八面体分子筛的构筑和光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的微孔材料主要由四面体骨架构成,骨架中往往含有四配位的P、Si或Al等元素。一直以来,人们努力尝试着将变价过渡金属离子引入微孔骨架结构中来获得高效的氧化还原催化剂,但由于过渡金属的离子半径、离子电荷和配位状态与四面体分子筛骨架元素性质相差较大,因此,过渡金属元素对四面体分子筛骨架进行同晶取代是非常困难的。
     八面体分子筛是一类仅由八面体骨架构成的微孔材料,因为其骨架元素多为六配位的过渡金属,因此八面体分子筛提供了以六配位方式存在的金属离子进入微孔材料骨架的途径;由于这些过渡金属离子常常具有未成对电子和可变价态,因而此类材料可能显示出独特的氧化还原、离子交换以及光电磁特性。同时,八面体分子筛骨架中的过渡金属对可见光感应具有优异特性,因此可以解决硅铝分子筛、磷铝分子筛光催化性能不足的特点,把分子筛应用扩展到太阳能利用领域,实现分子筛择形效应和光催化效率的有效耦合。
     本文首次研究了八面体分子筛的合成及其光催化性能,通过渡金属M对八面体骨架硼铝分子筛PKU-1的同晶取代,探讨了过渡金属M对八面体分子筛同晶取代规律与光催化性能的联系。PKU-1是一类具有三维孔道结构的八面体微孔化合物,实验发现某些过渡金属子不能单独形成PKU-1结构,但可以对铝形成部分取代化合物。在本实验中,通过硼酸熔融法合成了金属取代的八面体分子筛M-PKU-1,并对样品进行了XRD、SEM和UV-vis固体漫反射表征,最后采用硝酸盐的光催化还原来测量其光催化活性。通过对合成的不同金属含量的M-PKU-1样品衍射数据进行指标化(Terror 90程序),确定M-PKU-1样品的晶胞参数,实验证明M元素已经进入了八面体分子筛的骨架中。
     在一定的条件下,纯PKU-1和Cr-PKU-1系列对硝酸盐都没有表现出光催化活性。而Fe-PKU-1系列则随着铁含量的增加,催化活性不断增大。通过固体紫外-可见漫反射光谱可知,Fe取代的PKU-1在紫外-可见光区的吸收值最大,Cr取代的PKU-1次之,都高于PKU-1。由于PKU-1是一种硼铝无机化合物,属于绝缘体,在可见和紫外光照射下难以发生d-d跃迁。Cr-PKU-1系列的UV-vis图谱虽然表明它们在可见光区域各自有两个强吸收峰,但是铬氧化物的带隙较宽以致Cr-PKU-1受光照激发产生的电子没有足够的能量跃迁,因而光催化反应不能进行。与Cr-PKU-1相比,Fe-PKU-1系列显示出较好的光催化活性。随着铁含量的增加,硝酸盐氮的转化率不断增大。这是因为铁氧化物的带隙较窄;Fe-PKU-1中Fe2+和Fe3+可能共存,这样它们共同可以作为氧化还原反应的活性位点。
     本文用水热方法合成了两种不同物相(焦绿石型和钙钛矿型)的钛酸铅,研究表明水热体系的酸碱度决定产物类型。在焦绿石型钛酸铅中存在大量铅空位,其中的铅以二价和四价状态存在,而钙钛矿型钛酸铅中没有铅的缺位现象。对PbTiO3光催化活性的研究表明,在合适的条件下,该催化剂对苯酚的光催化降解具有一定的催化活性,当催化剂用量为25 mg/100 mL,苯酚浓度为100 mg/L时,制得的焦绿石型PbTiO3在实验条件下具有较好的光催化活性。
Traditional porous materials are comprised mainly by the tetrahedral framework or a variety of mixed coordination polyhedra. The framework is often coordinated with tetrahedron of P, Si or Al, but porous materials with octahedral framework structure are rare. To find high-efficient redox catalysts, considerable attempts have been focused on incorporation of multivalent transition metal ions into microporous framework materials. However, as far as the structural properties are concerned, such as ionic radius, ionic charge, and coordination preference, transition metal ions are quite different from those main group elements in zeolite materials. Therefore, the isomorphous incorporation of transition metal ions into zeolite materials is quite difficult.
     Octahedral molecular sieve materials provide a way of accommodating the metal ions that can only be six-coordinate into microporous materials. These metal ions are transition metal element with unpaired electrons and variable valence, so such materials may show characteristics of unique oxidation and reduction, ion exchange and electromagnetic properties of light. Meanwhile, octahedral molecular sieve can make up the weakness of conventional Si-Al zeolite and aluminophosphates’photocatalytic performance. With the outstanding characteristics of transition metal on the induction of visible light, octahedral molecular sieve can be applied to solar power to achieve the effective coupling of shape-selective molecular sieve effect and the photocatalytic efficiency.
     We have synthesized metal incorporated PKU-1 molecular sieves and their photocatalytic performance was investigated for the first time. PKU-1 is a three-dimensional pore structure of the octahedral molecular sieve compounds, boric acid in the root structure of the balance has played a negative charge and act as the important role of template. Son of some transition metals can not form the structure of PKU-1, but can be replaced with aluminum to form a product. Fe-PKU-1 was synthesized by using boric acid as the flux without using any organic template as described in previous reports, and characterized by XRD, SEM, IR, UV-vis, XPS. Their catalytic activity was performed by photocatalytic reduction of nitrate ions. The as-synthesized Fe-PKU-1 samples have a needlelike hexagonal prismatic morphology of about 1μm in diameter with a deep brown color a. The XRD spectrum show that the lattice parameters such as unit cell volume, a-axis and c-axis calculated by Terror 90 program increase with the incorporated Fe content. The expansion of the unit cell parameters is consistent with the larger crystal radius of Fe3+ (0.785 ?) than Al3+ (0.675 ?). Under the given conditions, non-incorporated PKU-1 and Cr-PKU-1 did not show any photocatalytic activity for nitrate reduction. But for Fe-PKU-1, the nitrate conversion was increased with the incorporated Fe content. These results are interesting and can be well interpreted by experimental proofs of UV-vis spectra and XRD patterns.
     PKU-1 is an inorganic aluminoborate compound and belongs to nonconductor, its forbidden band is so wide that d-d transition can not occur under the irradiation of ultraviolet radiation and visible light, so it is not strange undoubtedly that unloaded PKU-1 is no response to UV-Vis light. The synthesis and physiochemical properties of Cr-PKU-1 have been reported in our previous paper, and it proves that Cr-PKU-1 is an excellent redox catalyst for selective oxidation of styrene. However, Cr-PKU-1 sample didn’t show any photocatalytic activity for catalytic reduction of nitrate although it has two strong characteristic absorption peaks in the region of visible light. The reason for lack of photocatalytic activity for Cr-incorporated PKU-1 probably originates from wide bandgap between valence band (VB) and conduction band (CB) of chromium oxide (about 3.50 eV for Cr2O3), so Cr-PKU-1 is a poor conductor and photogenerated electrons have no enough energy to jump into conduction band from valence band. Different from the Cr-PKU-1, Fe-PKU-1 series samples show excellent photocatalytic performance for nitrate reduction, which may stem from narrow bandgap between valence band (VB) and conduction band (CB) of iron oxide (about 2.20 eV for Fe2O3 and 2.40 eV for FeO). It is more important that Fe2+ and Fe3+ may coexist in Fe-PKU-1 samples so that metal Fe with mixed valence state can act as active centre of redox reaction. Moreover, photocatalytic activity for Fe-PKU-1 is variable with the increasing of Fe content in the PKU-1 sample, and the variety rule is well accordance with the content of loaded Fe in PKU-1 shown in the XRD pattern, we can infer that Al atom substituted isomorphously by Fe atom in PKU-1 is restricted and the up-limit boundary reaches in the sample Fe-PKU-1 (D), which has maximum value for nitrate conversion. When the Fe content put in the reaction system exceeds the maximum amount incorporated in the PKU-1 framework (Fe-PKU-1 (D) ), the impurity phases appear and therefore result into the decline of catalytic activity.
     In this article two different phases (pyrochlore type and perovskite type) of lead titanates were synthesized by hydrothermal method. The studies show that the type of product depends on the pH of the water heat system. There exists mounts of lead space in pyrochlore type lead titanates, in which lead is present in bivalent and tetravalent state, while without lead absence in perovskite type ead titanates. Studies on the Photocatalytic activity of PbTiO3 show that, under suitable condition, such catalyst has some catalytic activity for photocatalytic degradation of phenol. When the amount of catalyst is 25 mg/100 mL and phenol concentration is 100 mg / L, obtained pyrochlore typ PbTiO3 has good photocatalytic activity under the experimental conditions.
引文
[1] Corma A. From microporous to mesoporous molecular sieve materrials and their use in catalysis. Chem[J]. Rev, 1997, 97:2373-2419.
    [2] Barrer R. M. Hydrothermal Chemistry of Zeolites[M]. Academic Press, 1982.
    [3]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社, 1978.
    [4] Meier W M, Suzuki K, Shin S. The crystal structure of a sodium gallosilicate sodalite[J]. Zeolites, 1986, 6:388-391.
    [5]林建华,荆西平.高等材料化学[M].北京:北京大学出版社,2006
    [6] Camblor M A, Lobo R F. Sythesis and characterization of zincosilicates with SOD topology[J]. Chem. Mater, 1994, 6:2193-2199.
    [7] Kuehl G H. High-silica analogs of zeolite a containing intercalated phosphate[J]. Inorg. Chem, 1971, 10:2488-2495.
    [8] Madulika Signh. Effect of Crystal Size on Physico-Chemical Properties of ZSM-5[J]. Catalysis Letter, 2008, 120(3/4):288-293.
    [9] Ueda S, Kozumi M. Synthesis of a Beryllosilicate with the Structure of Analcime[P]. Molecular sieve zeolites. ACS, Washington D. C, 1971, 101:135-139.
    [10] Flanigen E M, Grose R W. Phosphorus Substitution in Zeolite Frameworks, Molecular sieve zeolites[J]. ACS, Washington D. C, 1971, 101:76-101.
    [11] Snamprogetti S P A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides[P]. U.S. Patent, 4410501, 1983.
    [12] Wilson S T, Lok B M. Crystalline metallophosphate compositions, Flanigen E M[P], U.S. Patent[J], 4310440, 1982.
    [13] Zou X D, Conradsson T, Klingstedt M. et al. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative[J]. Nature, 2005, 437:716-719.
    [14] Plevert J, Gentz T M, Laine A, et al. (C4N2H12)[(GeO2)3(BO1.5F)2], a layered borogermanate containing three- and nine-membered rings[J]. J. Am. Chem. Soc, 2001, 123:12706-12707.
    [15] Liu G Z, Zhang H X, Lin Z E, et al. Germanates of 1D chains, 2D layers, and 3D frameworks built from Ge-O clusters by using metal-complex templates[J]. Host-guest symmetry and chirality transfer. Chem- Asian J, 2007, 2:1230-1239.
    [16] Su J, Wang Y X, Wang Z M, et al. Synthesis and Characterization of an Aluminogermanate SU-46 with a Zeolite Structure[J]. J. Am. Chem. Soc, 2009, 131:6080-6081.
    [17] Berrocal T, Mesa J L, Pizarro J L, et al. Microporous vanadyl-arsenate with the templateincorporated exhibiting sorption and catalytic properties. Chem Commun[J], 2008, 39: 4738-4740.
    [18] Bazan B, Mesa J L, Pizarro J L, et al. Thermal Transformation of (NH4)[Fe(AsO4)F] Into the New Textural Porous Fe(AsO4) Phase. Crystal Structures[J], Thermal Behavior and Spectroscopic and Magnetic Properties. Chem. Mater, 2004, 16: 5249-5259.
    [19] Yi Z H, Chao X, Wu J, et al. Transformation of Dinitrosyl Iron Complexes [(NO)2Fe(SR)2]? (R = Et, Ph) into [4Fe-4S] Clusters [Fe4S4(SPh)4]2?: Relevance to the Repair of the Nitric Oxide-Modified Ferredoxin [4Fe-4S] Clusters[J]. Inorg. Chem, 2009, 48: 9959-9961.
    [20] K Schwendtner, TiInAs2O7, RbInAs2O7. Synthesis and crystal structures of three isotypic microporous diarsenates– representatives of a novel structure type[J]. Journal of Alloys and Compounds, 2006, 421(1-2) : 57-63.
    [21] K F Hsu, S L Wang. From Discrete Metal?Oxygen Clusters to Open-Framework Structure:Syntheses and Characterization of Cs2Mo2O5As2O7·H2O, Cs2Mo2O5(HAsO4)2·H2O, and Cs4Mo6O18·(H2O)(HAsO4)2·2.5H2O[J]. Inorganic Chemistry, 1998, 37 (13) :3230–3235.
    [22]徐如人,庞文琴.分子筛与多孔材料[M].北京:科学出版社, 2004.
    [23] W F Yan, J H Yu, Z Shi, et al. A novel open-framework aluminophosphate [AlP2O6(OH)2][H3O] containing propeller-like chiral motifs. Chemical Communications[J], 2000, 1431–1432.
    [24] M Zhang. D Zhou, J Y Li, J H Yu, et al. Synthesis and characterization of a new layered fluoroaluminophosphate (C4H11NOH)3.5[Al4(PO4)5F]·0.5H3O with extra-large 16-rings[J]. Inorganic Chemistry, 2007, 46(1):136-140.
    [25] S K Rishi, B M Kariuki, N J Checker. J Godber, et al. Synthesis and crystal structure of AlH2P3O10 center dot 2H2O; a new structure-type for layered acid phosphates. Chemical Communications[J], 2006, (7): 747-749.
    [26] J H Yu, R R Xu. Rich structure chemistry in the aluminophosphate family. Acc. Chem. Res, 2003, 36 (7) : 481–490
    [27] R Cheng. Z W Yu. Q Wang. S T Zheng. C Y Pan. F Deng. G Y Yang .Aluminoborates with Open Frameworks: Syntheses, Structures, and Properties. [J]. Inorg. Chem, 2009, 48: 3650-3659.
    [28] Lionel Beitone. Jér?me Marrot. Thierry Loiseau. Gérard Férery. Azamacrocycle-Containing Gallium Phosphates: A New Class of Inorganic?Organic Hybrid Material.[J] J. Am. Chem. Soc. 2003, 125: 1912-1922.
    [29] Richard I, Walton, Franck Millange, et al. Dermot O'Hare. Gérard Férey. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions[J].Angewandte Chemie International Edition, 2000, 39:4552-4555.
    [30] S.S.Dhingra, R.C.Haushalter, Hydrothermal synthesis and crystal structure of H3NCH2CH2NH3[In2(HPO4)4] : A novel octahedral–tetrahedral framework indium phosphate with occluded organic cations[J]. J. Chem. Soc. Chem. Commun, 1993, 1665.
    [31] S L Yang, H Zhang, Z Xie, et al. Synthesis and characterization of a new layered fluoroaluminophosphate ( [J]Journal of Solid State Chemistry, 2009, 182 (4):855-861.
    [32] I D Williams, J Yu, H Du, et al. A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-Membered Ring Channels[J]. Chem. Mater, 1998, 10:773.
    [33] A Thirumurugan,. S Natarajan, Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. Dalton Trans. 2003, 17:3387-3391.
    [34] P B Moore, J Shen. An X-ray structural study of cacoxenite, a mineral phosphate [J]Nature, 1983, 306: 356-358.
    [35] A Choudhury, S Natarajan, C N R Rao. An open framework iron phosphate with large voides exhibiting spin–crossover[J]. Chem. Commun, 1999, 14: 1305-1306.
    [36] Y. Song, P.Y.Zavalij, N.A.Chernova, et al. Synthesis, Crystal Structure, and Electrochemical and Magnetic Study of New Iron (III) Hydroxyl-Phosphates, Isostructural with Lipscombite[J]. Chem. Mater, 2005, 17:1139–1147.
    [37] V R Kate. T W Mark. Synthesis and crystal structures of iron hydrogen phosphates [J] Dalton Transactions. 2009, (19): 3786-3792.
    [38] B Bazan, J L Mesa, J L Pizarro, et al. Thermal Transformation of (NH4)[Fe(AsO4)F] Into the New Textural Porous Orthorhombic Fe(AsO4) Phase. Crystal Structures, Thermal Behavior, and Spectroscopic and Magnetic Properties[J]. Chemistry of Materials, 2004, 16(25): 5249-5259.
    [39] Z H Yi, C Yang, W J Xia, et al. Nickel(II) Complex Formed from an Achiral Tripodal Amine Ligand: Spontaneous Resolution. Inorganic Chemistry[J], 2009, 48(21):9959-9961.
    [40] T Berrocal, J L Mesa, J L Pizarro, B Bazan, M Iglesias, A T Aguayo, M I Arriortua, T Rojo. Microporous vanadyl-arsenate with the template incorporated exhibiting sorption and catalytic properties[J]. Chemical Communications, 2008, (39):4738-4740.
    [41] K Schwendtner. TiInAs2O7, RbInAs2O7, and (NH4)InAs2O7: Synthesis and crystal structures of three isotypic microporous diarsenates - representatives of a novel structure type[J]. Journal of Alloys and Compounds, 2006, 421(1-2):57-63.
    [42] Hsu KF. Wang SL. Synthesis and characterization of Rb-2(MoO2)(3)(As2O7)(2)center dot2H(2)O: The first rubidium molybdenum(VI) diarsenate with a porous structure[J]. Inorganic Chemistry, 2000, 39(20):4654-4657.
    [43] X D Zou, T Conradsson, M Klingstedt, et al. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative[J]. Nature, 2005, 437: 716-719.
    [44] P Jacques, T M Gentz, A Laine, et al. A Flexible Germanate Structure Containing 24-Ring Channels With Very Low Framework Density[J] Journal of the American Chemical Society, 2001, 123(50):12706-12707.
    [45] G Z Liu H X Zhang Z E Lin, et al.In2Ge6O15(OH)(2)(H(2)dien): An open-framework indate germanate with one-dimensional 12-ring channels[J]. Chemistry-An Asian Journal, 2007, 2(10):1230-1239.
    [46] J Su, Y X Wang, Z M Wang, et al. PKU-9: An Aluminogermanate with a New Three-Dimensional Zeolite Framework Constructed from CGS Layers and Spiro-5 Units[J] Journal of the American Chemical Society, 2009, 131(17):6080-6081.
    [47] Y F Shen, R P Zerger, R DeGuzman, et al.Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications[J]. Science, 1993, 260: 511–515.
    [48] Z R Tian, W Tong, J Y Wang, et al. Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting[J]. Catalysts Science, 1997, 276: 926–930.
    [49] Omomo, Y. Sasaki, T. Wang, et al. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide[J]. J. Am. Chem. Soc. 2003, 125: 3568–3575.
    [50] Toberer E.S, Schladt, T. D.Seshadri R. Macroporous manganese oxides with regenerative mesopores[J]. J. Am. Chem. Soc, 2006, 128: 1462–1463.
    [51] Suib, S. L. Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials[J]. Accounts of Chemical Research, 2008, 41(4): 479-487.
    [52] Espinal, L. Suib, S. L. Rusling. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2[J]. J. Am. Chem. Soc. 2004, 126: 7676–7682.
    [53] Luo. Q H Zhang. J Garcia-Martinez. S L Suib. Adsorptive and Acidic Properties, Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts[J]. J. Am. Chem. Soc., 2008, 130 (10): 3198–3207.
    [54] L Y Li., D L King. Synthesis and Characterization of Silver Hollandite and Its Application in Emission Control[J]. Chem. Mater. 2005, 17: 43354343.
    [55] T Sriskandakumar, N Opembe, C H Chen. A Morey. C King’ondu. S L. Suib. Green Decomposition of Organic Dyes Using Octahedral Molecular Sieve Manganese Oxide Catalysts[J]. J. Phys. Chem. A, 2009, 113 (8): 1523–1530.
    [56] C Calvert, R Joesten. K Ngala, J Villegas. A Morey. X F Shen. S L Suib. Characterization, andRietveld Refinement of Tungsten-Framework-Doped Porous Manganese Oxide (K-OMS-2) Material[J]. Chem. Mater., 2008, 20 (20): 6382–6388.
    [57] L Jin, J Reutenauer, N Opembe, et al. Studies on Dehydrogenation of Ethane in the Presence of CO2 over Octahedral Molecular Sieve (OMS-2) Catalysts[J]. ChemCatChem, 2009, 1(4): 441-444.
    [58] M Nyman, A Tripathi, J B Parise. et al. A new family of octahedral molecular sieves: sodium [Ti/Zr.sup.(IV)] niobates[J]. J. Am. Chem. Soc. 2001, 123: 1529-1530.
    [59] M Nyman, A Tripathi, J B Parise, et al. Sandia Octahedral Molecular Sieves (SOMS): Structural and Property Effects of Charge-Balancing the MIV-Substituted (M) Ti, Zr) Niobate Framework[J]. J. Am. Chem. Soc., 2002, 124:1074-1083.
    [60] H W Xu, M Nyman, T M Nenoff, et al. Prototype Sandia Octahedral Molecular Sieve (SOMS) Na2Nb2O6·H2O: Synthesis[J]. Structure and Thermodynamic Stability. 2004, 16: 2034-2040.
    [61] J D Pless, T J Garino, J E Maslar, et al. Tunable Conductivity of Collapsed Sandia Octahedral Molecular Sieves[J]. Chem. Mater., 2007, 19 (20): 48554863.
    [62] J Ju, J H Lin, G B Li, et al. Aluminoborate-based Molecular Sieves with 18-Octahedral-atom Frameworks[J]. Angewandte Chemie International Edition, 2003, 42( 45): 5607-5610.
    [63] W L Gao, T Yang,Y X Wang, et al. Synthesis, Characterization, and Catalytic Performance of Cr-Incorporated Aluminoborate Octahedral Molecular Sieves[J]. J. Phys. Chem. B, 2005, 109 (48): 22775–22779.
    [64] J Ju. T Yang, G B Li, F H Liao, et al. PKU-5: An Aluminoborate with Novel Octahedral Framework Topology[J]. Chemistry - A European Journal,2004, 10(16): 3901-3906.
    [65] T Yang, J Ju, G B Li, et al. Y X Wang. J H Lin. An aluminoborate cluster [AlB12O14(OH)12]: Synthesis and structure of [C5H6N][AlB12O14(OH)12][J]. Inorg. Chem., 2007, 46(12): 4772–4774.
    [66] W L Gao, Y X Wang, G B Li, et al. Synthesis and structure of an aluminum borate chloride consisting of 12-membered borate rings and aluminate clusters[J]. Inorg. Chem, 2008, 47(16): 7080–7082.
    [67]鞠晶.金属多硼酸盐的合成、结构及性质研究[D]. [北京大学博士学位论文].北京:北京大学, 2003.
    [68]高文亮.硼酸盐体系新化合物的合成、结构及其性能的研究[D],北京大学博士后研究工作报告, 2006.
    [69] Fujishima A. Honda K. Electrochemical photolysis of water at a semiconductor electrode [J] Nature, 1972, 238: 37 -38.
    [70]张金龙,陈峰,何斌.光催化[M],上海:华东理工大学出版社.
    [71] Liu H, Li X Z, Leng Y J, et a1. Manipulation of Structure on Silicon Surfaces via Chemical Adsorption[J]. J. Phys. Chem. B, 2003, 107:8988 -8996.
    [72] Kato H, Asakura K, Kudo A, et al. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure[J] Chem. Soc., 2003, 125(10): 3082 -3089.
    [73] Khan S U M, A1-Shahry M Ingler. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J] W B. Science. 2002, 297: 2243-2245.
    [74] Anpo M, Yamashita H, Ikeue K. et al Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. [J]Catal. Tod. , 1998 , 44:327-332.
    [75] Ikeue K, Yamashita H, Anpo M. Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties[J]. Phys. Chem. B, 2001, 105:8350-8355.
    [76] Xamena F X L, Calza P, Lamberti C, et al. Enhancement of the ETS-10 Titanosilicate Activity in the Shape-Selective Photocatalytic Degradation of Large Aromatic Molecules by Controlled Defect Production [J] . Am. Chem.Soc. , 2003, 125: 2264-2271.
    [77] Higashinoto S, Tsumura R, Zhang S G. Photoluminescence Properties of Mo-MCM-41. Mesoporous Molecular Sieves and Their Photocatalytic Reactivity for the Decomposition of NOx. Chem. Lett ., 2000, 4:408-409.
    [78] Higashimoto S, Matsuoka M, Zhang S G, et al. Characterization of the VS-1 catalyst using various spectroscopic techniques and its unique photocatalytic reactivity for the decomposition of NO in the absence and presence of C3H8[J]. Micropor. Meso-por. Mat, 2001, 48: 329-335.
    [79] Zhang S G, Ariyuki M, Mishama H, et al. The Photoluminescence Property and Photocatalytic Reactivity of the V-HMS Mesoporous Zeolite: Pore Size Effect on the Photocatalytic Properties[J] Micropor. Mesopor.Mat, 1998 , 2 : 621-627.
    [80] Yamashita H, Yoshizawa K, Ariyuki M, et al. Photocatalytic reactions on chromium containing mesoporous silica molecular sieves (Cr-HMS) under visible light irradiation: decomposition of NO and partial oxidation of propane[J]. Chem. Commun. ,2001, (5): 435-436.
    [81] Yeom Y H, Frei H J. Chemical Reactivity of Formaldehyde in a FeAlPO4[J]. Sieve. Phys. Chem. A , 2002, 106: 3345-3349.
    [82] Zhang J, Minagawa M. Ayusawa T, et al. In Situ Investigation of the Photocatalytic Decomposition of NO on the Ti?HMS under Flow and Closed Reaction Systems[J]. J . Phys. Chem. B ,2000, 104:11501-11505.
    [83] Matsuoka M, Anpo M. Local structures excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites[J]. J . Photochem. Photobiol C , 2003 , 3:225-252.
    [84] Lee G D, Tuan V A, Falconer J L. Photocatalytic Oxidation and Decomposition of Acetic Acid on Titanium Silicalite[J]. Environ. Sci. Techno, 2001, 35:1252-1258.
    [85] Lee G D, Jung S K, Jeong YJ, et al. Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts[J]. Appl. Catal. A-Gen 200, 239: 197-208.
    [86] Kornatowski, J. Zadroana, G. Compositional Heterogeneity of CrAPO-5 with Neutral Framework: Effect on Sorption Properties in Comparison to Other MeAPO-5 with Charged Frameworks and Analytical Evaluation of Adsorption Potentials[J] Langmuir. 1999, 15, 5863.
    [87]范彬,曲久辉,刘锁祥.等.饮用水中硝酸盐的脱除[J].环境污染治理技术与设备, 2000, 1 (3):48-50.
    [88]张燕,陈英旭,刘宏远. Pd-Cu /γ-Al2O3催化还原硝酸盐的研究[J].催化学报, 2003, 24(4): 270-274.
    [89]朱艳芳,金朝晖,方悦,等.催化还原脱除地下水中硝酸盐的研究[J].环境科学学报, 2006, 26 (4): 567-571.
    [90] J.Yu, R.Xu, J. Chen, Y. Yue. On the crystallisation and nature of the microporous boron–aluminium oxo chloride BAC(10)[J] J. Mater. Chem., 1996, 3: 465-468.
    [91] Wang, S. Feng, R. Xu, Synthesis and characterization of a novel microporous alumino-borate[J] J. Chem. Soc. Chem. Commun, 1989, 265-266.
    [92] S. Ayyappan, C. N. R. Rao, Mesoporous aluminoborates[J]Chem. Commun. 1997, 6, 575-576.
    [93]刘维桥,孙桂大.固体催化剂实用研究方法[J].北京,中国石化出版社, 2000.
    [94]国家环保局《水和废水监测分析方法》编委会,水和废水监测分析方法[M],第三版.中国环境出版社, 1989.
    [95] Shannon, RD. Crystal Physics, Diffraction. Theoretical and General Crystallography[J]. Acta Crystallogr. 1976, A32, 751.
    [96] Lamberti C, Bordiga A, Zecchina A, et al. Incorporation process of Ti species into the framework of MFI type zeolite[J]. J. Am. Chem. Soc. 2001, 123, 2204.
    [97] Palin, L.; Lamberti, C. Single-Crystal Synchrotron Radiation X-ray Diffraction Study of B and Ga Silicalites Compared to a Purely Siliceous MFI: A Discussion of the Heteroatom Distribution[J] J. Phys. Chem. B 2003, 107, 4034.
    [98] Sung, H. J.; Jong-S. C.; Young, K. H.; Jean-M. G.; Anthony, K. C. Isomorphous Substitution of Transition-Metal Ions in the Nanoporous Nickel Phosphate VSB-5[J] J. Phys. Chem. B2005, 109, 845.
    [99] Y.Li, F.Wasgestian. Photoreduction of nitrate ion and photoevolution of hydrogen on unsupported TiO2 and TiO2 pillared H4Nb6O17 nanocomposites[J]. Photochem. Photobiol. A, 1998, 112, 225.
    [100]李越湘,彭绍琴,戴超. F.Wasgestian[J].催化学报, 1999, 20, 378.
    [101] Prusse U, HahnleinM, Daum J, et al. Improving the catalytic nitrate reduction[J]. Catalysis Today, 2000, 55: 79-90.
    [102] Garron A, Ep ron F. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water[J]. Water Research, 2005, 39(13): 3073-3081.
    [103]吴越.催化化学[M].科学出版社. 2000.
    [104]牛新书,李华,等. A位离子对AFeO3(A=Sm, Gd, Bi)光催化活性的影响[J].稀土, 2007, 28(5): 45-47.
    [105]李红花,汪浩,严辉. ABO3钙钛矿型复合氧化物光催化剂设计评述[[J].化工进展, 2006, 25(11): 1309-1313.
    [106]曲昭君,于春英,李文钊.掺杂钙钛矿型氧化物的固体结构及其可交换氧[J].物理化学学报, 1994, 10: 796-801.
    [107] Stramare S., Thangadurai V., Weppner W. Lithium Lanthanum Titanates: A Review[J]. Chem. Mater, 2003, 15: 3974-3990.
    [108]白树林,傅希贤,桑丽霞,等.钙钛矿(AB03)型复合氧化物的光催化活性变化趋势与分析[J].高等学校化学学报, 2001, 20(4): 663-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700