1996,43, 127.
    [134]Iffland. D. C.; Salisbury. L.; Schaefer, W. R. The Preparation and Structure of Azoacetates, a New Class of Compounds.J. Am. Chem. Soc.1961,83, 747.
    [135]Hershel, L.; Herzog. PENTAERYTHRITYL TETRABROMIDE. Organic Syntheses, Coll. Vol.4. Wiley. New York.1963,753.
    [136]ROBERTAS. J. D.; SAVER, C. W. Small-Ring Compounds.111. Synthesis of Cyclobutanone. Cyclobutanol. Cyclobutene and Cyclobutanel.J. Am. Chem. Soc.1949,71.3925.
    [137]MURRAY, M. J.; STEVENSON, E. H. The Debromination of Pentaerythrityl Bromide by Zinc. Isolation of Spiropentane.J. Am. Chem. Soc.1944,66,812.
    [138]Nordvik, T.; Brinker, U. H. Thermolysis of 1-(1-Aryl-1-bromomethyl) cyclopropyl Bromides:A Reinvestigation.J. Org. Chem.2003,68,7092.
    [139]SCHWEIZER, E. E.; BERNINGER. C. G.; THOMPSON, J. G. Reactions of Phosphorus Compounds. XIII. Preparations and Reactions of Cyclopropyltriphenylphosphonium Bromide. J. Org. Chem.1967,31,336.
    [140]Nemoto, H.; Shiraki. M.; Fukumoto, K. Novel Access to Neopentyl-Type Halogenated Cyclopentanoids via Olefinic Cyclobutanols. J. Org. Chem.1996, 61,1347.
    [141]Boullais, C.; Breton, J.; Nabedryk, E.; Mioskowsk, C. Synthesis of Ubiquinones-3 Specifically Labelled with 13C at C(5)-or C(6)-Positions. Tetrahedron 1997.53,2505.
    [142]Paryzek, Z.; Blaszezyk, K. A New Approach to the Synthesis of the 17β-Butenolide Fragment of Cardenolides. Tetrahedron Letters.1999,40 5913.
    [143]Neudeck, H.; Brinker, U. H. 1-H-Cyclobuta[a]naphthalen-2-one. Tetrahedron Letters.2005,46,1893.
    [144]Nee, M; Roberts, J. D. Acetolysis of Some Bicyclo[3.3.0]-2-octenyl Tosylates. J. Org. Chem.1981,46,67.
    [145]Greene, A. E.; Depres, J. P. A Versatile Three-Carbon Annelation. Synthesis of Cyclopentanones and Cyclopentanone Derivatives from Olefins. J. Am. Chem. Soc.1979,101,4003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700