氧化铝模板组装纳米材料及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综述纳米材料在电化学催化领域中的应用、纳米材料的模板合成、多孔阳极氧化铝模板(PAA)的结构、制备条件的基础上,研究了以铝作基体,借助阳极氧化形成的PAA模板组装一些金属、过镀金属铁氰化物和导电聚合物等纳米材料。用扫描电镜(SEM)表征了纳米材料的表面形貌,用X-射线粉末衍射(XRD)测定了它们的晶体结构,用电化学方法研究了它们的电催化性能。主要内容和结果如下:
     1.制备了不同孔径的PAA,研究了PAA的电化学性质。结果表明,铝纯度越高,纳米孔的有序性和均匀性越好;氧化电压与模板的孔径大小存在线性关系;循环伏安实验表明,PAA具有单向导电性的原因是氢离子能够穿过阻挡层在铝基体上发生还原。
     2.首次提出了一种在中性电解质溶液中以PAA作阴极,通过电解还原产生碱溶解阻挡层的新方法。最适宜的电解条件为温度在15℃以下,电解电位在-1.8~2.3 V之间,电解时间为5~15 min。在此条件下,电解法可以有效地去除PAA的阻挡层而不扩大模板孔径和减薄模板厚度。利用这种模板制备一系列的新型的纳米材料修饰电极用于电分析等领域。
     3.用直流电沉积的方法制备了nano-sized Cu/PAA电极。结果显示铜纳米线直径为22 nm,沿(111)晶面择优取向。与本体铜电极相比,亚硝酸根在Nano-sized Cu/PAA电极上的催化还原峰电位正移80 mV,峰电流明显增加。检测亚硝酸根的灵敏度、检测限和线性范围分别是216μA mmol~(-1)cm~(-2),5×10~(-6)molL~(-1),2×10~(-5)molL~(-1)~2×10~(-2)molL~(-1)。
     4.通过两步化学修饰法制备了纳米铁氰化镍(NiHCF)修饰PAA电极(Nano-sized NiHCF/PAA)。NiHCF纳米颗粒大小为25 nm左右。与本体NiHCF/Al电极相比,抗坏血酸在Nano-sized NiHCF/PAA电极上的电催化氧化峰电位低69 mV,氧化峰电流大2倍。用安培法测定抗坏血酸,线性范围和检测限分别是1×10~(-6)molL~(-1)~1.5×10~(-2)molL~(-1),2.4×10~(-7)molL~(-1)。
     5.用两步无电沉积的方法制备了nano-sized PB/Pd-PAA电极。nano-sized PB/Pd-PAA电极稳定性好于PB/Pd-Al电极。nano-sizedPB/Pd-PAA电极测定过氧化氢的线性范围、检测限和灵敏度分别为1×10~(-5)~1×10~(-2)molL~(-1)、363.5μA mmol~(-1)cm~(-2)和0.8μmolL~(-1)。
     6.用直流电制备了Pt/nano-sized Ni催化剂。Pt/nano-sized Ni催化剂颗粒大小为70~80 nm。甲醇在Pt/nano-sized Ni催化剂上的氧化起始电位比在光滑铂上低100 mV,峰电位低70 mV,峰电流大40倍。以纳米镍作催化剂载体,能大大降低铂用量。
     7.用直流电沉积的方法制备的镍钼合金纳米线。镍钼合金纳米线的直径在20~30 nm之间。镍-钼共沉积的伏安图上在-1.4 V左右出现一个扩散电流平台,光电子能谱(XPS)试验表明钼的完全还原电位应小于-1.4 V。钼镍离子浓度比,柠檬酸盐,氨盐浓度比均影响镍钼合金纳米线的共沉积。优化条件下制备的镍钼合金纳米线的析氢过电位比本体镍钼合金正移210 mV。通过对镍钼合金纳米线共沉积条件分析,提出了镍钼形成中间物种放电的共沉积机理。
     8.用直流电沉积一层镍作催化层后,用电化学方法合成了聚苯胺(PANI)纳米线薄膜电极。制备的PANI纳米线的直径大约22 nm,循环伏安法制备的纳米线呈网状,而恒电位法制备的纳米线较规则呈直立状。充放电实验表明,聚苯胺纳米线薄膜电极的放电容量大于本体聚苯胺薄膜电极的放电容量。
     通过本文的研究,建立了一种新型的纳米材料修饰电极与纳米材料电催化剂组装和应用的有效方法。
The application of nano-sized materials to the field of electro catalyst,the preparation of nano-sized materials with template method and the preparation of porous anodic aluminua(PAA)template were reviewed in this thesis.Based on the summary,some nano-sized materials such as metals and alloy,transition-metal ferricyanide and conductive polymer were fabricated in PAA and were characterize by Scanning electron Microscope(SEM),X-ray power diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and FT-IR spectroscopy.Their electrocatalytic properties also were studied.The main contents and results are as follows:
     1.The PAA with a different diameter of pores were prepared.The result showed the more the purity of aluminum is high,the more the homogeneity and ordering are good.The relationship between nanohole diameter and anodizing voltage was almost linear.The Cyclic voltammo -grams of PAA indicated the H~+ ion(H_2O)could transit the barrier layer.
     2.Based on rectifying properties of PAA,an electrochemical method to remove barrier of PAA is presented firstly.The barrier of PAA was dissolved by electrolysis in a three-electrode cell with PAA as cathode in neutral potassium chloride solution.The most suitable experimental conditions for removing barrier layer are the applied potential at -1.8~2.3 V,temperature at below 15℃and electrolytic time for 7~15 min. Electro -chemical method can effectively remove barrier of PAA and doesn't enlarge the nanohole diameter.Based on this kind of template, some novel nano-sized materials modified-electrodes were prepared.
     3.Nano-sized Cu modified PAA electrodes are fabricated by direct currents electrodeposition.The prepared Cu wires had an average diameter of 22 nm with the cubic face-centered copper structure,highly oriented along the(111)direction.Electrochemical experiments revealed that the peak currents obtained on nano-sized Cu/PAA electrodes toward catalytic reduction of nitrite were 2 times higher than those obtained on the bulk Cu electrodes,the peak potential was 80 mV higher than that at the bulk Cu electrodes.The calibration plot is linear over the nitrite concentration range 2×10~(-5)molL~(-1)to 2×10~(-2)molL~(-1)using amperometric method.The detection limit and sensitivity were 5×10~(-6) molL~(-1)and 216μA mmol~(-1)cm~(-2),respectively.
     4.Nano-sized nickel hexacyanoferrate(NiHCF)modified PAA electrodes(Nano-sized NiHCF/PAA)are fabricated by two-step electroless dipping method.The prepared Nano-sized NiHCF had an average diameter of 25 nm.The peak currents obtained on nano-sized NiHCF/PAA electrodes toward catalytic oxidation of ascorbic acid(AA) were two times bigger than those obtained on the bulk NiHCF/Al electrodes,and the peak potential was 69 mV lower than that at the bulk NiHCF/Al electrodes.The calibration plot is linear over the AA concentration range 1×10~(-6)to1.5×10~(-2)mol L~(-1)using amperometric method.The detection limit of the ampeorometric method is 2.4×10~(-7) molL~(-1).The presented method was used for determination of AA in fresh fruit and vegetable juices,and the results were consistent with those results obtained using Iodine titration method.
     5.A kind of nano-sized Prussian blue(PB)thin film electrode was prepared based on a two-step electroless deposition method.This kind of PB thin film electrode possessed a good electrochemical and mechanical stability,a good storage and operational stability.The modified electrode showed an excellent catalytic activity towards hydrogen peroxide reduction.The linear range of detection is found to lie between 10μM and 10 mM.The detection limit(signal to noise is 3)and sensitivity are 0.8μM and 363.5μA cm~(-2)mM~(-1),respectively.
     6.Pt/Nano-sized Ni catalysts were prepared by direct current electrodeposition.The diameter of Pt/Nano Ni particle was about 70~80 nm.Cyclic voltammograms of Pt/Nano-sized Ni/PAA electrode exhibited the onset of electro-oxidation of methanol shifted to less anodic potential values(by 100 mV)and current enhanced up to 40 times,compared with pure Pt sheet electrode.When Pt loading amount was 42.6μg cm~(-2),the highest electrocatalytic activity of Pt/Nano-sized Ni /PAA could be obtained.
     7.Ni-Mo alloy nanowires were fabricated.The SEM micrographs revealed that the diameter of the Ni-Mo alloy nanowires was about 20~ 30 nm.Voltammetric gram of the Ni-Mo alloy codeposition presented a pronounced plateau of a limiting current.XPS indicated the potential of complete reduction of Mo ion occurs at -1.4 V,correspond -ing to the potential where plateau of limiting currents occurred.The concentration ratios of citrate salt and the ammonia salt,concentration ratios of molybdate salt and nickel salt and the electrolyte acidity had considerable effects on codeposition of Ni-Mo alloy.The as-prepared Ni-Mo alloy nanowires exhibits a better catalytic activity for hydrogen evolution reaction.
     8.Polyaniline nanowire thin film electrodes were fabricated by electrochemical methods.Prior to electro polymerization of aniline,a layer of metallic nickel was deposited in PAA to provide a suitable electrocatalytic layer for the electro polymerization of aniline.The PANI wires had an average diameter of 22 nm corresponding to the pore diameter of the template.The charge-discharge curves showed the charge determined for PANI nanowire/PAA is higher than for bulk PANI film grown directly on Ni/Al.
     Based on the present study,a new effective method has been established for fabrication and application of new nano-sized materials modified electrodes and nano-sized electrocatalyst.
引文
[1] Brown, K. R., Fox, A. P. M., Natan, M. J. Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO_2 Electrodes. J.Am. Chem. Soc, 1996,118:1154-1157
    
    [2] Xiao, Y.,Ju, H.,Chen, H. Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine-Modified Gold Electrode . Anal. Biochem., 2000,278(1): 22-28
    
    [3] Hai-Ying Gu, Ai-Min Yu and Hong-Yuan Chen. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J. Electroanal. Chem., 2001,516(1-2): 119-126
    
    [4] Zhang, J., Oyama, M.. Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxide. J. Electroanal. Chem., 2005, 577(2): 273-279
    
    [5] Ju, H., Liu, S., Ge, B., Lisdat, F., Shcller, F. W. Electrochemistry of Cytochrome c Immobilized on Colloidal Gold Modified Carbon Paste Electrodes and Its Electrocatalytic Activity. Electroanalysis, 2002,14(2): 141-147
    
    [6] Song-Qin Liu and Huang-Xian Ju. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal. Biochem., 2002,307(1): 110-116
    
    [7] Songqin Liu, Huangxian Ju. Electrocatalysis via Direct Electrochemistry of Myoglobin Immobilized on Colloidal Gold Nanoparticles. Electroanalysis, 2003,1(18) 5: 1488-1493
    
    [8] Liu, S., Ju, H. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. Analyst, 2003,128: 1420-1424
    
    [9] Patolsky, F.,Gabriel, T., Willner, I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports .J Electroanal. Chem., 1999,479(1): 69-73
    
    [10] Jianbo Jia, Bingquan Wang, Aiguo Wu, Guangjin Cheng, Zhuang Li, and Shaojun Dong. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Anal. Chem., 2002, 74(9): 2217-2223
    
    [11] Fangqiong T. Glucose biosensor enhanced by nanoparticles. Science in China (B), 2000,43(3):268-274
    [12]M.M.Maye,W.Zheng,F.L.Leibowitz,N.K.Ly,C.J.Zhong.Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles:A Strategy for Size and Shape Manipulations.Langmuir,2000,16(2):490-497
    [13]Jingdong Zhang,Miyako Kambayashi,Munetaka Oyama.A novel electrode surface fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide substrate with a seed mediated growth process.Electrochemistry Communications,2004,6(7):683-688
    [14]Jingdong Zhang,Munetaka Oyama.Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes:Characterization and electroanalytical application.Analytica Chimica Acta,2005,540:299-306
    [15]Aimin Yu,Zhijian Liang,Jinhan Cho,and Frank Caruso.Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films.Nano Lett.,2003,3(9):1203-1207
    [16]Mathew M.Maye,Yongbing Lou,Chuan-Jian Zhong.Core-Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation.Langmuir,2000,16(19):7520-7523
    [17]Masato Tominaga,Toshihiro Shimazoe,Makoto Nagashima,Isao Taniguchi.Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions.Electrochem.Commu.,2005,7:189-193
    [18]Rahela Gasparac,Bradford J.Taft,Melissa A,Lapierre-Devlin,Adam D.Lazareck,Jimmy M.Xu,and Shana O.Kelley.Ultrasensitive Electrocatalytic DNA Detection at Two- and Three-Dimensional Nanoelectrodes.J.AM.CHEM.SOC.,2004,126(39):112270-12271
    [19]Abdollah Salimi,Abdollah Noorbakhsh,Mahmoud Ghadermarz.Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode.Analytical Biochemistry,2005,344(1):16-24
    [20]Guang-Chao Zhao,Zheng-Zhi Yin,Li Zhang,Xian-Wen Wei.Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2.Electrochemistry Communications,2005,7(3):256-260
    [21]J.Wang,M.Li,Z.Shi,N.Li,Z.Gu.Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes. Electroanalysis, 2002,14 (3): 225-230
    
    [22] GeyunWang,XiujuanLiu,BoYu,GuoanLuo. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem., 2004, 567 (2): 227 - 231
    
    [23] Fang-Hui Wu, Guang-Chao Zhao , Xian-Wen Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochemistry Communications,2002,4 (9): 690 - 694
    
    [24] Keith B. Malea, Sabahudin Hrapovic, Yali Liu, Dashan Wang, John H.T. Luong. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta, 2004, 516 (1-2): 35-41
    
    [25] Haiyan Wang, Yugai Huang, Zhian Tan, Xiaoya Hu. Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Analytica Chimica Acta, 2004, 526 (1): 13-17
    
    [26] Won Choon Choi, Seong Ihl Woo. Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell. J.Power Sources,2003,124 (2): 420-425
    
    [27] P. Waszczuk, J. Solla-Gullon, H. -S. Kim, Y. Y. Tong, V. Montiel,y A. Aldaz,y and A. Wieckowski. Methanol Electrooxidation on Platinum/Ruthenium Nanoparticle Catalysts. J. Catalysis ,2001,203: 1-6
    
    [28] J. Jiang, A. Kucernak. Electrooxidation of small organic molecules on mesoporous precious metal catalysts I: CO and methanol on platinum. J. Electroanal. Chem. ,2002,533(1-2): 153-165
    
    [29] Che GL, Lakshmi B B , Fisher E R, Martin C R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393 (6683): 346-349
    
    [30] Rajesh B, Thampi K R, Bonard J-M, Xanthopoulos N, Mathieu H J, Viswanathan B. Carbon Nanotubes Generated from Template Carbonization of Polyphenyl Acetylene as the Support for Electrooxidation of Methanol. J Phys Chem B, 2003, 107 (12): 2701-2708
    
    [31] Yuehe Lin and Xiaoli Cui. PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid: A Novel Electrocatalyst for Direct Methanol Fuel Cells. Langmuir 2005,21(24): 11474-11479
    
    [32] Yuehe Lin and Xiaoli Cui.Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells. J. Phys. Chem. B, 2005, 109(30): 14410-14415
    
    [33] Dao-Jun Guo, Hu-Lin Li. High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J. Electroanal. Chem., 2004,573 (1): 197 - 202
    
    [34] Zhou WJ, Zhou B, Li W Z, Zhou Z H, Song S Q, Sun GQ, Xin Q, Douvartzides S, Goula M, Tsiakaras P. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J.Power Sources, 2004,126 (1/ 2): 16-22
    
    [35] Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources, 2004,131 (1/ 2): 217-223
    
    [36] Ji-Er Huang, Dao-Jun Guo, Ya-Gang Yao, Hu-Lin Li. High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal.l Chem., 2005,577 (1): 93 - 97
    
    [37] Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. Graphite Nanofibers as an Electrode for Fuel Cell Applications.J Phys Chem B, 2001,105 (6): 1115-1118
    
    [38] Steigerwalt E S, Deluga GA, Cliffel D E, Lukehart C M.. A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst. J Phys Chem B, 2001, 105 (34): 8097-8101
    
    [39] Steigerwalt E S, Deluga G A, Lukehart C M. Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance J Phys Chem B, 2002,106 (4): 760-766
    
    [40] Hyeon T, Han S, Sung Y-E, Park K-W, Kim Y-W. High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils. A ngew Chem Int Ed, 2003 ,42 (36): 4352-4356
    
    [41] Han S, Yun Y, Park K-W, Sung Y-E, Hyeon T. Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes. Adv.Mater, 2003,15 (22): 1922-1925
    
    [42] Park K-W, Sung Y-E, Han S, Yun Y, Hyeon T. Origin of the Enhanced Catalytic Activity of Carbon Nanocoil-Supported PtRu Alloy Electro catalysts. J PhysChem B, 2004,108 (3): 939-944
    
    [43] Ryoo R, Joo S H, J UN S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation.J Phys Chem B,1999,103(37):7743-7446
    [44]Yu J-S,Kang S,Yoon S B,Chai G.Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter.J A m Chem Soc,2002,124(32):9382-9383
    [45]B.Rajesh,K.Ravindranathan Thampi,J.-M.Bonard,A.J.McEvoy,N.Xanthopoulos,H.J.Mathieu,B.Viswanathan.Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation.J.Power Sources,2004,133(2):155-161
    [46]M.S.El-Deab,T.Ohsaka.Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes.Electrochim.Acta,2002,47(10):4255-4261
    [47]M S,EI-Deab,Takeyosho Okajima,Takeo Ohsaka.Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrodes.J.Electrochem.Sot.,2003,150(7):A851-A857
    [48]M.S.El-Deab,T.Ohsaka.Electrocatalysis by nanoparticles:oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes.J.Electroanal.Chem.,2003,553:107-115
    [49]Minghua Huang,Yan Shen,Wenlong Cheng,Yong Shao,Xuping Sun,Baifeng Liu,Shaojun Dong.Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction.Analytica Chimica Acta,2005,535(1-2):15-22
    [50]Ichizo Yagi,Tomotaka Ishida,Kohei Uosaki.Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution.Electrochem.Commun.,2004,6(8):773-779
    [51]Wenlong Cheng,Shaojun Dong,,and Erkang Wang.Two- and Three-Dimensional Au Nanoparticle/CoTMPyP Self-Assembled Nanotructured Materials:Film Structure,Tunable Electrocatalytic Activity,and Plasmonic Properties.J.Phys.Chem.B,2004,108(50),19146-19154
    [52]申燕,朱培德,刘柏峰,杨秀荣,董绍俊.钯纳米粒子在电极表面的制备及其对氧的催化还原.高等学校化学学报,2003,24(11):2080-2082
    [53]Y Takasu,N Ohashi,X G Zhang,Y.Murakami,H.Minagawa,S.Sato,K.Yahikozawa.Size effects of platinum particles on the electroreduction of oxygen. Electrochimica Acta,1996,41(16):2595-2600
    [54]F.Maillard,M.Martin,F.Gloaguen,J.-M.Leger.Oxygen electroreduction on carbon-supported platinum catalysts.Particle-size effect on the tolerance to methanol competition.Electrochimica Acta,2002,47(21):3431-3440
    [55]Frelink T,Visscher W,Van Veen J A R.Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol.J Electroanal Chem,1995,382(1-2):65-72.
    [56]Yahikozawa K,Fujii Y,Matsuda Y,Nishimura K.,Takasu Y.Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions.Electrochim.Acta,1991,36(5-6):973-978
    [57]Cherstiouk,O.V.,Simonov,P.A.,Savinova,E.R.Model approach to evaluate particle size effects in electrocatalysis:preparation and properties of Pt nanoparticles supported on GC and HOPG.Electrochim.Acta,2003,48(25-26):3851-3860
    [58]Cherstiouk,O.V.,Simonov,P.A.,Zaikovskii,V.I.CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes.J.Electroanal.Chem.2003,554-555:241-251
    [59]Friedrich,K.A.,Henglein,F.,Stimming,U.,Unkauf,W.Size dependence of the CO monolayer oxidation on nanosized Pt particles supported on gold.Electrochim.Acta 2000,45(20):3283-3293
    [60]Matthias Arenz,Karl J.J.Mayrhofer,Vojislav Stamenkovic et al.The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts.J.AM.CHEM.SOC.2005,127(18):6819-6829
    [61]K Kinoshita.Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes.J.Electrochem.Soc.,1990,137(3):845-848
    [62]Huot J Y,Trudeau M L,Schulz R.Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis.J.Electrochem.Soc.,1991,138(5):1316-1321
    [63]Yamashita H,Yamamura T,Yashimoto K.The Relation Between Catalytic Ability for Hydrogen Evolution Reaction and Characteristics of Nickel-Tin Alloys.J.Electrochem.Soc.,1993,140(8):2238-2243
    [64]黄令,杨防祖,许书楷,等.纳米晶Ni-Mo-Co合金镀层的结构与析氢行为.应用化学,2001,18(10):767-771
    [65]V.Ganesh,V.Lakshminarayanan,Preparation of high surface area nickel electrodeposit using a liquid crystal template technique.Electrochimica Acta,2004,49(21):3561-3572
    [66]褚道葆,沈广霞,周幸福.Ti表面修饰纳米TiO_2膜电极的电催化活性.高等学校化学学报,2002,23(4):678-681
    [67]顾家山,褚道葆,周幸福.纳米TiO_2膜修饰电极异相电催化还原马来酸.化学学报,2003,61(9):1405-1409
    [68]褚道葆,沈广霞,周幸福,等.第十届全国电化学会议交流论文(A068),1999.10.杭州.
    [69]沈广霞,褚道葆,周幸福,等.纳米TiO_2膜电极上乙醛酸的电催化合成研究.精细化工,2000,17(supply):95-98
    [70]褚道葆,姚文俐,王金平,等.邻硝基苯酚在纳米TiO_2膜修饰电极上的异相电催化还原.应用化学,2004,21(10):1006-1010
    [71]顾家山,何心伟,褚道葆.纳米TiO_2膜阴极电催化合成丁二酸的研究.安徽师范大学学报(自然科学版),2005,28(3):298-302
    [72]褚道葆,姚文俐,顾家山,等.纳米TiO_2膜修饰电极上对硝基苯甲酸异相电催化还原.高等学校化学学报,2004,25(11):2137-2139
    [73]言仿雷.超微气流粉碎技术.材料科学与工程,2000,18(4):140-145
    [74]J.Eckert,J.C.Halzer,C.E.Krill,et al.Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders.J.Appl.Phys.,1993,73:2794-2804
    [75]G.L.Zhang.Preparation of Fe nanocrystalline in SiO_2 by ion implantation.Appl.Phys.Lett.,1992,61:2527-2529
    [76]J.J.Mc Clelland.Laser Focused Atomic Deposition.Science,1993,262:877-880
    [76]D.R.Ulrich,D.R.Uhlman.In UItraStructure Processing of Ceramics,Glasses,and Composites[M],New York,John Wiley and Sons:361-375
    [77]Aegerter,A.Michel.Sol-gel niobium pentoxide:A promising material for electrochromic coatings,batteries,nanocrystalline solar cells and catalysis.Solar Energy Materials and Solar Cells,2001,68(3-4):401-422
    [78]L.Burtrand,J.P.Zhang.Preparation,structure evolution and dielectric properties of BaTiO_3 thin films and powders by an aqueous sol-gel process.Thin Solid Films,2001,388(1-2):107-113
    [79]F.Fievet,J.P.Lagier,Lagier,et al.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles.Solid Sate Ionics,1989,32/33:198-205
    [80]李娟,李清文,夏熙.纳米MnO_2粉体的固相合成及其电化学性能(Ⅲ)-固相氧化还原反应合成纳米的性能.应用化学,1999,16(2):103-105
    [81]Z.Hu.Amorphous Iron-oron Powders Prepared by Chemical Reduction of Mixed Solutions:Dependence of Composition upon Reaction Temperature.J.Chem.Soc.:Chem.Common.,1995,247:33243
    [82]M.A.Chamarro,C.Gourdon.Selective excitation of nanocrystals by polarized light.Solid State Commun.,1992,10:967-970
    [83]M.Y.Han,W.Huang,C.H.Chew,et al.Large Nonlinear Absorption in Coated Ag_2S/CdS Nanoparticles by Inverse Microemulsion.J.Phys.Chem.B,1998,102(11):1884-1887
    [84]Yamaguchi,T.Kimishima,K.Osakada,et al.Ru and Sm Catalyzed Polyaddition of Dialdehydes to Give Poly(ester)s:Application of Tishchenko Type Reactions to Polymer Synthesis.J.Polym.Sci.,Part A:Polym.Chem.,1997,33:1265- 1273
    [85]J.A.Switzer,M.L.Shane,R.Phillips.Electrodeposited Ceramic Superlattices.Science,1990,247:444-449
    [86]Hideki Masuda,Kenji Fukuda.Change of hole size of Pd hole-array electrodes in a controlled fashion by cathodic polarization in acidic electrolyte.J.Electroanal.Chem.,1999,473:240-244
    [87]张先锋,曹安源,孙群慧,等.定向碳纳米管阵列在石英玻璃基底上的模板化生长研究.无机材料学报,2003,18(3):613-618
    [88]P M Ajayan,O Stephan,P Redlich,et al.Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures.Nature,1995,375:564-567
    [89]Felix J.Brieler,Dipl.Chem,Michael Froba,et al.Ordered Arrays of Ⅱ/Ⅵ Diluted Magnetic Semiconductor Quantum Wires:Formation within Mesoporous MCM-41Silica.Chem.Eur.J.,2002,8(1):185-194
    [90]Neves,S,Polo Fonseca C.Polyanline composites,improving the electrochemical properties by template synthesis.J.Solid State Electrochem.,2001,5:412-418
    [91]H C Lee,HJ Kim,S H Chung,et al.Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents.J.Am.Chem.Soc.,2003,125(10):2882-2883
    [92]R A Caruso,J H Schattka,A Greiner.Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers.Adv.Mater.,2001,13(20):1577-1579
    [93]Fernando Patolsky,Yossi Weizmann,Oleg Lioubashevski,et al.Au-Nanoparticle Nanowires Based on DNA and Polylysine Templates.Angew.Chem.Int.Ed.2002,41:2323-2327
    [94]Eli D.Sone,Eugene R.Zubarev,Dr.et al.Semiconductor Nanohelices Templated by Supramolecular Ribbons.Angew.Chem.Int.Ed.,2002,41(10):1706-1709
    [95]G.Patermarakis and C.Pavlidou.Catalysis over porous anodic alumina catalysts.J.Catalysis,1994,147:140-145
    [96]Basu S.,Chatterjee S.,Saha M.,et al.Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases.Sensors and Actuators,B-Chemical,2001,79:182-186
    [97]W R.Rigby,D.R.Cowieson,N.C.Davies,et al.An anodizing process for the production of inorganic microfiltration membranes.Trans.Inst.Metal Finish.,1990,68(3):95-99
    [98]Masuda H.,Fukuda K.Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina.Science,1995,268(5216):1466-1468
    [98]Y.T.,Pang,G.,W.Meng,Y.Zhang,et al.Copper nanowire arrays for infrared polarizer.Appl.Phys.A,2003,76:533-536
    [99]程利芳,张兴堂,陈艳辉,等.WO_3纳米管的模板法制备及表征.无机化学学报,2004,20(9):1117-1120
    [100]A.W.Zhao,G.W.Meng,L.D.Zhang,et al.Electrochemical synthesis of ordered CdTe nanowire arrays.Appl.Phys.A 2003,76:537-539
    [101]徐军明,张孝彬,陈飞,等.氧化铝模板上定向纳米碳管的快速生长及超声切短.物理化学学报,2004,20(3):271-274
    [102]Y.K.Zhou,J.Huang,H.L.Li.Synthesis of highly ordered LiMnO_2 nanowire arrays(by AAO template)and their structural properties.Appl.Phys.A,2003,76,53-57
    [103]W Diggle,T.C.Downie and C.W Goulding.Anodic oxide films on aluminum.Chem.Rev.,1969,69:365-371
    [104]曾华梁,杨家昌.电解和化学转化膜[M],轻工业出版社,1987:336
    [105]F Killer,MS Hunter and DL Robinson.Structural features of oxide coatings on aluminum.J.Electrochem.Soc.,1953,100(9):411-418
    [106]J.P.O'Sullivan and G C,Wood.The morphology and mechanism of formation of porous anodic films in aluminum.Proc.Roy.Soc.Lond.A.1970,317:511-517
    [107]J.F.Murphy,C.E.Michelson.A theory for the formation of anodic coatings on aluminum.A.D.A.Conferencd on a nodising of aluminium,Nottingham,1961
    [108]G E.Thompson,R.C.Furneaux and G.C.Wood.Trans.Inst.Met.Fin.,1978,56:159-166
    [109]K.Wada,T.Shimohira.Microstructure of porous anodic oxide fills on aluminum.J.Mater.Sci.,1986,21:3810-3816
    [110]Y Xu.Trans Inst Met Finish,1985,63:98-103
    [111]O.Jessensky,F.Muller and U.Gbsele.Self-organized formation of hexagonal pore arrays in anodic alumina.Appl.Phys.Let.1998,72(10):1173-1175
    [112]V.P.Parkhutik and V I.Shershlsky.The oretical modeling of porous oxide growth on aluminium.J.Phys.D:Apll.Phys.1992,25:1258-1265
    [113]G.Patermarakis,P.Lenas,Ch.Karavassilis and G Papayiannis.Kinetics of growth of porous anodic Al_2O_3 fills on Al metal.Electrochimica Acta,1991,36(3-4):709-725
    [114]R.C.Fumeaux,W R.Rigby and A.P.Davidson.The formation of controlled-porousity membranes from anodically oxidized aluminum.Nature,1989,337:147-154
    [115]O.Jessensky,F.Muller and U.Gosele.Self-organized formation of hexagonal pore structures in anodic alumina.J.Eletrochem.Soc.,1998,145(11):3735-3740
    [116]L.Zhang,H.S.Cho,.F.Li,et al.Cellar growth of highly ordered porous anodic films on aluminium.J.Materials Science Letters,1998,17:291-294
    [117]A.P.Li,F.Mtlller,A.Bimer,et al.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina.J.Appl.Phys.,1998,84(11):6023-6027
    [118]Komelius Nielsch,Jinsub Choi,Kathrin Schwim,Ralf B.Wehrspohn and Ulrich Gosele.Self-ordering regimes of porous alumina:the 10%porosity rule.Nano Leters,2002,2(7):677-379
    [119]Long Ba,and Wei Sang LL Influence of anodizing conditions on the ordered pore formation in anodic alumina.J.Phys.D:Appl.Phys.,2000,33:2527-2531
    [120]D.H.Qin,C.W.Wang,Q.Y.Sun,et al.The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays.Appl.Phys.A,2002,74:761-765
    [121]刘虹雯,侯士敏,张耿民,等.电化学沉积金纳米线结构及其电学特性.物理化学学报,2002,18(4):359-364
    [122]艾汉华,万淼,任璐,等.多孔氧化铝模板制备ZnS纳米线阵列及其光致发光谱.发光学报,2005,26(5):631-635
    [123]Shoso Shingubara.Fabrication of nanomaterials using porous alumina templates.J.Nanoparticle Research,2003,5:17-30
    [124]王银海,牟季美,蔡维理,石刚.交流电在Al_2O_3模板中沉积金属机理探讨.物理化学学报,2001,17(2):116-118
    [125]Hernandez-Velez,M.,Pirota,K.R.,Paszti,F.,et al.Magnetic nanowire arrays in anodic alumina membranes:Rutherford backscattering characterization.Appl.Phys.A,2005,80:1701-1706
    [126]Vazquez,M.,Hernandez-Velez,M.,Pirota,K.,et al.Arrays of Ni nanowires in alumina membranes:magnetic properties and spatial ordering.Eur.Phys.J,2004,1-9
    [127]Z.Wang,Y.K.Su,H.L.Li.AFM study of gold nanowire array electrodeposited within anodicaluminum oxide template.Appl.Phys.A,2002,74:563-565
    [128]陈艳辉,张兴堂,薛中会,等.交流电沉积制备纳米线及其电沉积条件研究.无机材料学报,2005,20(1):59-64
    [129]贾冲,晋传贵,刘伟丰,等.Sb有序单晶纳米线阵列的制备.物理化学学报,2004,20(3):240-243
    [130]Y.W.Wang,G.Z.Wang,S.X.Wang,et al.Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array.Appl.Phys.A 2002,74:577-580
    [131]Gao,T.,Meng,G.,Zhang,J.,et al.Template synthesis of Y-junction metal nanowires.Appl.Phys.A,2002,74:403-406
    [132]Shingubara,S.,Okino,O.,Sakaue,H.,Takahagi,T.Jpn.J.Appl.Phys.,1997,36:7791
    [133]阎康平,涂铭旌.纳米微孔铝阳极氧化膜的制备及性能.功能材料.2000,31(3):294-295
    [134]孙冬梅,薛宽宏,蔡称心,等.纳米微孔铝阳极氧化膜的制备及性能研究.分析化学,2000,工作28(10):1308-1312
    [135]朱祖芳.铝合金阳极氧化与表面处理技术[M],北京:化学工业出版社,2004
    [136]Khalil N.,Leach J.S.L..The anodic oxidation of valve metals I.Determination of ionic transport numbers by α-spectrometry.Electrochim.Acta,1986,31:1279-1287
    [137]杜芳林,陈克正,张志琨,崔作林.物理法制备的纳米过渡金属催化剂上CO 的氧化(Ⅱ).青岛化工学院学报,2000,21(3):193-196
    [138]Haiyan Wang,Yugai Huang,Zhian Tan,Xiaoya Hu.Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior.Analytica Chimica Acta,2004,526:13-17
    [139]严红革,陈振华,黄培云.金属超微粉末制备技术中的几个问题.材料导报,1997,11(2):16-18
    [140]Ding J..Uhrafine Cu particles prepared by mechanochemical process.J.Alloys and compounds,1996,234:L1-L3.
    [141]林荣会,方亮,郗英欣,邵艳霞.化学还原法制备纳米铜.化学学报,2004,62(23):2365-2368
    [142]Zhao Bin,Liu Zhijie,Zhang Zongtao.Improvement of oxidation resistance of ultrfine copper powders by phosphating treatment.J.solid chem.,1997,30(1):157-160.
    [143]T.Gao,G.W.Meng,J.Zhang,et al.Template synthesis of single-crystal Cu nanowire arrays by electrodeposition.Appl.Phys.A,2001,73:251-254
    [144]Nathan J.Gerein and Joel A.Haber.Effect of AC Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates.J.Phys.Chem.B 2005,109:17372-17385
    [145]王学锋,史选,皮运清.流动注射化学发光法测定水样中的痕量亚硝酸根.分析化学,2005,33(6):865-868
    [146]訾言勤,凌程凤.四波长负吸收催化光度法测定痕置亚硝酸根.分析化学,2004,32(8):1039-1042
    [147]Andrea Buldt,Uwe Karst,Determination of Nitrite in Waters by Microplate Fluorescence spectroscopy and HPLC with Fluorescence Detection.Anal.Chem.,1999,71:3003-3007
    [148]杨丽珠,陈大茴,刘传银,等.钴-甲基百里香酚蓝络合剂-亚硝酸根络合吸附波的研究及应用.分析化学,2005,33(5):675-679
    [149]胡卫平,董学芝,何智娟.甲基紫电极催化动力学电位法测定亚硝酸根.分析化学,2004,32(6):765-768
    [150]Ge Zhao,Kuaizhi Liu,Song Lin,et al.Electrocatalytic Reduction of Nitrite Using a Carbon Nanotube Electrode in the Presence of Cupric Ions.Microchim.Acta.,2004,144,75-80
    [151]Weiwei,Yang Yu,Bai Yancai Li,Changqing Sun.Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film.Anal Bioanal Chem,2005,382:44-50
    [152]Liu,L,Tian,L,Xu,HD,Lu,N Electrochemical properties of organo-titanium substituted heteropolytungstateand its electrocatalytic reduction of nitrite.J.Electroanal.Chem.,2006,587(2):213-219
    [153 Manli Guo,Jinhua Chen,Jia Li,et al.Fabrication of polyaniline/carbon nanotube composite modified electrode andits electrocatalytic property to the reduction of nitrite.Analytica Chimica Acta,2005,532(1):71-77
    [154]Ruhlmann,L,Genet,G:Wells-Dawson-derived tetrameric complexes {K_(28)H_8[P_2W_(15)Ti_3O_(60.5)]_4} electrochemical behavior and electrocatalytic reduction of nitrite and of nitric oxide.J.Electroanal.Chem.,2004,568(1-2):315-321
    [155]Wenliang Gao,Jixin Chen,Xinxin Guan,et al.Catalytic reduction of nitrite ions in drinking water over Pd-Cu/TiO_2 bimetallic catalyst.Catalysis Today,2004,93/95,333-339
    [156]Sun WL.,Liu HZ.,Jin LT.,et al.Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(Ⅱ)-substituted Keggin type heteropolytungstate.Analytica Chimica Acta,1999,338(1-2):103-110
    [157]M.H.Pournaghi-Azar,Biuck Habibi-A.Preparation of platinum layer-modified aluminum electrode by electrochemical and electroless cementations and its use for the electrooxidation of methanol.J.Electroanal.Chem.,2005,580:23-34
    [158]M.H.Pournaghi-Azar,H.Dastangoo.Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film.J.Electroanal.Chem.,2004,567:211-218
    [159]Minghua Huang,Yong Shao,Xuping Sun,et al.Alternate Assemblies of Platinum Nanoparticles and Metalloporphydns as Tunable Electrocatalysts for Dioxygen Reduction.Langmuir,2005,21:323-329
    [160]Mathew M.Maye,Yongbing Lou,and Chuan-Jian Zhong.Core-Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation.Langmuir,2000,16:7520-7523
    [161]Heechang Ye and Richard M.Crooks.Electrocatalytic O_2 Reduction at Glassy Carbon Electrodes Modified with Dendrimer-Encapsulated Pt Nanoparticles.J.AM.CHEM.SOC.2005,127,4930-4934
    [162]Keith B.Malea,Sabahudin Hrapovic,Yali Liu et al.Electrochemical detection of carbohydrates using copper nanopartieles and carbon nanotubes.Analytica Chimica Acta,2004,516:35-41
    [163]申燕,朱培德,刘柏峰,等.钯纳米粒子在电极表面的制备及其对氧的催化还原.高等学校化学学报,2003,24(11):2080-2082
    [164]Aimin Yu,Zhijian Liang,Jinhan Cho,et al.Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films.Nano Lett.2003,3(9):1203-1207
    [165]J.Hern_andez,J.Solla-Gull_on,E.Herrero.Gold nanoparticles synthesized in a water-in-oil microemulsion:electrochemical characterization and effect of the surface structure on the oxygen reduction reaction.J.Electroanal.Chem.,2004,574:185-196
    [166]Dao-Jun Guo,Hu-Lin Li.High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes.J.Coll.Interface Sci.,2005,286:274-279
    [167]Cai H,Zhu N N,Jiang Y,et al.Cu-Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization.Biosensors and Bioelectronics,2003,18:1311-1319
    [168]Cai H,Xu Y,Zhu N,et al.An electrochemical DNA hybridization detection assay based on a sliver nanopaticle label.J.Anal.ChimActa,2002,27:803-288
    [169]Qiao Cui SHI,Tu Zhi PENG.A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle/Carbon Nanotube Modified Electrode.Chinese Chemical Letters 2005,16(8):1081-1084
    [170]阚显文,高迎春,陶海升,等.Ag、Ag_2O纳米粒子对Pb电极的电催化作用.应用化学,2005,22(4):377-381
    [171]田娜,陈卫,孙世刚.核.壳结构Au-Pt纳米粒子的光谱表征和电催化性能.物理化学学报,2005,(21)1:74-78
    [172]张幸儿,胡效亚.铜纳米粒子修饰碳糊电极测定氨基酸.扬州大学学报,2005,8(20):16-20
    [173]Hong Ying DUAN,Fang CHEN,Xin Ping AI,et al.The Interaction between Propranolol and Gold Nanoparticles and its Analytical Application.Chinese Chemical Letters,2005,16(7):947-950
    [174]Mao-Guo Li,Yong-Jia Shang,Ying-Chun Gao,et al.Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor.Analytical Biochemistry2005,341:52-57
    [175]万巧,张芬芬,王晓丽,等.二茂铁掺杂SiO_2纳米粒子修饰的次黄嘌呤生物传感 器在脑渗析液分析中的应用.化学传感器,2004,24(1):45-49
    [176]Mbindyo J K N,Rusling J F.Carlyle electrochemical synthesis using nanocrystalline titanium dioxide cathodes in microemuhions.Langmuir,1998,14:7027-7033
    [177]Chu D B,Shen G X,Zhou X F,et al.Electrocatalytic activity of nanocrys talline TiO_2film modified Ti electrode.Chem.J.Chinese Universities,2002,23(4):678-68
    [178]Xiong Wang,Lisheng Gao,Huagui Zheng,Mingrong Ji,Tao Shen,Zude Zhang.Fabrication and electrochemical properties of a-Fe_2O_3 nanoparticles.J.Cryst.Growth,2004,269:489-492
    [179]Baohong Liu,Yong Cao,Dandan Chen,et al.Amperometric biosensor based on a nanoporous ZrO_2 matrix.Analytica Chimica Acta2003,478:59-66
    [180]Tianyan You,Osamu Niwa,Masato Tomita,et al.Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method.Electrochemistry Communications,2002,4:468-471
    [181]艾仕云,彭惠琦,李嘉庆,等.纳米PbO_2修饰电极电催化氧化性能的研究.分子催化,2004,18(5):367-370
    [182]Pauporte T.Some electrocatalytic porperties of anodic iridium oxide nanoparticles in acidic solution[J].Electrochimica Acta,1999,45:431-439
    [183]Yanxia J.Synthesis and characterization of the host-guest nanocomposite material zeolite Y- Iron bipyridine.Chinese Chemical Letters,1999,10(6):521-524
    [184]Che G.Carbon nanotubule membranes for electrochemical energy storage and production.Nature,1998,393:346-349
    [185]褚有群,马淳安,朱英红.纳米碳管电极上氧的电催化还原.物理化学学报,2004,20(3):331-335
    [186]吕少仿.多壁碳纳米管化学修饰电极测定替硝唑的研究.分析化学,2004,32:412-415
    [187]王歌云,王宗花,肖素芳等.碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定.分析化学,2003,31(3):1281-1285
    [188]赫春香,赵常志,唐祯安,等.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化.分析化学,2003,31(8):958-960
    [189]Jiaxing Huang,Shabnam Virji,Bruce H Weiller,et al.Polyaniline Nanofibers:Facile Synthesis and Chemical Sensors.J.AM.CHEM.SOC.2003,125:314-315
    [190]Zhiming Zhang,Zhixiang Wei,and Meixiang Wan.Nanostructures of Polyaniline Doped with Inorganic Acids.Macromolecules,2002,35,5937-5942
    [191]Usha Sree,Yojiro Yamamoto,Bhavana Deore,et al.Characterization of polypyrrole nano-films for membrane-based sensors.Synthetic Metals,2002,131:161-165
    [192]N.Cioffi,L.Torsi,L.Sabbatini,P.G.et al.Electrosynthesis and characterisation of nanostructured palladium-polypyrrole composites.J.Electroanal.Chem.,2000,488:42-47
    [193]王秀丽,康振辉,兰阳.钼钒磷酸四乙胺纳米粒子体修饰碳糊电极及其对过氧化氢的电催化还原.分析化学,2003,31(8):941-944
    [194]王胜天,秦玉华,翟剩勇,等.阳极氧化铝膜修饰的杂多酸-聚吡咯纳米粒子玻碳电极的电化学性质研究.高等学校化学学报,2004,25(5):841-843
    [195]A.A.Karyakin,E.A.Puganova,I.A.Budashov,et al.Prussian Blue Based Nanoelectrode Arays for H_2O_2 Detection.Anal.Chem.2004,76:474-478
    [196]Abdollah Salimi,Kamaleddin Abdi.Enhancement of the analytical properties and catalytic activity of a nickelhexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique:application to amperometric detection of hydrazine and hydroxylamine.Talanta,2004,63:475-483
    [197]M H Pournaghi-Azar,H Ramizi-Nerbin.Voltammetric behaviour and electrocatalytic activity of the aluminum electrode modified with nickel and nickel hexacyanoferrate films,prepared by electroless deposition.J.Electroanal.Chem.,1998,456:83-90
    [198]S.-M.Chen.Preparation,characterization,and electrocatalytic oxidation Properties of iron,cobalt,nickel,and indium hexacyanoferrate.J.Electroanal.Chem.,2002,521:29-52
    [199]童裳伦,项光宏,刘维屏.铈(Ⅳ)与抗坏血酸的荧光反应及其分析应用.分析化学,2005,33(1):80-82
    [200]贾君.5种水果中维生素C含量的测定.研究冷饮与速冻食品工业,2004,10(2):33-34
    [201]水果、蔬菜维生素C含量测定法,中华人民共和国国家标准,GB/T 6195-86.
    [202]Neff V D.Electrochemical oxidation and reduction of thin films of Prussian blue.J Electrochem.Soc.1978,125:886-887
    [203]Garjonyte R.,Malinauskas A.Operational stability of amperometfic hydrogen peroxide sensors, basedon ferrous and copper hexacyanoferrates. Sensors and Actuators B, 1999, 56:93-97
    
    [204] Peng Wang, Yi Yuan, Xiangping Wang,et al.Renewable three-dimensional Prussian blue modified carbon ceramic electrode. Journal of Electroanalytical Chemistry, 2000,493:30-134
    
    [205] Garjonyte R., Malinauskas A..Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates. Sensors and Actuators B, 1998,46:36-241
    
    [206] Noll A., Rudolf V., Grabner E. W.A. glass electrode with solid internal contact based on Prussian blue. Electrochimica Acta, 1998,44:415-419
    
    [207] Kuo-Chuan Ho, Chia-Yi Chen, Huan-Cheng Hsu,et al. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode . Biosen.and Bioelectro., 2004,20:3-8
    
    [208] Francesco Ricci, Fabiana Arduini, Aziz Amine,et al.Characterisation of Prussian blue modified screen-printed electrodes for thiol detection. J. Electroanal.Chem., 563 (2004) 229 - 237
    
    [209] Zamponi S., Kijak A.M., Sommer A.J., et al. Electrochemistry of Prussian blue in silica sol-gel electrolytes doped with polyamidoamine dendrimers . J Solid State Electrochem ,2002,6: 528-533
    
    [210]Yuanjian ,Zhang,Yi Wen, et al. Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochemistry Communications 2004,6:1180-1184
    
    [211] Marcelo F. de Oliveira, Roger J. Mortimer, Nelson R. Stradiotto. Voltammetric determination of per sulfate anions using an electrode modified with a Prussian blue film. Microchemical Journal 2000,64:155-159
    
    [212] S.M. Chen. Preparation, characterization and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate. Journal of Electro analytical Chemistry, 2002,521:29-52
    
    [213] Ursula S,Erich W G.Electrocatalytic oxidation of hydrazine at a Prussian blue modified glassy carbon electrode. Electrochimica Acta, 1996,41(2): 233-239
    
    [214] Pournaghi-Azar M H, Dastangoo H. Palladized aluminum as a novel substrate for the non-electrolytic preparation of a Prussian blue film modified electrode. J.Electroanal. Chem., 2004,573:355-364.
    
    [215] Marcelo F. de Oliveiraa, Roger J. Mortimerb, Nelson R. Stradiottoc, Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film.Microchemical Journal,2000,64:155-159
    [216]Stelian Lupu,Constantin Mihailciuc,Laura Pigani,et al.Electrochemical reparation and characterisation of bilayerfilms composed by Prussian Blue and conducting polymer.Electrochemistry Communications,2002,4:753-758
    [217]李平,吴守国,张汉昌,马超雄.尿酸在普鲁士蓝修饰电极上的电化学行为及其分析应用.分析化学,2005,33(1):77-79
    [218]Lianyong Su,Hong Wang,Zuhong Lu.All-solid-state electrochromic window of prusian blue and electrodeposited WO3 film with poly(ethylene oxide)gel electrolyte.Materials chemistry and Physics,1998,56:266-270
    [219]Karl-Heinz Heckner,Alexander Kraft.Similarities between electrochromic windows and thin film batteries.Solid State Ionics,2002,152-153:899-905
    [220]Derwinska K.,Miecznikowski K.,Koncki R.,et al.Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor.Electroanalysis,2003,15(23-24):1843-1849
    [221]杨志宇,李建平,方成.掺杂纳米普鲁士蓝溶胶/凝胶修饰葡萄糖生物传感器.分析化学,2005,33(4):538-542
    [222]李建平,彭图治.聚吡咯固定胆固醇氧化酶普鲁士蓝安培传感器的研制.分析化学,2003,31(6):669-673
    [223]Ruedas Rama M.J.,Ruiz Medina A.,Molina Diaza A.Prussian blue-based flow-through renewable surface opt sensor for analysis of ascorbic acid.Micro chemical J.,2004,78:157-162
    [224]Tomasz Lenarczuk,Stanisiaw Glab,Robert Koncki.Application of Prussian blue-based optical sensor in pharmaceutical analysis.J.Pharmaceutical and Biomedical Analysis 2001,26:163-169
    [225]Robert Koncld,Otto S.Wolfbeis.Optical chemical sensing based on thin films of Prussian blue.Sensors and Actuators B,1998,51:355-358
    [226]Robert Koncki,Otto S.Wolfbeis Optical chemical sensing based on thin films of Prussian BlueSensors and Actuators B,1998,51:355-358
    [227]M.Hermes,F.Scholz.The electrochemical determination of ammonium based on the selective inhibition of the low-spin iron(Ⅱ)/(Ⅲ)system of Prussian blue.J Solid State Electrochem,1997,1:215-220
    [228]M.Jayalakshmi,F.Scholz.Performance characteristics of zinc hexacyanoferrater Prussian blue and copper hexacyanoferrater Prussian blue solid-state secondary cells.Journal of Power Sources 91 2000 217-223
    [229]Jayalakshm M,Scholz F.Charge-discharge characteristics of a solid-state Prussian blue secondary cell.Journal of Power Sources,2000,87:212-217
    [230]Ali Eftekhari.Fabrication of all-solid-state-thin-film secondary cells using hexacyanometallate-based electrode materials.Journal of Power Sources,2004,132:291-295
    [231]Ali Eftekhari.Potassium secondary cell based on Prussian blue cathode.Journal of Power Sources,2004,126:221-228
    [232]孔景临,薛宽宏,何春建,等.镍纳米线电极的电化学氧化还原行为及其对乙醇的电化学氧化催化作用.应用化学,2001,18(6):462-465
    [233]左东华,张志琨,崔作林.纳米镍在硝基苯加氢中催化性能的研究.分子催化,1995,9(4):298-302
    [234]左东华,张志琨,崔作林等.纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能.催化学报,1996,17(2):166-169
    [235]Shao P L,Yu W C.Nitrobenzene hydrogenation on Ni-P,Ni-B and Ni-P-B ultrafine materials.J Mol.Catal.A:Chem,2000,152:213-223.
    [236]Shao P L,Yu W C,Catalytic properties of Ni-B and Ni-P ultmfine materials.J Chem.Technol.Biotechnol.,2000,75:1073-1079.
    [237]杜艳,陈洪龄,陈日志,徐南平.高活性纳米镍催化剂的制备及其催化性能研究.高校化学工程学报,2004,18(4):515-518
    [238]D.E.Zhang,X.M.Ni,H.G.ZhengT,et al.Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion.Mater.Lett.,2005,59:2011-2014
    [239]Szu-Han,Wu,Dong-Hwang Chen.Synthesis and characterization of nickel nanoparticles by hydrazine.J.Colloid and Interface Science,2003,259:282-286
    [240]Y.Hou,H.Kondoh,T.Ohtab,S.Gao.Size-controlled synthesis of nickel nanoparticles.Applied Surface Science,2005,241:218-222
    [241]Jinxia Xua,Xinming Huang,Guozhi Xie,et al.Study on the structures and magnetic properties of Ni,Co-Al2O3 electrodeposited nanowire arrays.Materials Research Bulletin,2004,39:811-818
    [242]I.Z.Rahman,A.Boboe,K.M.et al.Analysis of magnetic interaction in Ni nanowire army grown using electrodeposition process.J.Magnetism and Magnetic Materials,2005,290/291:246-249
    [243]I.Z.Rahman,K.M.Razeeb,M.A.Rahman,et al.Fabrication and characterization of nickel nanowires deposited on metal substrate.J.Magnetism and Magnetic Materials,2003,262:166-169
    [244]M.Vazquez,K.Pirota,J.Torrejoon,et al.Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires:Influence of geometric characteristics.J.Magnetism and Magnetic Materials,2005,294:174-181
    [245]周振华,周卫江,姜鲁华,等.高分散直接甲醇燃料电池Pt/C阴极电催化剂的制备过程机理与表征.催化学报,2004,25(1):65-69
    [246]GloaguenF,Leger J M,LamyC.Electrocatalytic oxidation of methanol on platinumn anoparticles electrodeposited onto porous carbon substrates.J Appl.Electrochem.,1997,27(9):1052-1060
    [247]Z.D.Wei,S.H.Chan.Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation.J.Electroanal.Chem.,2004,569:23-33
    [248]William Hernando,Lizcano-Valbuena,Dayse Caldas de Azevedo,et al.Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells.Electrochimica Acta 2004,49:1289-1295
    [249]陈卫祥,俞贵艳,赵杰,等.微波合成PtRu/C纳米催化剂及其对甲醇电化学氧化性能.无机化学学报,2004,20(12):1467-1470
    [250]赵新生,孙公权,姜鲁华,等.碳纳米管担载PtSn阳极催化剂对乙醇的电催化氧化性能研究.高等学校化学学报,2005,26(7):1304-1308
    [251]Ji-Er Huang,Dao-Jun Guo,Ya-Gang Yao,Hu-Lin Li.High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes.J.Electroanal.Chem.,2005,577:93-97
    [252]He,Jinhua Chen,Dengyou Liu,Hao Tang,et al.Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electro oxidation.Mater.Chem.and Phys.,2004,85:396-401
    [253]Dao-Jun Guo,Hu-Lin Li.High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles.J.Electroanal.Chem.,2004,573:197-202
    [254]E.V.Spinace,A.O.Neto,M.Linardi.Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles.J.Power Sources,2004,129:121-126
    [255]Pawel J.Kulesza,Bozena Grzybowska,Marcin A.Malik,et al.Oxidation of methanol at an electrocatalytic film containing platinum and polynuclear oxocyanoruthenium mierocenters dispersed within tungsten oxide matrix.J.Electroanal.Chem.,2001,512:110-118
    [256]F.Shafia Hoor,M.F Ahmed,S.M.Mayanna.Methanol oxidative fuel cell:electrochemical synthesis and characterization of low-priced WO_3-Pt anode material.J.Solid State Eletrochem.,2004,8:572-576
    [257]李小芳,张亚利,孙典亭.碳载纳米Pt及纳米Pt/WO_3电催化剂的制备与表征青岛大学学报,2003,16(1):7-11
    [258]周海晖,焦树强,陈金华,等.微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化.物理化学学报,2004,20(1):9-14
    [259]Rajesh B,Thampi K R,Bonard J M,et al.Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation.J.Power Sources,2004,133:155-161
    [260]Park K W,Choi J H,Kwon B K,et al.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B,2002,106:1869-187
    [261]J.Mathiyarasu,A.M.Remona,A.Mani,et al.Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H_2SO_4:Pt-Ni system.Solid State Electrochem,2004,8:968-975
    [262]Kyung-Won Park,Jong-Ho Choi,Seol-Ah Lee,et al.PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell.J.Catalysis,2004,224:236-242
    [263]Junhua Jiang and Anthony Kucernak.Solid polymer electrolyte membrane composite microelectrode investigations of fuel cell reactions II:voltammetric study of methanol oxidation at the nanostructured platinum microelectrode/Nafion membrane interface.J.Electroanal.Chem.,2005,576:223-236
    [264]Paul Wilde,Meijie Zhang.Chemisorption and oxidation of methanol at polycrystalline Pt in acid solutions.Electrochim.Acta,1994,39:347-354
    [265]M.J.De Giz,S.A.S.Machado,L.A.Avaca,et al.High area Ni-Zn and Ni-Co-Zn eodeposits as hydrogen electrodes in alkaline solution.J Appl.Electrochem.,1992,22:973-977
    [266]朱龙章,刘淑兰,覃奇贤,等.Ni/WC复合电极在弱酸性介质中的析氢催化性能.物理化学学报,1994,10(11):1055-1058
    [267]Brown D E,MahmooD M N,Man MCM,et al.Preparation and Characterization of Low Overvoltage Transition Metal Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solutions.Electrochimica Acta,1984,29(11):1551-155
    [268]L.S.Sanches,S.H.Domingues,C.E.B.Matin.Characterization of electrochemically deposited Ni-Mo alloy coatings.Electrochemistry Communications,2004,6:543-548
    [269]张季爽,李青莲,吕瑶姣等.W离子注入Ni-Mo合金电极的析氢性能.化学学报,1994,52(5):489-491
    [270]马洁,初一鸣,邸静等.Ni-Mo合金复合镀层上的析氢反应.应用化学,1997,14(1):16-20
    [271]Spasojevic M,Krstajic N,Despotov P,et al.The evolution of hydrogen on cobalt-molybdenum coating:polarization characteristics.J Appl.Electrochem,1984,14(5):265-266.
    [272]林文修,郑巧云,薛文华等.镍钨合金电沉积及其析氢电催化性能的研究.福建师范大学学报(自然版),1995,11(1):60-65
    [273]刘淑兰,覃奇贤,成旦红等.电沉积Ni-La合金上的阴极析氢行为.应用化学,1995,12(5):115-116
    [274]Paseka I.Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni-P(X)electrodes.Electrochimica Acta,1995,40(11):1633-1640
    [275]黄令,许书楷,周绍民.纳米晶镍.钼合金电沉积的结构与性能.应用化学,1999,16(2):38-41
    [276]吴志方,曾美琴.纳米晶材料的晶粒长大.金属功能材料,2005,12(13):31-34
    [277]马洁,刘顺诚,江琳才等.纳米晶Ni-Mo合金复合镀层中钼含量对析氢反应的影响.化学学报,1997,55:363-369
    [278]H.Ezaki,T.Nambu,M.Morinaga,et al.Development of low hydrogen overpotential electrode utioizing metal ultra-free particles.INT.J.Hydrogen,1996,21(10):877-881
    [279]E.J.Podlaha,D.Landolt.Induced Codeposition Molybdenum Alloys with Nickel,Cobaltand Iron.J.Electroehem.Soe.1997,144(5):1672-1680
    [280]V.V.Kuznetsov,M.R.Pavlov,S.A.Chepeleva,et al.Effect of Concentration of Ammonia and Citrate Iota on the Kinetics of Cathodic Reactions during Electrodeposition of a Nickel-Molybdenun Alloy.Russian J.Electrochem.,2005,41(1):75-81
    [281]V.V.Kuznetsov,M.R.Pavlov,K.V.Kuznetsov,et al.Kinetics of Cathodic Processes of Deposition Nickel-Molybdenun Alloys from Ammonia-Citrate Electrolyte.Russian J.Electrochem.,2003,39(12):1338-134
    [282]曾跃,姚素薇,郭鹤桐.从氨性柠檬酸溶液中电沉积Ni-Mo的机理研究.物理化学学报,1995,11(4):351-355
    [283]郑建邦,任驹,郭文阁,赵建林.电化学染料增感对聚苯胺/硅异质结电池的影响.光子学报,2006,35(1):47-51
    [284]Pringsheim,E.,Zimin,D.,Wolfbeis,O.S.Fluorescent Beads Coated with Polyaniline:A Novel Nanomaterial for Optical Sensing ofpH.Adv.Mater.2001,13,819-822
    [285]Sukeerthi,S.,Contractor,A.Q,Molecular Sensors and Sensor Arrays Based on Polyaniline Microtubules.Anal.Chem.1999,71:2231-2236
    [286]Shabnam Virji,Richard B.Kaner,Bruce H.Weiller.Hydrazine Detection by Polyaniline Using Fluorinated Alcohol Additives.Chem.Mater.2005,17:1256-1260
    [287]Rajendra Prasad Kalakodimi and Munichandraiah Nookala.Electrooxidation of Ascorbic Acid on a Polyaniline-Deposited Nickel Electrode:Surface Modification of a Non-Platinum Metal for an Electrooxidative Analysis.Anal.Chem.2002,74:5531-5537
    [288]Junting Lei,Zhihua Cai,Charles R.Martin.Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer.Synth.Met.1992,46(1):53-69
    [289]Zhihua Cal and Charles R.Martin.Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities.J.Am.Chem.soc.,1989,111:4138-4139
    [290]Shabnam Virji,Jiaxing Huang,Richard B.Kaner,et al.Polyaniline Nanofiber Gas Sensors:Examination of Response Mechanisms.Nano Lett.,2004,3:491-496
    [291]Laixin Jiang,Zuolin Cui.One-step synthesis of oriented polyaniline nanorods through electrochemical deposition.Polymer Bulletin,2006(on line)
    [292]Ali Eftkhari.Aluminum as a suitable substrate for the deposition of conducting polyermers:applieaton to polyaniline and enzyme modified electrode.Synthesis metals,2002,125:295-300
    [293]Ali Eftkhari.Glycerol biosensor based on glycerol dehydrogenase incorporated into polyaniline modified aluminum electrode using hexacyanoferrate as mediator.Sensors and Actuators B,2001,80:283-289
    [294]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应.武汉大学学报,1993(6):65-73
    [295]董平,周剑章,席燕燕,等.聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理.物理化学学报,2004,20(5):454-458
    [295]M.M.Verghese,Kumaran Ramanathan,S.M.Ashraf,et al.Electrochemical Growth of Polyaniline in Porous Sol-Gel Films.Chem.Mater.1996,8:822-824
    [296]Yong Ding,Anne,Buyle Padias,H.K.Hall.Chemical trapping experiments support a cation-radical mechanism for the oxidative nolvmedzation of Aniline.Polym.Sci.Part A:2569-2579

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700