轧制和快速凝固加工的Mg-Y-Zn合金的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井上明久(Inoue A)于2001年用快速凝固/粉末冶金技术加工Mg_(97)Zn_1Y_2(at.%)(WZ73),获得了超高强度镁合金,它的屈服强度超过600MPa,是当时强度最高的镁合金晶体材料。从那时起,人们关注具有特殊的密排面长周期堆垛构造(LPS)作为第二相的Mg-Zn(Cu,Ni)-Re(-Zr)合金,作为一种耐热镁基合金得到广泛研究。
     在相同的常规铸造条件下,WZ73合金的室温强度低于广泛使用的AZ91合金。通过采用铸锭冶金/轧制和快速凝固/甩带方法,提高WZ73合金的性能,并对轧制合金退火处理,对甩带合金时效处理。实验分析揭示了WZ73合金的热力学特性;也获得了合金在轧制、快速凝固、热处理中发生的显微组织转变,即它的动力学过程。对比快速凝固/甩带和时效处理后的AZ91合金的显微组织和显微硬度,分析LPS相在WZ73合金中对高温强度的贡献;对比铸锭冶金/轧制纯镁的拉伸测试结果,分析了轧制WZ73合金的形变机理和力学性能。这样,对于具有长程堆垛结构的典型合金WZ73的特性,通过系统地表征,为该类合金的研究提供了基础性的参考数据。
Global effort in magnesium materials development has diversified in recent years, targeting new automotive,aerospace,and biomedical applications.The 1990's saw a concerted effort in the development of creep-resistant magnesium casting alloys for automotive power trains.These alloys are based on the addition of alkaline earth or rare earth alloying elements to Mg-Al system and provide adequate elevated temperature performance up to 175℃.The R&D efforts in this area resulted in the application of the AJ62(Mg-6Al-2Sr) alloy in BMW engine blocks and the AE44(Mg-4Al-4RE) in the GM engine cradle.Other new creep-resistant alloys are based on Mg-Sn-Ca,Mg-Sc-Ce and Mg-Gd-Nd.Scandium- and gadolinium-containing alloys,which offer high creep resistance,are candidates for aerospace engine applications.Mg-Zn-RE(where RE = rare earth elements) alloy systems offer a base for further development too.
     Early in 1970's,the Mg-Zn-Y-Zr system of casting alloys had been studied in China and it was found that a close relation between the microstructure and property of the alloy and the ratio of Y/Zn existed in the alloy system.Our nation had nine casting magnesium alloys early in 1980's,among them,six rare-earth element containing magnesium alloys had been developed by the Institute of Aerospace Materials for nearly 30 years since the P.R.C. had been founded.The rare-earth containing magnesium alloys are applied broadly in the aerospace industry.The ZM3 alloy was brought into application as early as in 1967;the ZM4 alloy,in which the Zn content is up to 2~3%,was developed.An Mg-Zn-Y-Zr alloy was acquired in 1980 and the Y element is it's main alloying element,at the same time,the ZM6 alloy with Nd as the main alloying element was developed too.Our nation kept ahead of other countries in the world in the R-D of the creep-resistant magnesium alloys then.
     Padezhnova E M et al.of the USSR found three ternary equilibrium phases in the 1980's,i.e.W-Mg_3Zn_3Y_2,Z-Mg_3Zn_6Y and X-Mg_(12)ZnY phases.They reported that the W-Mg_3Zn_3Y_2 phase belongs to an isostructure of AlMnCu_2.In recent years,Z.P.Luo et al. identified the Z- Mg_3Zn-6Y as a stable icosahedral quasicrystalline phase,and determined the X-Mg_(12)ZnY phase as an 18R type of long-period stacking(LPS) structure by an electron diffraction technique.
     Inoue A.et al.fabricated an Mg_(97)Zn_1Y_2(at.%,i.e.WZ73) alloy with excellent tensile yield strength above 600 MPa by rapid solidification(RS) techniques of powder metallurgy in 2001.Since then,the Mg-Zn(Cu,Ni)-Re(-Zr) alloys,which have a LPS phase as a secondary phase,has been studying as an elevated temperature creep resistant Mg-based alloy.The Mg_(97)Zn_1Y_2(at.%) is marked as WZ73 according to the standard of ASTM.The study by Inoue A.et al.shows that the property of RS/PM AZ91 alloy is lower than one of the WZ73 processed by same technology.The proceeded work about the analysis of microstruetures and strengthening mechanisms of the RS/PM and RS/melt-spun WZ73 alloys shows that the strengthening effect is mainly from the existing LPS phase.While,the examined hardness of the WZ73 alloy with LPS structure is lower than that of the commercial AZ91 alloy at room temperature according to our experimental data.
     The microstructure characteristics of the WZ73 alloy,processed by ingot metallurgy (IM)/rolling and annealing upon the conventionally cast alloy and by rapid solidification (RS)/melt-spinning and aging upon the ribbon,which have been not introduced by other papers systematically,will be generally illustrated by a series of schemed experiments in this paper.Among them,after examining the as-cast alloy through X-ray diffraction(XRD), general optical microscopy(OM),scanning electron microscopy(SEM) and differential thermal analysis(DTA) complexly,the evolutionary direction of microstructure prescribed by thermodynamics in the WZ73 alloy is reflected from the experimental data of the as-cast alloy;after analysizing the data including phase constitutions and textures from XRD and images from LOM,SEM and TEM,the actual evolution paths selected by kinetics are depicted in detail in the as-spun alloy and rolled alloy;by testing hardess on micro-hardness machine and macro-hardness machine and tensile property,the mechanical properties on an Instron-type machine are displayed and the analysis of fractures is attached.At the same time the microstructure of a conventional AZ91 alloy processed by melt-spinning technique and its evolution during aging and micro-hardness were obtained for comparison with those of the RS/melt-spun WZ73 alloy;the mechanical properties and fracture morphologies of the as-cast pure magnesium were examined too to analyze the deformation mechanism of the alloy with LPS phase during rolling and tensile test.
     The strong influences of thermodynamic non-equilibrium mechanism,which entails the factual complexity of microstructures typically during IM/rolling and annealing, RS/melt-spinning and ageing for strengthening the creep resistant magnesium alloy,are presented in this work.Thus a general characteristics of WZ73 with originality and important fundamental data is concluded in this thesis,they are,
     (1) The ternary compound LPS phase,as the secondary phase of the cast WZ73 alloy, mainly resulted from the eutectic transformation and precipitating out of the supersaturated a-Mg during cooling.(2) The yield tensile strength,ultimate tensile strength and percent elongation of the rolled Mg_(97)Zn_1Y_2 alloy is 282 and 298 MPa and 5.2%,which is higher than 85 and 154 MPa and 5.4%of the as-cast alloy respectively.In the rolled WZ73 alloy,a mixed fracture mode including brittle and ductile fracture patterns is different from the single brittle fracture in the as-cast alloy;the evolution of deformation mechanism during tensile test is from mainly dislocation induced strain with strengthening effect in the as-cast WZ73 alloy to dislocations sliding produced plastic strain in which the strengthening effect hardly existed in the rolled WZ73 alloy.(3) With increasing rolling reduction upon the cast alloy,a rolling texture of {0001} developed gradually and the LPS structure of X-Mg_(12)
     ZnY phase in the rolled alloy shrank and distributed along the rolling direction.A lot of fine particles precipitated in the alloy when the annealing temperature was up to 400℃.With the temperature rising,the amount of precipitates was gradually reduced.The second recrystallized grains ofα-Mg were obtained during annealing the rolled alloy at 500℃,and the grain size also is similar to the size of the dendritic grain in the as-cast alloy.With increasing annealing temperature from 350℃to 500℃,an annealing texture evolution proceeded before and aider second re-crystallization process finished and a microstructure evolution about ternary Mg-Y-Zn compound from a LPS phase to an L-type approximant of icosahedral quasicrystal to an icosahedral quasicrystal during rolling and annealing.(4) There was a cellular/dendritic transition during melt-spinning process of WZ73 alloy,and a mild age strengthening with the hardness of 113HV/0.05 at 300℃;more importantly,there was a different evolution of morphologies of the matrix and inter-metallic compounds from general secondary phase strengthened alloys when age temperatures up to the 500℃had been introduced to the as-spun alloy.Dendritic and cellular arrays evolved into grains; cellular grains,which structure is an L-type approximant of icosahedral quasicrystal different from the LPS structure,were transformed at 500℃at new grain boundaries.(5) The commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning too.A strengthening effect due to aging was observed:a maximum hardness of 110 HV/0.05 and an age-harden-ability of 50%were obtained when the ribbon was aged at 200℃.Theβ-Mg_(17)Al_(12) phase exhibits net and dispersion types of distribution during precipitation.The dispersion of precipitates in dendritic grains or cells is the main source of strengthening.The cooling rate of the rapid solidification/melt-spinning upon the AZ91 alloy in this experiment is theoretically calculated to be 10~5 to 10~6℃/s.
     Resulting from the experiments and comparison and analysis in this paper,a prospect which is the applications of WZ73 alloy in structure parts processed by plastic deformation, sheet and extrusion materials,light-weight structure parts with elevated temperature performance,is expected;the research about Mg-Zn(Cu,Ni)-Re(-Zr) alloy with LPS phase and the develop about processing technology upon them are encouraged to proceed.
引文
[1]陈振华等。镁合金[M]。.北京:化学工业出版社,2004。
    [2]曾荣昌,柯伟,徐永波等。Mg合金的最新发展及应用前景[J]。金属学报,2001,37(7):673-685
    [3]RUDEN T J,ALBRIGHT D L.High ductility magnesium alloys in automobile application.Advanced Mater and processes[J],1994,145(6):28-32.
    [4]Committee on the Effectiveness and Impact of Corporate Average Fuel Economy(CAFE) Standards,National Research Council.Effectiveness and Impact of Corporate Average Fuel Economy(CAFE)Standards.Washington D.C.:National Academies Press,2002.
    [5]CARPENTER J A,JACKMAN J,NAIYI LI,OSBORNE R J,POWELL B R,SKLAD P.Automotive Mg research and development in North America[J].Conference Information:Beijing International Materials Week,Date:JUN 25-30,2006 Beijing PEOPLES R CHINA.Materials Science Forum,2007,546-549(1):11-24.
    [6]KAMADO S,KOIKE J,KONDOH K,KAWAMURA Y.Magnesium research trend in Japan[J].Conference Information:2nd International Conference on Platform Science and Technology for Advanced Magnesium Alloys,Date:JAN 26-30,2003 OSAKA JAPAN.Magnesium Alloys,2003,419-4:21-33.
    [7]Joint Committee on Powder Diffraction Standards."Powder Diffraction File,Inorganic Phases",Card No.#65-3365:1940.
    [8]AVEDESIAN M M,BAKER H.Magnesium and magnesium alloys:ASM Speciality Handbook[M].Ohio:ASM International,1999.
    [9]EMELY E F.Principle of magnesium technology[M].Oxford:Pergamon Press,1996.
    [10]丁文江等。镁合金科学与技术[M]。北京:科学出版社,2007,255-257。
    [11]INTERNATIONAL MAGNESIUM ASSOCIATION(IMA):http://www.intlmag.org/.
    [12]MORDIKE B L,EBERT T.Magnesium:properties-applications-potential[J].Materials Science Engineering A,2001,302(1):37-45.
    [13]美国金属学会主编:金属手册(有色金属合金.手册;贵金属-手册:纯金属-手册)(American Society for Metals:Metals Handbook,Ninth Edition,Vol 2,Properties and Selection:Nonferrous Alloy and Pure Metals,(1979))[M],第九版。北京:机械工业出版社,1994,688-751。
    [14]BEALS R S,TISSINGTON C,ZHANG X,KAINER K,PETRILLO J,VERBRUGGE M,PEKGULERYUZ M.Magnesium global development:Outcomes from the TMS 2007 annual meeting[J].JOM,2007,59(8):39-42.
    [15]PANTELAKIS SP G,ALEXOPOULOS N D,CHAMOS A N.Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications[J].Transactions of the ASME, 2007,129(7):422-430.
    [16]BLAWERT C,HORT N,KAINER K U.Automotive applications of magnesium and its alloys[J].Transaction of Indian Institute of Metal,2004,57(4):397-408.
    [17]FRIEDRICH H,SCHUMANN S.Research for a "new age of magnesium" in the automotive Industry[J].Journal of Materials Processing Technology,2001,117(3):276-281.
    [18]HORT N,HUANG Y D,KAINER K U.Intermetallics in magnesium alloys,Advanced Engineering Materials,2006,8(4):235-240.
    [19]MORDIKE B L.Magnesium and magnesium alloys[J].Journal of JILM,2001,51(1):2-13.
    [20]LIU H M,CHEN Y G,TANG Y B,WEI S H,NIU G.The microstructure,tensile properties,and creep behavior of as-cast Mg-(1-10)%Sn alloys[J].Journal of Alloys and Compounds,2007,440(1-2):122-126.
    [21]KOZLOV A,OHNO M,ARROYAVE R,LIU Z K,SCHMID-FETZER R.Phase equilibria,thermodynamics and solidification microstructures of Mg-Sn-Ca alloys,Part 1:Experimental investigation and thermodynamic modeling of the ternary Mg-Sn-Ca system[J].Intermetallics,2008,16:299-315.
    [22]KANG D H.,PARK S S,KIM N J.Development of creep resistant die cast Mg-Sn-Al-Si alloy[J].Materials Science and Engineering A.2005,413-414:555-560.
    [23]SASAKI T T,YAMAMOTO K,HONMA T,KAMADO S,HONO K.A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature[J].Scripta Materialia,2008,59(10):1111-1114.
    [24]KANG D H,BAE G T,KIM N J.Effect of Sb and Sr additions on the microstructural evolution of Mg-Sn-Al-Si based alloys[J].Materials Transactions,2008,49(5):936-940.
    [25]EVANGELISTA E,SPIGARELLI S,CABIBBO M,SCALABRONI C,LOHNE O,ULSETH P.Analysis of the effect of Si content on the creep response of an Mg-5Al-Mn alloy[J].Materials Science and Engineering A,2005,410-411:62-66.
    [26]JAIN C C,KOO C H.Creep behavior of extruded sheets of magnesium alloys containing La-rich mischmetal[J].Materials Transactions,2006,47(2):433-439.
    [27]Zhu S M,Mordike B L,Nie J F.Creep properties of a Mg-Al-Ca alloy produced by different casting technologies[J].Materials Science and Engineering A,2008,483-484:583-586.
    [28]PEKGULERYUZ M O,ERIC B.Creep resistant magnesium diecasting alloys based on alkaline earth elements[J].Materials Transactions,2001,42(7):1258-1267.
    [29]ANYANWU I A,GOKAN Y,NOZAWA S,SUZUKI A,KAMADO S,KOJIMA Y,TAKEDA S,ISHIDA T.Development of new die-castable Mg-Zn-Al-Ca-RE alloys for high temperature applications[J].Materials Transactions,2003,44(4):562-570.
    [30]BAKKE P,WESTENGEN H,PETTERSEN K,ALBRIGHT D.Die cast magnesium alloys for high temperature applications[J].SAE TECHNICAL PAPER SERIES,2003-01-0189.
    [31]BAI J,SUN Y S,XUE F,XUE S,QIANG J,ZHU T B.Effect of Al contents on microstructures,tensile and creep properties of Mg-Al-Sr-Ca alloy[J].Journal of Alloys and Compounds,2007,437(1-2):247-253.
    [32]SRINIVASAN A,SWAMINATHAN J,PILLAI U T S,GUGULOTH K,PAI B C.Effect of combined addition of Si and Sb on the microstructure and creep properties of AZ91 magnesium alloy[J].Materials Science and Engineering A,2008,485(1-2):86-91.
    [33]BAI J,SUN Y S,XUE F,XUE S,QIANG J,TAO W J.Effect of extrusion on microstructures,and mechanical and creep properties of Mg-Al-Sr and Mg-Al-Sr-Ca alloys[J].Scripta Materialia,2006,55(12):1163-1166.
    [34]ANYANWU I A.,GOKAN Y,SUZUKI A,KAMADO S,KOJIMA Y,TAKEDA,S ISHIDA T.Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys[J].Materials Science and Engineering A,2004,380(1-2):93-99.
    [35]NAKAURA Y,WATANABE A,OHORI K.Effects of Ca,St additions on properties of Mg-Al based alloys[J].Materials Transactions,2006,47(4):1031-1039.
    [36]HUANG Y D,DIERINGA H.,HORT N,MAIER P,KAINER K U,LIU Y.L.Evolution of microstructure and hardness of AE42 alloy after heat treatments[J].Journal of Alloys and Compounds,2007,in press.
    [37]PEKGULERYUZ M,LABELLE P,ARGO D.Magnesium die casting alloy AJ62x with superior creep resistance,ductility and die castability[J].SAE TECHNICAL PAPER SERIES 2003-01-0190.
    [38]TANG A I,PAN F S,YANG M B,CHENG R J.Mechanical properties and microstructure of magnesium-aluminum based alloys containing strontium[J].Materials Transactions,2008,49(6):1203-1211.
    [39]YUAN G Y,LIU M P,DING W J.INOUE A.Mechanical properties and microstructure of Mg-Al-Zn-Si-base alloy[J].Materials Transactions,2003,44(4):458-462.
    [40]ZHU S M,GIBSON M A,NIE J F,EASTON M A,ABBOTT T B.Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy[J].Scripta Materialia,2007,in press.
    [41]MORI Y,TERADA Y,SATO T.Microstructure stability and creep strength in a die-cast AX52magnesium alloy[J].Materials Transactions,2005,46(8):1749-1752.
    [42]TERADA Y,MORI Y,SATO T.Role of eutectic intermetallic phase on creep strength in a die-cast Mg-Al-Ca alloy:evaluation by internal stress measurement[J].Materials Transactions,2007,48(2):97-100.
    [43]BOEHLERT C J,KNITTE K.The microstructure,tensile properties,and creep behavior of Mg-Zn alloys containing 0-4.4 wt.%Zn[J].Materials Science and Engineering A,2006,417(1-2):315-321.
    [44]GAO X,NIE J F.Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J].Scripta Materialia,2007,57(7):655-658.
    [45]GAO X,NIE J F.Characterization of strengthening precipitate phases in a Mg-Zn alloy[J].Scripta Materialia,2007,56(7):645-648.
    [46]ZHANG Z,COUTURE A,LUO A.An investigation of the properties Mg-Zn-Al alloys[J].Scripta Materialia,1998,39(7):45-53.
    [47]SOMEKAWA H,MUKAI T.High strength and fracture toughness balance on the extruded Mg-Ca-Zn alloy[J].Materials Science and Engineering A,2007,459(1-2):366-370.
    [48]BEN-HAMU G,ELIEZER D,SHIN K S.The role of Si and Ca on new wrought Mg-Zn-Mn based alloy[J].Materials Science and Engineering A,2007,447(1-2):35-43.
    [49]GROBNER J,SCHMID-FETZER R.Selection of promising quaternary candidates from Mg-Mn-(Sc,Gd,Y,Zr) for development of creep-resistant magnesium alloys[J].Journal of Alloys and Compounds,2001,320(2):296-301.
    [50]von BUCH F,LIETZAU J,MORDIKE B L,PISCH A,SCHMID-FETZER R.Development of Mg-Sc-Mn alloys[J].Materials Science and Engineering A,1999,263(1):1-7.
    [51]MORDIKE B L,STULIKOVA I,SMOLA B.Mechanisms of creep deformation in Mg-Sc-based alloys[J].Conference Information:Fall Symposium on Three Dimensional Materials Science,Date:2003 Chicago IL.Metallurgical and Materials Transactions A,2005,36(7):1729-1736.
    [52]MORDIKE B L.Development of highly creep resistant magnesium alloys[J].Journal of Materials Processing Technology,2001,117(3):391-394.
    [53]MORDIKE B L.Creep-resistant magnesium alloys[J].Materials Science and Engineering A,2002,324(1-2):103-112.
    [54]SMOLA B,STULIKOVA,PELCOVAJ,MORDIKE B L.Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys[J].Journal of Alloys and Compounds,2004,378(1-2):196-201.
    [55]NIE J F,MUDDLE B C.Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J].Acta Materialia.2000,48(8):1691-1703.
    [56]ANYANWU I A,KAMADO S,KOJIMA Y.Creep properties of Mg-Gd-Y-Zr alloys[J].Materials Transactions,2001,42(7):1212-1218.
    [57]HONMA T,OHKUBO T,KAMADO S,HONO K.Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J].Acta Materialia,2007,55(12):4137-4150.
    [58]HE S M,ZENG X Q,PENG L M,GAO X,NIE J F,DING W J.Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%) alloy during isothermal ageing at 250℃[J].Journal of Alloys and Compounds,2006,421(1-2):309-313.
    [59]HE S M,ZENG X Q,PENG L M,GAO X,NIE J F,DING W J.Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J].Journal of Alloys and Compounds,2007,427(1-2):316-323.
    [60]ZHENG K Y,ZENG X Q,DONG J,DING W J.Effect of initial temper on the creep behavior of a Mg-Gd-Nd-Zr alloy[J].Materials Science and Engineering A,2008,492(1-2):185-190.
    [61]FANG X Y,YI D Q,NIE J F,ZHANG X J,WANG B,XIAO L R.Effect of Zr,Mn and Sc additions on the grain size of Mg-Gd alloy[J].Journal of Alloys and Compounds,2008,in press.
    [62]BAE D H,KIM S H,KIM W T,KIM D H.High strength Mg-Zn-Y alloy containing quasicrystalline particles[J].Materials Transactions,2001,42(10):2144-2147.
    [63]SUZUKI M,KIMURA T,KOIKE J,MARUYAMA K.Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys[J].Scripta Materialia,2003,48(8):997-1002.
    [64]LI Q,WANG Q D,ZHOU H T,ZENG X Q,ZHANG Y,DING W J.High strength extruded Mg-5Zn-2Nd-1.5Y-0.6Zr-0.4Ca alloy produced by electromagnetic casting[J].Materials Letters,2005,59(19-20):2549-2554.
    [65]NIE J F,GAO X,ZHU S M.Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J].Scripta Materialia,2005,53(9):1049-1053.
    [66]SOMEKAWA H,SINGH A,OSAWA Y,MUKAI T.High strength and fracture toughness balances in extruded Mg-Zn-RE alloys by dispersion of quasicrystalline phase particles[J].Materials Transactions,2008,49(9):1947-1952.
    [67]GAO X,NIE J F.Enhanced precipitation-hardening in Mg-Gd alloys containing Ag and Zn[J].Scripta Materialia,2008,58(8):619-622.
    [68]ITOI T,TAKAHASHI K,MORIYAMA H,HIROHASHI M.A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling[J].Scripta Materialia,2008,59(10):1155-1158.
    [69]PEREZ P,GONZELEZ S,GARCES G,CARUANA G,ADEVA P.High-strength extruded Mg96Ni2Y1RE1 alloy exhibiting superplastic behaviour[J].Materials Science and Engineering A,2008,485(1-2):194-199.
    [70]HNILICA F,JANIK V,SMOLA B,STULIKOVI I,OCENASEK V.Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1 alloy[J].Materials Science and Engineering A,2008,489(1-2):93-98.
    [71]ZHANG C M,HUI X,YAO K F,LI Z G,CHEN G L.Formation of high strength Mg-Cu-Zn-Y alloys [J].Materials Science and Engineering A,2008,491(1-2):470-475.
    [72]SUZUKI M,TSUCHIDA K,MARUYAMA K.Microalloying effects of Ca and Ni on high-temperature creep behavior in Mg-Y-Zn alloys[J].Materials Transactions,2008,49(5):918-923.
    [73]PADEZHNOVA E M,MELNIK E V,MILIYEVSKIY R A,DOBATKINA T V,KINZHIBALO V V.Intermetallics in magnesium alloys[J].Russian Metallurgy(Metally)(Engl.Transl.),1982,4(9):185-188.
    [74]LUO Z P,ZHANG S Q.Comments on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements[J].Journal of Materials Science Letters,1993,12(19):1490-1492.
    [75]LUO Z P,ZHANG S Q,TANG Y L,ZHAO D S.Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents[J].Journal of Alloys and Compounds,1994,209(1-2):275-278.
    [76]LUO Z P,ZHANG S Q.High-resolution electron microscopy on the X-Mg_(12)ZnY phase in a high-strength Mg-Zn-Zr-Y magnesium alloy[J].Journal of Materials Science Letters,2000,19(9):813-815.
    [77]INOUE A,KAWAMURA Y.Structure and mechanical properties of glassy and nanocrystalline alloys in Mg-based system.Proceedings of the 22nd RisΦ international symposium on materials science:Science of metastable and nanocrystalline structure alloys structure,properties and modeling[C]. In Denmark,2001,53-68.
    [78]KAWAMURA Y,HAYASHI K,INOUE A,MASUMOTO T.Rapidly solidified powder metallurgy Mg_(97)Zn_1Y_2 alloys with excellent tensile yield strength above 600MPa[J].Materials Transaction,2001,42(7):1172-1176.
    [79]INOUE A,KAWAMURA Y,MATSUSHITA M,HAYASHI K,KOIKE J.Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J].Journal of Materials Research,2001,16(7):1894-1900.
    [80]MASSALSKI T B,MURRAY J L,BENNETT L H,BAKER H.Binary alloy phase diagrams[M].Ohio:ASM International,1990.
    [81]SHAO G,VARSANI V,FAN Z.Thermodynamic modelling of the Y-Zn and Mg-Zn-Y systems[J].Computer Coupling of Phase Diagrams and Thermochemistry,2006,30(3):286-295.
    [82]刘楚明,朱秀荣,周海涛。镁合金相图集[M]。长沙:中南大学出版社,2006,334-337。
    [83]LEE J Y,KIM D H,LIM H K,KIM D H.Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J].Materials Letters,2005,59(29-30):3801-3805.
    [84]KAWAMURA Y,KASAHARA T,IZUMI S,YAMASAKI M.Elevated temperature Mg97Y2Cu1alloy with long period ordered structure[J].Scripta Materialia,2006,55(5):453-456.
    [85]KAWAMURA Y,YAMASAKI M.Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure[J].Materials Transactions,2007,48(11):2986-2992.
    [86]AMIYA K,OHSUNA T,INOUE A.Long-period hexagonal structures in melt-spun Mg97Ln2Zn1(Ln=lanthanide metal) alloys[J].Materials Transactions,2003,44(10):2151-2156.
    [87]UHRIG E,BRUHNE S,ASSMUS W,GRUNER D,KREINER G.Quasicrystals in the Zn-Mg-RE system:growth and new phases[J].Journal of Crystal Growth,2005,275(1-2):e1987-e1991.
    [88]Nishiyama Z.Martensitic transformation[M].New York,San Francisco,London:Academic Press,1978,74-108.
    [89]INOUE A,MATSUSHITA M,KAWAMURA Y,AMIYA K,HAYASHI K,KOIKE J.Novel hexagonal structure of ultra-high strength magnesium-based alloys[J].Materials Transaction,2002,43(3):580-584.
    [90]MATSUDA M,II S,KAWAMURA Y,IKUHARA Y,NISHIDA M.Variation of long-period stacking order structures in rapidly solidified Mg_(97)Zn_1Y_2 alloy[J].Materials Science and Engineering A,2005,393(1-2):269-274.
    [91]REDFIELD A N,ZANGWILL A M.Stacking sequences in close-packed metallic superlattices[J].Physical Review B,1986,34(2):1378-1380.
    [92]Chetty N,Weinert M.Stacking faults in magnesium[J].Physical Review B,1997,56(17):10844-10851.
    [93]DATTA A,RAMAMURTY U,RANGANATHAN S,WAGHMARE U V.Crystal structures of a Mg-Zn-Y alloy:A first-principles study[J].Computational Materials Science,2006,37(1-2):69-73.
    [94]付建强,孙威,谢中柱,刘林林,张泽。合金元素对铸态镁合金中长周期堆垛结构的形成与 特征的影响[J]。金属学报,2008,44(4):428-432。
    [95]LOJEN G,ANZEL I,KNEISSL A,KRIZMAN A,UNTERWEGER E,KOSEC B,BIZJAK M.Microstructure of rapidly solidified Cu-Al-Ni shape memory alloy ribbons[J,C].CONFERENCE INFORMATION:8TH INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES/13TH INTERNATIONAL CONFERENCE ON ACHIEVEMENTS IN MECHANICAL AND MATERIALS ENGINEERING,DATE:MAY 16-19,2005 GLIWICE WISLA POLAND.Journal of Materials Processing Technology,162-163:2005,220-229
    [96]XU C L,WANG H Y,QIU F,YANG Y F,JIANG Q C.Cooling rate and microstructure of rapidly solidified Al-20 wt.%Si alloy[J].Materials Science and Engineering A,2006,417(1-2):275-280.
    [97]Joint Committee on Powder Diffraction Standards."Powder Diffraction File,Inorganic Phases",Card No.#36-1273:1982.
    [98]StJOHN D H,DAHLE A K,ABBOTT T,NAVE M D,QIAN M.Solidification of cast magnesium alloys[J,C].Conference Information:Symposium on Magnesium Technology 2003 held at the 2003 TMS Annual Meeting,Date:MAR 02-06,2003 SAN DIEGO CALIFORNIA.Magnesium Technology,2003,95-100.
    [99]CALLISTER W D,Jr.材料科学与工程基础(Fundamentals of Materials Science and Engineering,第5版,英文影印版)[M]。北京:化学工业出版社,2004,210-219。
    [100]WANG Y N,HUANG J C.Texture analysis in hexagonal materials.Materials Chemistry and Physics,2003,81(1):11-26.
    [101]陈振华。变形镁合金[M]。北京:化学工业出版社,2005,321-350。
    [102]MATSUDA M,ANDO S,NISHIDA M.Dislocation structure in rapidly solidified alloy with period stacking order phase[J].Materials Transaction,2005,46(2):361-364.
    [103]MATSUDA M,Ⅱ S,KAWAMURA Y,IKUHARA Y,NISHIDA M.Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg_(97)Zn_1Y_2 alloy[J].Materials Science Engineering A,2004,386(1-2):447-452.
    [104]ABE E,TAKAKURA H,SINGH A,TSAI A P.Hexagonal superstructures in the Zn-Mg-rare earth alloys[J].Journal of Alloys and Compounds.1999,283(1-2):169-172.
    [105]SHECHTMAN D,BLECH I,GRATIAS D,CAHN J.W.Metallic phase with long-range orientational order and no translational symmetry[J].Physical Review Letters,1984,53(20):1951-1953.
    [106]郭可信。准晶的晶体学特征[J]。化学进展,1994,6(4):266-279。
    [107]GOLDMAN A I,KELTON R F.Quasicrystals and crystalline approximants[J].Review of Modern Physics,1993,65(1):213-230.
    [108]ABE E,TSAI A P.Quasicrystal-crystal transformation in Zn-Mg-Rare-Earth alloys[J].Physical Review Letters,1999,83(4):753-756.
    [109]UHRIG E,STERZEL R,BRUHNE S,ASSMUS W.Comment on "Quasicrystal-Crystal Transformation in Zn-Mg-Rare-Earth Alloys"[J].Physical Review Letters,2003,91(8):089601-1.
    [110]LUO Z P,TANG Y L,MILLER D.Comment on "Quasicrystal-Crystal Transformation in Zn-Mg-Rare-Earth Alloys"[J].Journal of Physics Review Letters,2000,84(16):3730.
    [111]COTTAM R,ROBSON J,LORIMER G,DAVIS B.Dynamic recrystallization of Mg and Mg-Y alloys:Crystallographic texture development[J].Materials Science and Engineering A,2008,485(1-2):375-382.
    [112]胡壮麟,宋启洪,张海峰,刘正。亚稳金属材料[M]。北京:科学出版社,2006。
    [113]OLSEN W T,HULTGREN R.The effect of the rate of cooling rate on the homogeneity of solid solution[J].Transaction of AIME,1950,188:1223.
    [114]DUWEZ P,WILLENS R H,KLEMENT W.Continuous series of metastable solid solutions in silver-copper alloys[J].Journal of Applied Physics,1960,31:1136-1137.
    [115]MATSUDA A,WAN C C,YANG J M,KAO W H.Rapid solidification processing of a Mg-Li-Si-Ag alloy[J].Metallurgical and Materials Transactions A,1996,27(5):1363-1370.
    [116]YI S,PARK E S,OK J B,KIM W T,KIM D H.Quasicrystals and related approximant phases in Mg-Zn-Y[J].Micron 2002,33(6):565-570.
    [117]XIAO W L,WANG J,YANG J,JIA S S,WANG L L.Microstructure and mechanical properties of Mg-12.3Zn-5.8Y-1.4Al alloy[J].Materials Science Engineering A,2008,485(1-2):55-60.
    [118]XU D K,TANG W N,LIU L,XU Y B,HAN E H.Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J].Journal of Alloys and Compounds,2007,283(1-2):129-134.
    [119]ITOI T,SEIMIYA T,KAWAMURA Y,HIROHASHI M.Long period stacking structures observed in Mg_(97)Zn_1Y_2 alloy[J].Script Materialia,2004,51(2):107-111.
    [120]ABE E,KAWAMURA Y,HAYASHI K,INOUE A.Long-period ordered structure in a high-strength nanocrystalline Mg-1 at%Zn-2 at%Y alloy studied by atomic-resolution Z-contrast STEM[J].Acta Materialia,2002,50(15):3845-3857.
    [121]MATSUURA M,SAKURAI M,AMIYA K,INOUE A.Local structures around Zn and Y in the melt-quenched Mg_(97)Zn_1Y_2 ribbon[J].Journal of Alloys and Compounds,2003,353(1-2):240-245.
    [122]GUSAK A M,LUTSENKO G V,TU K N.Ostwald ripening with non-equilibrium vacancies[J].Acta Materialia,2006,54(3):785-791.
    [123]HORNBOGEN E.Hundred years of precipitation hardening[J].Journal of Light Metals,2001(1),127-132.
    [124]NISHIDA M,KAWAMURA Y,YAMAMURO T.Formation process of unique microstructure in rapidly solidified Mg_(97)Zn_1Y_2 alloy[J].Materials Science Engineering A,2004,375-377:1217-1223.
    [125]ROBERTS C S.Magnesium and its alloys[M].New York:Wiley.1960.
    [126]ZHANG M X,KELLY P M.Crystallography of Mg_(17)Al_(12) precipitates in AZ91D alloy[J].Script Materialia,2003,48(5):647-652.
    [127]CACERES C H,DAVIDSON C J,GRIFFITHS J R,NEWTON C L.Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy[J].Materials Science Engineering A,2002,325:(1-2) 344-355.
    [128]潘金生,仝健民,田民波。材料科学基础[M]。北京:清华大学出版社,2002,503-506。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700