基于移动传感器网络的分布式节能目标跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究基于移动无线传感器网络的目标跟踪问题,即利用传感器节点的感知、通信、计算和运动特性,对被探测区域内的未知运动目标进行连续跟踪。
     移动无线传感器网络是由大量可移动的传感器节点所组成的无线网络。它最显著的特点是节点资源有限,且抗毁性能很差。因此节能和分布式是必须考虑的因素。课题目的是提出一种分布式自主目标跟踪方案,在各种复杂环境下(如噪声、障碍物、扩散目标、多目标等),对目标保证高跟踪精度的同时,尽量最小化节点运动能耗,并且优化网络配置,包括始终保持网络连通、避免节点间以及节点与障碍物间发生碰撞等。
     本文分三个部分解决以上问题。第一部分研究在理想状态下节能跟踪所能达到的最优效果。首先证明节能跟踪问题的NP完全特性,然后提出一种类似贪心算法的局部中心式引导跟随算法,并且证明该算法的节点运动能耗在数值上逼近最小能耗,将其作为节能评价的标准。第二部分研究更具实际意义的分布式节能跟踪算法。首先建立分布式系统模型,规划节点间的信息交换机制,使得每时刻仅有少数节点处于活跃状态,自主运动来跟踪目标,其它节点均保持空闲。然后给出活跃节点的运动策略,包括三个模块:ⅰ)跟踪质量函数反映网络的跟踪性能,ⅱ)连接势函数反映网络的连通状态,ⅲ)分布式节能运动策略。第三部分考虑该分布式算法在复杂环境中的应用,将各种环境因素融入到算法的统一框架中,包括在噪声探测模型、扩展目标和多目标环境中重新定义跟踪质量函数,在障碍物环境中将障碍物作为虚拟邻节点加入连接势函数等。
     本文的主要贡献可分为四个方面。首先,首次提出将节点运动节能作为移动传感器网络跟踪的设计重点,而目前的移动传感器网络跟踪研究一般都只把跟踪性能作为唯一指标。其次,首次提出将跟踪性能和各种跟踪约束(包括节能、网络连通、避撞等)用目标函数量化表示,使跟踪问题可转化为经典的数学问题——多目标优化问题。第三,提出了一种完全分布式的跟踪算法,即每个节点仅依靠其邻节点信息决定自身控制输入,不存在任何动态中心节点,所有节点地位平等,提高了系统的灵活性和鲁棒性。第四,建立了一个全面的跟踪方案框架,适用于包括异构网络、噪声探测、障碍物、扩散目标、多目标等各种复杂环境,不需要特别针对某种应用环境开发新的跟踪算法,具有良好的可扩展性。
This dissertation studies the problem of target tracking using mobile sensor networks.It focuses on using the capabilities of sensing,communication and locomotion of sensor nodes to keep tracking unknown mobile targets within the sensing area.
     A mobile sensor network is a wireless network comprising a large number of mobile sensor nodes.These nodes are always low-power and destructible.So energy saving and distributed computation are the most important factors in the tracking design.This dissertation proposes a fully distributed algorithm for target tracking under complicated environment such as noisy sensing,obstacle,diffused target,etc.It tries to maintain the targets being visible to the network all the time while consuming as little motion energy as possible.Meanwhile the network connectivity is maintained,node collision is avoided,etc.
     This dissertation work is composed of three parts.First,while minimizing the tracking energy consumption during the tracking process is proved to be NP-complete,an approximately optimal solution named breadth-first leader-follower algorithm is presented.It only can be realized in a locally centralized manner.We prove that its consumption is within a scalar factor of the optimal consumption.Second,we deal with the distributed tracking problem which is more practical in reality.The system modeling is set up and the data transmission is scheduled carefully so that only a few nodes are activated while other nodes keep idle.Then a motion strategy for active nodes is proposed which is made up of three modules:ⅰ) the tracking quality function which reflects the tracking accuracy,ⅱ) the potential function which reflects the network connectivity status,ⅲ) the distributed energy saving motion strategy.Third,this algorithm is extended to complicated environment.Various environmental factors are added to the uniform tracking framework.For example,we improve the tracking quality function for the noisy sensing model,diffused target and multi-target.Also the obstacle is considered as virtual neighboring nodes in the potential function.
     The major contribution of this dissertation lies in four aspects.First,it is the first work that focuses on the energy saving problem in target tracking,while most existing works using mobile network only limit their problems on improving the tracking accuracy.Second,certain objective functions are defined to quantify the main requirements and constraints such as the tracking quality,the network connectivity status and the collision avoidance.They transform the tracking into a classical multi-objective optimization problem.Third,the optimization algorithm is fully distributed.No centralized processor or dynamic central node is needed.Each node acts as the same role,which makes the system more robust and flexible.Fourth,a general tracking framework is set up.It can be applied to many complicated situations such as the heterogeneous network,noisy sensing,diffused target,obstacle,etc.We need not to design a special algorithm for certain application,which means our algorithm has good expansibility.
引文
[1] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Approach.Morgan Kaufmann Publishers, 2004.
    
    [2] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, Collaborative Signal and Information Processing: An Information Directed Approach. Proceedings of the IEEE, August 2003,91(8): 1199-1209.
    [3] F. Zhao, J. Shin, and J. Reich, Information-Driven Dynamic Sensor Collaboration for Tracking Applications. IEEE Transactions on Signal Processing, March 2002,19(2): 61-72.
    [4] J. Liu, J. Reich, and F. Zhao, Collaborative In-Network Processing for Target Tracking.EURASIP Journal on Applied Signal Processing, March 2003,4: 378-391.
    [5] M. Chu, H. Haussecker, and F. Zhao, Scalable Information-Driven Sensor Querying and Routing for Adhoc Heterogeneous Sensor Networks. International Journal of High Performance Computing Applications, 2002,16(3): 90-110.
    [6] F. Zhao and J. Shin, Information Driven Dynamic Sensor Collaboration for Tracking Applications. IEEE Transactions on Signal Processing, 2002,19(5): 61-72.
    [7] R. Brooks, P. Ramanathan, and A. M. Sayeed, Distributed Target Classification and Tracking in Sensor Networks. Proceedings of the IEEE, 2003, 91(8): 1163-1171.
    [8] P. Ramanathan, Location-Centric Approach for Collaborative Target Detection,Classification, and Tracking. Proceedings of IEEE/CAS Workshop on Wireless Communications and Networking, Pasadena, USA, September 2002.
    [9] R. Brooks, C. Griffn, and D. S. Friedlander, Self-Organized Distributed Sensor Network Entity Tracking. International Journal of High Performance Computing Applications, 2002,16(3): 207-220.
    [10] J. Moore, Tracking Targets with Self-Organizing Distributed Ground Sensors. Aerospace Conference, Invited Paper, 2003, 5: 2113-2123.
    
    [11] T. Vercauteren, Decentralized Sigma-Point Information Filters for Target Tracking in Collaborative Sensor Networks. IEEE Transactions on Signal Processing, August 2005,53(8): 2997-3009.
    
    [12] W. P. Chen, J. C. Hou, and S. Lui, Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks. Mobile Computing, 2004,103(3): 258-271.
    [13] W. Zhang and G. Cao, DCTC: Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks. IEEE Transactions on Wireless Communication, 2004, 3(5):1689-1701.
    [14] H. Yang and B. Sikdar, A Protocol for Tracking Mobile Targets Using Sensor Networks.Proceedings of IEEE Workshop on Sensor Network Protocols and Applications, May 2003:71-81.
    [15] H. Yang and B. Sikdar, Lightweight Target Tracking Protocol Using Ad-hoc Sensor Network. Proceedings of IEEE VTC, Stockholm, Sweden, May 2005.
    [16] J. Aslam, Z. Butler, and F. Constantin, Tracking a Moving Object with a Binary Sensor Network. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, 2003: 150-161.
    [17] J. Liu, M. Chu, and J. E. Reich, Multitarget Tracking in Distributed Sensor Networks. IEEE Transactions on Signal Processing, 2007, 24(3): 36-46.
    [18]Y. Bar-Shalom and T.Fortmann. Tracking and Data Association. Academic Press, San Diego, CA, 1988.
    [19] D. Reid, An Algorithm for Tracking Multiple Targets. IEEE Transactions on Automatic Control, December 1979,24(6): 843-854.
    [20] J. Shin, L. Guibas, and F. Zhao, A Distributed Algorithm for Managing Multitarget Identities in Wireless Ad-hoc Sensor Networks. Proceedings of the 2nd Workshop Information Processing Sensor Networks, April 2003.
    [21] I. Hwang, K. Roy, H. Balakrishnan, and C. Tomlin, A Distributed Multiple Target Identity Management Algorithm in Sensor Networks. Proceedings of the 43rd IEEE Conference on Decision Control, Bahamas, December 2004.
    [22] S. Oh, I. Hwang, K. Roy, and S. Sastry, A Fully Automated Distributed Multiple-Target Tracking and Identity Management Algorithm. Proceedings of AIAA Conference on Guidance, Navigation, and Control, August 2005.
    [23] W. L. Yeow, C. K. Tham, and W. C. Wong, Energy Efficient Multiple Target Tracking in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2006: 918-928.
    [24] T. Vercauteren, D. Guo, and X. Wang, Joint Multiple Target Tracking and Classification in Collaborative Sensor Networks. IEEE Journal on Selected Areas in Communication, 2005,23(4): 714-723.
    [25] S. Oh, L. Schenato, and S. Sastry, A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks. Proceedings of IEEE Conference on Robotics and Automation, Barcelona, Spain, 2005.
    [26] J. Vermaak, S. J. Godsill, and P. Perez, Monte Carlo Filtering for Multi-Target Tracking and Data Association. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):309-332.
    [27] S. Oh, S. Russell, and S. Sastry, Markov Chain Monte Carlo Data Association for General Multiple-Target Tracking Problems. Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas, December 2004.
    [28] S. Oh, I. Hwang, K. Roy, and S. Sastry, A Fully Automated Distributed Multiple Target Tracking and Identity Management Algorithm. Proceedings of AIAA Conference on Guidance, Navigation, and Control, August 2005.
    [29] L. Chen, M. Cetin, and A. S. Willsky, Distributed Data Association for Multi-Target Tracking in Sensor Networks. International Conference on Information Fusion, Philadelphia,Pennsylvania, July 2005.
    [30] L. E. Parker and B. A. Emmons, Cooperative Multi-Robot Observation of Multiple Moving Targets. Proceedings of IEEE International Conference on Robotics and Automation, 1997:2082-2089.
    [31]L. E. Parker, Cooperative Motion Control for Multi Target Observation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997: 1591-1598.
    [32] L. E. Parker, Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets. 2002 Autonomous Robots, 2002, 12 (3): 231-255.
    [33] L. E. Parker, ALLIANCE: An Architecture for Fault Tolerant, Cooperative Control of Heterogeneous Mobile Robots. IEEE Transactions on Robotics and Automation, 1998,14(2).
    [34] A. Makerenko, E. Nettleton, B. Grocholsky, S. Sukkarieh, and H. Durrant-Whyte, Building a Decentralized Active Sensor Network. Proceedings of IEEE International Conference on Advanced Robotics, 2003: 332-337.
    [35] B. Grocholsky. Information-Theoretic Control of Multiple Sensor Platforms. PhD thesis,2002.
    [36] B. Grocholsky, A. Makarenko, T. Kaupp, and H. Durrant-Whyte, Scalable Control of Decentralised Sensor Platforms. The 2nd International Workshop on Information Processing in Sensor Networks, Palo Alto, CA, USA, 2003: 96-112.
    [37] A. Makarenko and H. Durrant-Whyte, Decentralized Data Fusion and Control in Active Sensor Networks.The 7th International Conference on Information Fusion,Stockholm,Sweden,2004:479-486.
    [38]T.H.Chung,J.W.Burdick,and R.M.Murray,Decentralized Motion Control of Mobile Sensing Agents in a Network.Proceedings of IEEE International Conference on Decision and Control,2005.
    [39]Y.Mostofi,T.H.Chung,R.M.Murray,and J.W.Burdick,Communication and Sensing Trade-Otis in Decentralized Mobile Sensor Networks:A Cross-Layer Design Approach.2005:118-125.
    [40]T.H.Chung,V.Gupta,J.W.Burdick,and R.M.Murray,On a Decentralized Active Sensing Strategy using Mobile Sensor Platforms in a Network.Proceedings of IEEE International Conference on Decision and Control,2004:1914-1919.
    [41]J.R.Spletzer and C.J.Taylor,Dynamic Sensor Planning and Control for Optimally Tracking Targets.International Journal of Robotics Research,2003,22(1):7-20.
    [42]J.R.Spletzer and C.J.Taylor,Sensor Planning and Control in a Dynamic Environment.Proceedings of IEEE International Conference on Robotics and Automation,May 2002:676-681.
    [43]B.Jung and G.Sukhatme,Tracking Targets Using Multiple Robots:the Effect of Environment Occlusion.Journal of Autonomous Robots,2002,13(3):191-205.
    [44]B.Jung and G.Sukhatme,Cooperative Tracking with Mobile Robots and Networked Embedded Sensors.Institute for Robotics and Intelligent Systems Technical Report,2001.
    [45]B.Jung and G.Sukhatme,A Region-based Approach for Cooperative Multi-Target Tracking in a Structured Environment.Proceedings of IEEE International Conference on Intelligent Robots and Systems,October 2002.
    [46]B.Jung and G.Sukhatme,Tracking Targets Using Multiple Robots:The Effect of Environment Occlusion.Autonomous Robots Journal,November 2002,13(3):191-205.
    [47]B.Shucker and J.K.Bennett,Scalable Control of Distributed Robotic Macrosensors.The 7th International Symposium on Distributed Autonomous Robotic Systems,June 2004.
    [48]B.Shucker and J.K.Bennett,Virtual Spring Mesh Algorithms for Control of Distributed Robotic Macrosensors.Technical Report,May 2005.
    [49]B.Shucker and J.K.Bennett,Target Tracking with Distributed Robotic Macrosensors.Proceedings of IEEE Military Communication Conference,2005.
    [50]J.Cortes,S.Martinez,and F.Bullo,Spatially-Distributed Coverage Otimization and Control with Limited-Range Interactions. ESAIM: Control, Optimization and Calculus of Variations,2005,11(4): 691-719.
    [51] J. Cortes and F. Bullo, Coordination and Geometric Optimization via Distributed Dynamical Systems. SIAM Journal on Control and Optimization, 2005,44(5): 1543-1574.
    [52] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, Coverage Control for Mobile Sensing Networks. IEEE Transactions on Robotics and Automation, 2004,20(2): 243-255
    [53] J. Cortes, Motion Coordination Algorithms Resulting from Classical Geometric Optimization Problems. Plenary talk, International Workshop on Global Analysis, Cankaya University, Ankara, Turkey, 2004.
    [54] Y. Zou and K. Chakrabarty, Distributed Mobility Management for Target Tracking in Mobile Sensor Networks. IEEE Transactions on Mobile Computing, August 2007, 8:872-887.
    [55] K. Chakrabarty, S. S. Iyengar, H. Qi, and E.C. Cho, Grid Coverage of Surveillance and Target location in Distributed Sensor Networks. IEEE Transaction on Computers, May 2002.
    [56] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, Sensor Deployment Strategy for Target Detection. The 1st ACM International Workshop on Wireless Sensor Networks and Applications, September 2002.
    [57] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak, Exposure in Wireless Sensor Networks: Theory and Practical Solutions. Journal of Wireless Networks. ACM Kluwer Academic Publishers, September 2002, 8(5): 443-454.
    [58] D. Niculescu and B. Nath, Ad-hoc Positioning System (APS). Proceedings of IEEE Global Telecommunications Conference, 2001: 2926-2931.
    [59] S. Capkun, M. Hamdi, and J. P. Hubaux, GPS-Free Positioning in Mobile Ad-hoc Networks. Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 2001:3481-3490
    
    [60] R. Diestel. Graph Theory [M], 2nd edition. Springer-Verlag, 2000
    [61] M. Fiedler, Algebraic Connectivity of Graph [J].Gech Math J, 1973,23: 298-305.
    [62] X. Y. Li, Algorithmic, Geometric and Graph Issues in Wireless Networks. Wireless Communications and Mobile Computing, 2003, 3(2): 119-140
    [63] P. Santi, Topology Control in Wireless Ad Hoc Networks. ACM Comp Surveys, 2005,37(2): 164-194.
    [64]T.H.Cormen,C.E.Leiserson,R.L.Rivest,and C.Stein.Introduction to Algorithms.2nd edition.The MIT Press,2001.
    [65]D.P.Bertsekas.Nonlinear Programming.Athena Scientific,2000.
    [66]林锉云,董加礼.多目标优化的方法和理论.吉林教育出版,1992.
    [67]C.Kreucher,K.Kastella,and A.Hero,A Bayesian Method for Integrated Multitarget Tracking and Sensor Management.Proceedings of IEEE Information Fusion,2003,1:704-711.
    [68]M.Garey and D.Johnson.Computers and Intractability:A Guide to the Theory of NP-completeness.W.H.Freeman and Company,1979.
    [69]郭大钧.大学数学手册.山东科学技术出版社,1985.
    [70]D.F.Young,B.R.Munson,and T.H.Okiishi.A Brief Introduction to Fluid Mechanics.3rd edition.John Wiley & Sons,2004.
    [71]T.M.Cover and J.A.Thomas.Elements of Information Theory.John Wiley and Sons Publication,2006.
    [72]M.Brookes,Matrix Reference Manual.Online,http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html.
    [73]丁信伟,王淑兰,徐国庆,可燃及毒性气体泄漏扩散研究综述.化学工业与工程,1999,2(16):118-122.
    [74]王文娟,刘剑锋,危险性气体泄漏扩散数学模拟研究.工业安全与环保,2006,32(11):23-25.
    [75]任建国,鲁顺清,气体扩散数学模型在安全评价方面的应用.中国安全科学学报,2006,16(3):12-16.
    [76]熊伟,方勇华,基于高斯扩散模式的污染气体云团红外光谱实时仿真.激光与红外,2007,37(7):637-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700