碳载钴酞菁催化剂的制备及其氧还原催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属酞菁化合物具有高共轭结构和化学稳定性,将其负载于碳材料上作为氧还原(ORR)催化剂时表现出良好的电催化活性,目前成为催化剂研究领域的一个新方向。该类催化剂的制备包含四个基本要素:过渡金属、氮源、碳载体和热处理温度。金属酞菁的中心离子通常为Fe、Co、Ni、Mn等,其中Fe和Co的酞菁化合物对氧还原具有较高的催化活性。
     研究建立了固相加热一步合成碳载钴酞菁(CoPc/C)复合催化剂的制备方法。制备的钴酞菁复合催化剂形貌均匀,分散性好,催化材料颗粒呈球形,粒径约为10-30nm。
     研究了碳载体的预处理对复合材料催化性能的影响。碳粉经酸处理后其催化性能显著提高,在空气中-0.2V(vs.Hg/HgO)电位下,氧还原的电流密度达到了60 mA·cm-2。和未处理碳相比,以酸处理碳作为载体时制备的钴酞菁复合催化材料性能有了显著提高,电极在同样条件下电流密度增加了70 mA·cm-2。这说明在氧电极中,碳材料不仅作为惰性载体而存在,它的孔隙结构和表面性质会影响催化剂的活性和选择性。
     对不同温度下制备的催化剂的性能进行了比较分析,600℃的催化剂具有最佳催化效果。XRD结果显示,600℃时催化剂中存在大量的CoPc分子,继续升高温度到900℃后得到的是钴的氧化物。据此分析,催化剂的活性位点应该主要是600℃时CoPc分子与碳载体形成的Co-N-C结构。另外,催化剂含量对电极活性有着重要影响。实验表明,当催化剂中金属含量5 wt%(Co/C)时电极性能最好。在最佳条件下制备的氧电极0 V即可发生显著氧还原反应,-0.1V时电流密度达到100 mA·cm-2。
     对电化学测试结果进行了数据拟合和相关分析。结果显示,含催化剂电极的交换电流密度i0b=2.59×10-10 A·cm-2,比纯碳电极氧还原的交换电流密度i0a=2.61×10-12 A·cm-2提高了两个数量级,动力学过程明显加快。研究结果还显示,催化剂的加入增加了氧还原时电极的双电层电容,反应的有效活性位增加。
Metal-phthalocyanine compounds show good electrocatalytic activity for oxygen reduction due to its high conjugate structure and chemical stability. Thus, it has becomed a new direction in catalyst research field. There are four basic factors in the preparation of Metal-phthalocyanine compounds:Transition metals, Nitrogen sources, carbon support and pyrolysis temperatures. The central transition metals are usually Fe, Co, Ni and Mn. Metal-phthalocyanine which containing Fe and Co as central ions are reasearched more due to its higher catalytic activity.
     In this paper, carbon supported Cobalt-phthalocyanine (CoPc/C) catalyst was synthesized in one step through calcinations. With this method, a catalyst with high activity was obtained.The result showed that the product was CoPc/C with the average particle size of 30 nm and had a well distribution and morphology.
     We studied the influence of pretreated carbon carrier for ORR catalytic activity. When carbon was treated by nitric acid, the current density increased obviously to 60 mA·cm-2 at potential of-0.2 V versus an Hg/HgO reference electrode. Compared to cabon material without any treatment, the Co-phthalocyanine compounds CoPc/C catalysts with acid-treated carbon as support showed a higher catalytic activity and the current density increased 70 mA·cm-2 at the same condition. This supported an opinion that carbon material not only acted as an carrier, but also affected the activity and selectivity for ORR due to its hole fabric and apparent status.
     After comparision and analysis to the CoPc/C catalysts prepared at different temperatures, the optimal pyrolyzed temperature was observed at 600℃. XRD patterns of catalysts prepared under these temperatures showed that Co-phthalocyanine polymer is stable up to 600℃and pyrolized to oxides containing Co at higher temperature as to 900℃. Based on this facts, we speculated that the active site for ORR should be Co-N-C structure formed at 600℃when CoPc connected to carbon suface.Various Co/C weight ratios were examined and the maximum activity was found to be 5% Co/C weight ratio. With the sample prepared under the optimal condition as catalyst for ORR, the onset potential of ORR is 0 V and the current density can reach 100 mA·cm-2 at-0.1V.
     The electrochemical testing results were data-fitted and analysed. The fitting value in polarization curves indicates the exchange current density of ORR on the carbon-supported catalyst electrode was i0b=2.59×10-10 A·cm-2, raised by two orders of magnitude compared to naked carbon electrode. This means the catalyst could facilitate kinetic process of ORR obviously. The increased double layers capacitance had a main contribution to the activity of catalyst, the effectively active site has been increased in this way.
引文
[1]魏子栋,李莉,李兰兰等.氧电极催化材料的研究现状.电源技术,2004,2(28):116-120
    [2]R. Frank McLarnon, J. Elton Cairns. The Secondary Alkaline Zinc Electrode[J]. Electrochem. Soc.,1991,138(2):645-664.
    [3]M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni. Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries[J]. Electrochim. Acta.,2000,46(2):423-432.
    [4]G. Faubert, R. Cote, D. Guay, et al. Iron Catalysts Prepared by High-temperature Pyrolysisof Tetraphenylporphyrins Adsorbed on Carbon Black for Oxygen reduction in Polymer Electrolyte Fuel Cell[J]. Electrochimica Acta.1998,43:341
    [5]Tatsuhiro Okada, Masanori Gokita, Makoto Yuasa,et al.. Oxygen Reduction Characteristics of Heat-Treated Catalysts Based on Cobalt-Porphyrin Ion Complexes[J].Electrochem.Soc.,1998,145:815-823
    [6]H. Schulenburg, S. Stankov,V. Schiinemann, et al. Catalysts for the OxygenReduction from Heat-Treated Iron(Ⅲ)Tetramethoxyphenylporphyrin Chloride:Structure and Stability of Active Sites[J]. Phys.Chem., 2003,107:9034-9041
    [7]I.T. Bae, D.A. Tryk, D. A Scherson. Effect of Heat Treatment on the RedoxProperties of Iron Porphyrins Adsorbed on High Area Carbon in Acid Electrolytes:An in SituFe K-Edge X-ray Absorption Near-edge Structure Study[J]. Phys.Chem.,1998,102:4114-4119
    [8]A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, et al. Electrochemical Reduction of Oxygen:an Alternative Method to Prepare Active CoN4 Catalysts[J]. Electrochimica Acta.,1999,45:379-382
    [9]L. Zhang, J. Zhang, D.P.Wilkson, H.Wang. Progress in preparation of non-noble electrocatalysts forPEM fuel cell reactions[J].Power Sources,2006,156:171-182
    [10]X. Cheng, Z. Shi, G. Nancy,et al. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. Power Sources, 2007,165:739-756
    [11]R. Bashyam, P. Zelenay. A class of non-precious metal composite catalysts for fuel cells [J].Nature,2006,443:63-66
    [12]B. Wang. Recent development of non-platinum catalysts for oxygen reduction reaction [J].Power Sources,2005,152:1-15
    [13]H. Liu, C. Song, Y. Tang, et al. High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts[J]. Electrochim. Acta,2007,52:4532-4538
    [14]C.W.B. Bezerra, L. Zhang, H. Liu, et al. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction [J]. Power Sources,2007,173:891-908
    [15]K. Lee, L. Zhang, J. Zhang. IrxCol-x (x=0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction [J]. Power Sources,2007,170:291-296
    [16]R. N. Singh, J. P. Pandey, N. K. Singh, et al. Sol-gel derived spinel MxCo3-xO4(M=Ni, Cu;0≤x≤1) films and oxygen evolution[J]. Electrochim. Acta,2000,45:1911-1919
    [17]N. Li, J. Li, L. Yang, et al. Electrocatalytic activities of LiCo1-yMyO2(M=Ni or Fe)synthesized at low temperature and acid-delithiated products for oxygen evolution/reduction in alkaline solution[J]. Electrochimica. Acta.,2000,46: 717-722
    [18]Yong Shao, Hoan Nguyen Cong. Oxygen reduction on high-area carbon cloth-supported oxide nanoparticles/polypyrrole composite electrodes[J]. Solid State Ionics,2007,178(23-24):1385-1389
    [19]S. Palmas, F. Ferrara, A. Vacca, et al. Polcaro Behavior of cobalt oxide electrodes during oxidativeprocesses in alkaline medium[J]. Electrochimica Acta, 2007,53:400-406
    [20]C. Fierro, A.B. Anderson, D.A. Scherson. Electron donor-acceptor properties of porphyrins, phthalocyanines, and related ring chelates:a molecular orbital approach[J]. Phys. Chem.,1988,92:6902-6907
    [21]H. Jahnke, M. Schonbron, G. Zimmerman. Organic dyestuffs as catalysts for fuel cells [M]. Berlin:Springer Berlin/Heidelberg,1976,61:133-181
    [22]D. Ohms, S. Herzog, R. Franke, et al. Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. PowerSources,1992,38:327-334
    [23]A. Widelov, R. Larsson. ESCA and electrochemical studies on pyrolysed iron and cobalt tetraphenylporphyrins[J]. Electrochim. Acta,1992,37:187-197
    [24]A. Widelov. Pyrolysis of iron and cobalt porphyrins sublimated onto the surface of carbon black as a method to prepare catalysts for O2 reduction[J]. Electrochim. Acta,1993,38:2493-2502
    [25]G. Faubert, G. Lalande, R. Cote, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black:physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochim. Acta,1996,41:1689-1701
    [26]R. Cote, G. Lalande, G. Faubert, et al. Non-noble metal-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J]. New Mater.Electrochem.Syst.,1998,1:7-16
    [27]P. He, M. Lefevre, G. Faubert. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of various transition metal acetates adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride[J]. New Mater. Electrochem.Syst.,1999,2:243-251
    [28]R. Jiang, D. Chu. Remarkably Active Catalysts for the Electroreduction of O2 to H2O for Use in an Acidic Electrolyte Containing Concentrated Methanol [J]. Electrochem. Soc.,2000,147:4605-4609
    [29]S. Ye, A.K. Vijh. Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction[J]. Electrochem.Commun, 2003,5:272-275
    [30]K. Sawai, N. Suzuki. Heat-Treated Transition Metal Hexacyanometallates as Electrocatalysts for Oxygen Reduction Insensitive to Methanol[J].Electrochem. Soc,2004,151:A682-A688
    [31]P.H. Matter, L. Zhang, U.S. Ozkan. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J]. Catal., 2006,239:83-96
    [32]D. Chu, R. Jiang. Solid State Ionics[J].2002,148:591
    [33]T. Okada, M. Gokita, M.Yuasa. Electrochem. Soc[J].1998,145:815
    [34]J.P. Dodelet. Oxygen reduction in PEM fuel cell conditions:heat treated non-precious metal-N4 macrocycles, in:J.H. Zagal, F.Bedioui, J.P. Dodelet (Eds.), N4 Macrocyclic Metal Complexes[M]. Springer:New York,2006,83
    [35]M. Bron, S. Fiechter,M. Hilgendorff,et al. Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes[M]. Appl. Electrochem:Springer Netherlands,2002,32:211-216
    [36]A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, et al. On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen:An In Situ Mossbauer Study[J]. Phys. Chem.,2002,106:12993-13001
    [37]H. Schulenburg, S. Stankov, V. Schunemann, et al. Catalysts for the Oxygen Reduction from Heat-Treated Iron(Ⅲ) Tetramethoxyphenylporphyrin Chloride:Structure and Stability of Active Sites[J].Phys. Chem.B,2003, 107:9034-9041
    [38]R. Franke, D. Ohms, K. Wiesener. Investigation of the influence of thermal treatment on the properties of carbon materials modified by N4-chelates for the reduction of oxygen in acidic media[J]. Electroanal. Chem.,1989,260:63-73
    [39]F. Zhao, F. Harnisch,W. Schroder, et al. Application of pyrolysed iron(Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells[J]. Electrochem. Commun,2005,7:1405
    [40]H. Kalvelage, A. Mecklenburg, U. Kunz, et al. Electrochemical Reduction of Oxygen at Pyrolyzed Iron and Cobalt N4-Chelates on Carbon Black Supports[J].Chem. Eng.Technol,2000,23:803-807
    [41]G. Lalande, G. Faubert, R. Cote, et al. Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells [J].Power Sources,1996,61:227-237
    [42]A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. Van Veen. The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon[J]. Electrochim.Acta,1998,43:3141-3152
    [43]R. Jiang, D. Chu. Remarkably Active Catalysts for the Electroreduction of O2 to H2O for Use in an Acidic Electrolyte Containing Concentrated Methanol[J]. Electrochem. Soc,2000,147:4605-4609
    [44]L.T. Weng, P. Bertrand, G. Lalande,et al. Surface characterization by time-of-flight SIMS of a catalyst for oxygen electroreduction:pyrolyzed cobalt phthalocyanine-on-carbon black[J]. Appl. Surf.Sci,1995,84:9-21
    [45]M. Lefevre, J.P. Dodelet, P. Bertrand. Molecular Oxygen Reduction in PEM Fuel Cells:Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts[J]. Phys. Chem.B,2002,106:8705-8713
    [46]I. Iliev, S. Gamburzev, A. Kaisheva. Optimization of the pyrolysis temperature of active carbon-CoTMPP catalysts for air electrodes in alkaline media[J].Power Sources,1986,17:345-352
    [47]P. Gouerec, A. Biloul, O. Contamin, et al. Dioxygen reduction electrocatalysis in acidic media:effect of peripheral ligand substitution on cobalt tetraphenylporphyrin[J]. Electroanal. Chem.,1995,398:67-75
    [48]A. Biloul, P. Gouerec, M. Savy, et al. Oxygen electrocatalysis under fuel cell conditions:behaviour of cobalt porphyrins and tetraazaannulene analogues[J]. Appl.Electrochem,1996,26:1139-1146
    [49]P. Gouerec, A. Biloul, O. Contamin,et al. Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS[J]. Electroanal. Chem.,1997, 422:61-75
    [50]T. Okada, M. Gokita, M.Yuasa. Oxygen Reduction Characteristics of Heat Treated Catalysts Based on Cobalt-Porphyrin Ion Complexes[J]. Electrochem. Soc.,145,815-822
    [51]P. Gouerec, M. Savy, J. Riga. Oxygen reduction in acidic media catalyzed by pyrolyzed cobalt macrocycles dispersed on an active carbon:The importance of the content of oxygen surface groups on the evolution of the chelate structure during the heat treatment[J]. Electrochim. Acta.,1998,43:743-753
    [52]R. Jasinski. A new fuel cell cathode catalyst[J]. Nature,1964,201:1212-1213
    [53]H. Alt, H. Binder, G. Sandstede. Mechanism of the electrocatalytic reduction of oxygen on metal chelates[J].Catal.,1973,28:8-15
    [54]G. Gruenig, K. Wiesener, A. Kaisheva, et al. Investigations of catalysts from the pyrolyzates of cobalt-containing and metal-free dibenzotetraazaannulenes on active carbon for oxygen electrodes in an acid medium[J].Electrochim., 1983,159:155-162
    [55]S. Gupta, D. Tryk, I. Bae, et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction [J]. Appl.Electrochem.,1989,19:19-27
    [56]W.C. Sun, P.M. Gny, J.H. Jahngen, et al. Microwave-induced hydrolysis of phospho anhydride bonds in nucleotide triphosphates[J].Org. Chem.,1988,53: 4414-4416
    [57]D.A. Lewis, J.S. Summers, T.C. Ward, et al. Accelerated imidization reactions using microwave radiation[J]. Polym.Sci., Part A, Polym.Chem.,1992,30, 1647-1653
    [58]G. Lalande, R. Cote, D. Guay,et al. Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? [J].Electrochim.Acta.,1997,42:1379-1388
    [59]J. Fournier, G. Lalande, R. Cote, et al. Activation of various Fe-based precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells[J]. Electrochem.Soc.,1997,144:218-226
    [60]G. Wei, J.S. Wainright, R.F. Savinell. Catalytic activity for oxygen reduction reaction of catalysts consisting of carbon, nitrogen and cobalt[J]. New Mater. Electrochem. Syst.,2000,3:121-129
    [61]R. Cote, G. Lalande, G. Faubert,et al. Influence of Nitrogen-Containing Precursors on the Electrocatalytic Activity of Heat-Treated Fe(OH)2 on Carbon Black for 02 Reduction[J]. Electrochem. Soc.,1998,145:2411-2418
    [62]G. Faubert, R. Cote, J.P. Dodelet, et al. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeⅡ acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride[J]. Electrochim.Acta.,1999,44: 2589-2603
    [63]H. Wang, R. Cote, G. Faubert, et al. Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen [J]. Phys. Chem.,1999,103:2042-2049
    [64]M. Lefevre, J.P. Dodelet, P. Bertrand.O2 Reduction in PEM Fuel Cells:Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors [J].Phys. Chem.B.,2000,104:11238-11247
    [65]M. Bron, J. Radnik, M.F. Erdmann, et al. EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black[J]. Electroanal.Chem.,2002,535:113-119
    [66]M. Bron, S. Fiechter, M. Hilgendorff. Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes[J].Appl. Electrochem.,2002,32:211-216
    [67]P. Ehrburger, A. Mongilardi, J. Lahaye. Dispersion of iron phthalocyanine on carbon surfaces [J].Colloid. Surf. Sci.,1983,91:151-159
    [68]G.Q. Sun, J.T. Wang, S. Gupta and R.F. Savinell[J]. Appl.Electrochem.2001,31: 1025-1031.
    [69]Z.F. Ma, X.Y. Xie, X.X. Ma, et al. Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell[J].Electrochem. Commun.,2006,8:389-394
    [70]J. Ozaki, S. Tanifuji, N. Kimura, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers [J].Carbon,2006,44:1298-1301
    [71]R. Schlogl, G. Ertl, H. Knozinger. Handbook of Heterogeneous Catalysis[M]. 1997,1:138
    [72]F. Jaouen, S. Marcotte, J.P. Dodelet. Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports [J].Phys. Chem.B.,2003,107:1376-1386
    [73]F. Jaouen, F. Charraterour, J.P. Dodelet. Fe-based catalysts for oxygen reduction in PEMFCs[J].Electrochem. Soc.,2006,153:A689
    [74]A. Bagreev, J.A. Menendez, I. Dukhno,et al. [J].Carbon,2003,41:1925
    [75]E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano. The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres[J].Carbon,2003,41:1925-1932
    [76]R.J.J. Jansen, H. van Bekkum. Amination and ammoxidation of activated carbon[J].Carbon,1994,32:1507-1516
    [77]R.J.J. Jansen, H. van Bekkum. XPS of nitrogen-containing functional groups on activated carbon[J].Carbon,1995,33:1021-1027
    [78]M. Lefevre, J.P. Dodelet, P. Bertrand. Molecular oxygen reduction in PEM fuel cell conditions:ToF-SIMS analysis of Co-based electrocatalysts[J].Phys. Chem.B,2005,109:16718-16724
    [79]G. Faubert, R. Cote, D. Guay,et al. Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells [J].Electrochim. Acta.,1998,43:1969-1984
    [80]G.Faubert, R. Cote, D. Guay,et al. Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells[J]. Electrochim.Acta.,1998, 43:341-353
    [81]S.Lj. Gojkovic, S. Grupta, R.F. Savinell. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction:Part Ⅱ. Kinetics of oxygen reduction [J]. Electroanal. Chem.,1999,462:63-72
    [82]I.T. Bae, D.A. Tryk, D.A. Scherson. Effect of heat treatment on the redox properties of iron porphyrins adsorbed on high area carbon in acid electrolytes: An in situ Fe K-edge X-ray absorption near-edge structure study [J]. Phys. Chem.B.,1998,102:4114-4117
    [83]S.Lj. Gojkovic, S. Gupta, R.F. Savinell. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen:Ⅰ. Characterization of the electrocatalyst[J]. Electrochem. Soc.,1998,145:3493-3499
    [84]S.Lj. Gojkovic, S. Gupta, R.F. Savinell. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction:Part Ⅲ. Detection of hydrogen-peroxide during oxygen reductionElectrochim. Acta[J].1999,45:889-897
    [85]K. Sawai, N. Suzuki. Heat-Treated Transition Metal Hexacyanometallates as Electrocatalysts for Oxygen Reduction Insensitive to Methanol[J].Electrochem. Soc.,2004,151:A682-688
    [86]S. Marcotte, D. Villers, N. Gillet, et al. Electroreduction of oxygen on Co-based catalysts:Determination of the parameters affecting the two-electron transfer reaction in an acid medium [J].Electrochim.Acta.,2004,50:179-188
    [87]D. Villers, X. Jacques-Bedard, J.P. Dodelet. Fe-Based Catalysts for Oxygen Reduction in PEM Fuel Cells [J]. Electrochem. Soc.,2004,151:A1507-1515
    [88]C. Medard, M. Lefevre, J.P. Dodelet, et al. Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions:Activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports [J]. Electrochim.Acta.,2006,51:3202-3213
    [89]O.Contamin, C.Debiemme-Chouvy, M.Savy. New Mater. O2 electroreduction catalysis:Effects of sulfur addition on some cobalt macrocycles[J]. Electrochemyst,2000,3:67-74
    [90]M. Lefevre, J.P. Dodelet, P. Bertrand. Molecular Oxygen Reduction in PEM Fuel Cells:Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts[J]. Phys. Chem.B,2002,106:8705-8713
    [91]M. Lefevre, J.P. Dodelet. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions:Determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts[J]. Electrochim. Acta.,2003,48:2749-2760
    [92]J. Maruyama, I. Abe. Fuel Cell Cathode Catalyst with Heme-Like Structure Formed from Nitrogen of Glycine and Iron[J]. Electrochem. Soc., 2007,154:B297-304
    [93]A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen. Electrochemical reduction of oxygen:an alternative method to prepare active CoN4 catalysts[J]. Electrochim. Acta.,1999,45:379-386
    [94]M.Yuasa, A.Yamaguchi, H. Itsuki,et al. Modifying Carbon Particles with Polypyrrole for Adsorption of Cobalt Ions as Electrocatatytic Site for Oxygen Reduction[J].Chem. Mater.,2005,17:4278-4281
    [95]A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, et al. On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen:An In Situ Mossbauer Study[J].Phys. Chem.B,2002,106:12993-13001
    [96]J.A.R. van Veen, H.A. Colijn, J.F. van Baar. On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines [J]. Electrochim. Acta.,1988,33:801-804
    [97]K. Wiesener. N4-chelates as electrocatalyst for cathodic oxygen reduction [J]. Electrochim. Acta.,1986,31:1073-1078
    [98]S. Maldonado, K.J. Stevenson. Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes[J]. Phys. Chem.B, 2005,109:4707-4716
    [99]E. Yeager. Electrocatalysts for O2 reduction[J]. Electrochim. Acta.,1984,29: 1527-1537
    [100]G. Lalande, R. Cote, G. Ramizhmani, et al. Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells[J].Electrochim. Acta.,1995,40:2635-2646
    [101]P. Gouerec, A. Biloul, O. Contamin,et al. Oxygen reduction in acid media catalysed by heat treated cobalt tetraazaannulene supported on an active charcoal: Correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS[J]. Electroanal. Chem.,1997, 422:61-75
    [102]P.H. Matter, L. Zhang, U.S. Ozkan. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J]. Catal., 2006,239:83-96
    [103]P.H. Matter, E. Wang, J.M. Millet. Characterization of the iron phase in CNx-based oxygen reduction reaction catalysts[J]. Phys. Chem.C,2007, 111:1444-1450
    [104]S. Ye, A.K. Vijh. Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction[J].Electrochem. Commun., 2003,5:272-275
    [105]E.B. Easton, A. Bonakdarpour, J.R. Dahn. Fe-C-N Oxygen Reduction Catalysts Prepared by Combinatorial Sputter DepositionElectrochem[J]. Solid-State Lett., 2006,9:A463-467
    [106]D. Wohrle, V. Hundorf, O. Makromolekulare Chemie. Synthesis and analytical characterization of some octasubstituted phthalocyanines[J].Chem.,1985,186: 2177-2187
    [107]Ahmad, sbaabani. Synthesis of Metallophthalocyanines under Solvent-free Conditions using Microwave Irradiation[J].Chem.Research(s).,1998,672-673
    [108]P. Gouerce, M. Savy, J. Riga. Electrochim.Acta[J].1998,43:743
    [109]H. Wang, R. Cote, G. Faubert, et al. Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen [J]. Phys. Chem. B.,1999,103:2042-2049
    [110]G. Faubert, R. Cote, J.P. Dodelet, et al. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeⅡ acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride[J]. Electrochim.Acta.,1999,44:2589-2603
    [111]M. Lefevre, J.P. Dodelet, P. Bertrand. Phys. Chem. B[J].2000,104:1238
    [112]M. Manzoli, F.Boccuzzi. Characterisation of Co-based electrocatalytic materials for O2 reduction in fuel cells[J]. Power Sources,2005,145:161-168
    [113]M. E.Vincett, J. A.Tsamopoulos, C. R. F.Lund. Carbon gasification by group Ⅷ metal catalysts[J]. Catal.,1990,126:279-283
    [114]D. B. Zhou, K. L. Huang, S. M. Zhang. Oxygen reduction on Teflon-bonded carbon electrode[J]. T. Nonferr. Metal.Soc.,2004,14:817-823
    [115]F. Beck. Redox mechanism of chelate-catalyzed oxygen cathode[J]. Appl.Electrochem,1977,7:239-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700