低温燃料电池低铂催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池以其高效率、高能量密度、零排放、快速启动等优点,被认为是21世纪最有发展前景的高效清洁发电技术。低温燃料电池包括质子交换膜燃料电池、直接甲醇燃料电池、直接乙醇燃料电池和直接甲酸燃料电池等。电催化剂是低温燃料电池的最为重要的关键材料之一,目前常用的基于铂的贵金属催化剂存在成本高昂、以及铂资源限制等问题,已成为制约燃料电池技术的发展和商业化进程的重要因素。因此,研究和开发非铂及低铂催化剂已成为燃料电池领域的热点研究课题,其中以降低铂使用量为目标的低铂催化剂具有十分明朗的应用前景,研究和开发新型低铂催化剂,对于有效降低铂的使用量、降低燃料电池成本、促进燃料电池技术的发展具有十分重要的意义。
     本文以设计和制备高性能低铂催化剂为目标,设计和制备了系列以具有良好的化学稳定性和电化学稳定性的廉价金属钌为核,以铂和铂的合金为壳的核壳结构低铂催化剂,并对这些催化剂在低温燃料电池阳极和阴极中电催化性能进行了深入的研究。首先,制备了高活性的低铂核壳结构Ru@Pt/C催化剂。采用两步浸渍-还原法制备了Pt含量为5 wt.%的核壳结构催化剂Ru@Pt/C,对于甲醇的阳极氧化反应,该催化剂的单位质量铂的催化活性分别为Pt/C,PtRu/C和商业JM PtRu/C催化剂的1.9、1.5和1.4倍。尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其循环伏安正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的I_f/I_b的2.7倍。另外,Ru@Pt/C催化剂的稳定性也高于Pt/C,自制PtRu/C和商业JM PtRu/C催化剂。
     其次,考察了铂的覆盖度(Pt:Ru摩尔比)对Ru@Pt/C催化剂结构、甲醇氧化和氧还原(oxygen reduction reaction,ORR)性能的影响,研究了壳层原子与核之间的相互作用。利用两步还原法合成了一系列不同铂覆盖度(Pt:Ru比)的核壳结构催化剂Ru@Pt/C,催化剂对于甲醇的阳极氧化和氧还原反应活性先随Pt:Ru摩尔比的增加而增加后随Pt:Ru摩尔比的增加而降低,在Pt:Ru比例为0.42:1时,催化剂具有最好的催化性能。Pt:Ru摩尔比从0.13:1增加到0.81:1,If:Ib比值从5.8下降到0.8。当Pt:Ru比例为0.42:1时,I_f/I_b和Pt/C的相当;继续增加Pt:Ru比,I_f/I_b比值几乎不变。Ru@Pt/C(0.42:1)对甲醇氧化的单位质量Pt的催化活性是Pt/C的3倍。有甲醇存在时,Ru@Pt/C催化剂表现出良好的抗甲醇能力。
     第三,制备了具有合金壳层的核壳结构Ru@Pt_xPd_y/C催化剂,考察了壳层中不同Pt:Pd原子比对催化剂在甲酸氧化中催化性能的影响。Ru@Pt_xPd_y/C催化剂对甲酸的催化活性随壳层中Pt:Pd原子比而变化。和Pd/C催化剂相比,Ru@Pt_1Pd_2/C对甲酸氧化的峰电位负移了约200 mV。Ru@Pt_2Pd_1/C催化剂对甲酸的催化氧化性能是Pt_2Pd_1/C的3.5倍,表明了其贵金属利用率的提高。微型直接甲酸燃料电池单电池测试结果显示,在0.5 V处,以Ru@Pt_2Pd_1/C做阳极催化剂的单电池电流密度达到7.5 mA·cm~(-2),分别是Pt_2Pd_1/C和JM Pt/C做阳极催化剂的单电池电流密度的1.3和3.5倍。这些结果表明以Ru@Pt2Pd1/C做催化剂的单电池比以Pt_2Pd_1/C和JM Pt/C做催化剂的单电池展现了更好的电池性能。这种提高可能是壳与核协同作用的结果。
     第四,以Ru作为核以PtPd或PtIr合金作为壳,制备了Ru@PtPd/C和Ru@PtIr/C催化剂,考察了两种催化剂在碱性介质中对乙醇氧化催化性能的影响。Ru@PtPd/C(Pt:Pd原子比1:0.2)对乙醇氧化的单位质量PtPd的催化活性分别为PtPd/C,PtRu/C,Pd/C和Pt/C的1.3,3,1.4和2倍。Ru@PtIr/C催化剂对乙醇氧化的催化活性分别是Pt/C和合金PtRu/C催化剂的1.8和3.0倍,另外其If/Ib值高达2.4,分别是Pt/C和合金PtRu/C的2.4倍和2.0倍,表明Ru@PtIr/C催化剂具有高的催化活性和高的抗乙醇氧化中间体(CO)的中毒能力。核壳结构Ru@PtIr/C和Ru@PtPd/C催化剂的稳定性也高于Pt/C。
     第五,制备了一系列不同Pt:Se摩尔比的Pt@Se/C氧还原催化剂。循环伏安研究结果表明,Pt@Se/C催化剂的Pt氧化峰消失;随催化剂中Se含量增加,H吸、脱附峰越来越不明显,Se的氧化峰越来越强,表明Se在Pt的表面沉积,说明Se的加入使金属Pt的表面特征发生了改变,抑制了对H的吸附。Pt@Se/C催化剂对ORR的活性随Pt:Se摩尔比的减少呈先增加后降低的趋势,Pt:Se摩尔比为0.63:0.37时,Pt@Se/C对ORR的起始电位和半波电位分别比Pt/C催化剂正移了20和41 mV。Pt@Se/C催化剂与Pt/C催化剂相比具有非常高的抗甲醇中毒性能。
     第六,制备了RuFeSe@Pt/C催化剂。核组分中,Ru,Fe和Se形成合金。循环伏安研究表明,在RuFeSe/C上负载Pt以后,Se的氧化峰消失,间接证明了Pt在RuFeSe表面的还原沉积,形成核壳结构。RuFeSe@Pt/C对ORR半波电位比Pt/C和Ru@Pt/C分别正移了61 mV和46 mV。当在有甲醇存在的条件下,它的催化活性要比Pt/C催化剂好。RuFeSe@Pt/C催化剂与Pt/C催化剂相比具有非常高的抗甲醇性能。RuFeSe@Pt/C催化剂催化氧还原的机理主要是以4电子反应机理进行,反应中主要生成产物为水。
Low temperature fuel cells have been acknowledged as the most promising clean power technology in 21st century due to their advantages, such as high efficiency, high power density, zero or low exhaust, and quick startup at low temperature, etc. Low temperature fuel cells include hydrogen/oxygen proton exchange membrane fuel cell (PEMFC), direct alcohol fuel cell (DAFC), as well as direct formic acid fuel cell (DFAFC). Electrocatalyst is one of the most important materials for low temperature fuel cells. Up to now, platinum is still the widely used active component for fuel cell electrocatalyst, the limited resource and high price of platinum is becoming into the most important factor that restricts the development and commercialization of low temperature fuel cells. Thus, research and development of low Pt and non-Pt catalysts have become the hot research topic in the fuel cell field, among which low Pt catalyst with the aim of reducing Pt loading attracted more attention due to its application prospect in near future. Consequently, research and development of novel low Pt catalyst with high rare metal utilization and low Pt content are of great importance to the cost reduction of fuel cell and development of fuel cell technology.
     In this thesis, a series of core-shell structured low Pt catalysts, with relative inexpensive Ru as core which is chemically and electrochemically stable and with Pt or Pt base alloy as shell, were designed and prepared, and the performances of the core-shell catalysts used for the anode and cathode of low temperature fuel cells were investigated intensively.
     Firstly, a highly active core-shell structured low platinum Ru@Pt/C catalyst was prepared using a two-stage impregnation-reduction method. It was found that the mass catalyst activity in terms of the Pt load was 1.9 and 1.5 times as high as that of Pt/C and alloy PtRu/C catalysts towards the anodic oxidation of methanol, respectively, and it was also much higher than that of the commercial JM PtRu/C catalyst. It is important that the ratio of forward peak current density (I_f) to backward peak current density (I_b) reached 2.4, which is 2.7 times higher than that of Pt/C catalyst, implying that the Pt-decorated Ru/C catalyst possessed high tolerance towards intermediate poisoning species. In addition, the stability of Ru@Pt/C was higher than that of Pt/C, alloy PtRu/C and JM PtRu/C catalysts.
     Secondly, effects of Pt coverage (Pt:Ru atomic ratio) on the catalyst structure and performance for the methanol oxidation and oxygen reduction reaction (ORR) were investigated, and the interaction between shell atoms and core was studied. A series of Ru@Pt/C catalysts with different atomic ratios of Pt to Ru were prepared. The activity of methanol oxidation and ORR on Ru@Pt/C was firstly increased with the increacement of Pt:Ru ratio and then decreased. The highest activity was reached when the ratio of Pt to Ru was 0.42:1. I_f/I_b is decreased from 5.8 to 0.8 when the Pt:Ru ratio increases from 0.13:1 to 0.81:1. When the ratio of Pt to Ru is 0.42:1, I_f/I_b is close to that of Pt/C, and further increase of the Pt:Ru ratio leads to almost no decrease in I_f/I_b. The activity of methanol oxidation on Ru@Pt/C (0.42:1) was 3 times higher than that on Pt/C. The methanol tolerance of Ru@Pt/C is higher than that of Pt/C. With the presence of methanol, Ru@Pt/C showed high methanol tolernace towards oxygen reduction reaction.
     Thirdly, core-shell structured Ru@Pt_xPd_y/C catalysts with Pt_xPd_y alloys as shell and nano-sized Ru as core were prepared by a successive reduction procedure. Influence of the atomic ratio of Pt to Pd in the shell on the performance for the formic acid oxidation reaction was studied. It was found that the activity of Ru@Pt_xPd_y/C catalysts is varied with the variation of the atomic ratio of Pt to Pd. The peak potential of formic acid oxidation on Ru@Pt1Pd2/C is shifted negatively for about 200 mV compared with that of Pd/C. The activity of formic acid oxidation on Ru@Pt2Pd1/C was 3.5 times higher than that on Pt_2Pd_1/C, indicating the higher utilization of noble metals. The test of micro direct formic acid fuel cell (DFAFC) showed that the current density of the MEA with Ru@Pt_2Pd_1/C as the anode catalyst is 7.5 mA·cm~(-2) at 0.5 V, over 30% higher than that of the MEA prepared with Pt_2Pd_1/C and 3.5 times higher than that of the MEA prepared with JM Pt/C. The micro DFAFC test showed that the Ru@Pt_2Pd_1/C could significantly improve the catalytic activity of Pt in formic acid oxidation reaction. The improvement of the activity is ascribed to the interaction between shell and core.
     Fourthly, core-shell structured Ru@PtPd/C and Ru@PtIr/C catalysts were prepared by using Ru as core and PtPd or PtIr alloy as shell and the anodic oxidation of ethanol on these core-shell structured catalysts in alkaline media was studied. The activity of ethanol oxidation on Ru@PtPd/C (Pt:Pd =1:0.2) in terms of PtPd loading is 1.3, 3, 1.4, and 2.0 times as high as that on PtPd/C, PtRu/C, Pd/C, and Pt/C respectively, indicating high utilization of Pt and Pd. The activity of Ru@PtIr/C is 1.8 and 3.0 times as those of Pt/C and PtRu/C respectively. And the I_f/I_b is as high as 2.4, which is 2.4 and 2.0 times as those of Pt/C and PtRu/C catalysts respectively, revealing the high activity and high poisoning tolerance. In addition, the stability of Ru@PtPd/C and Ru@PtIr/C is higher than that of Pt/C.
     Fifthly, a series of Pt@Se/C catalysts with different Pt:Se atomic ratios were prepared by a two-stage procedure for ORR. The cyclic voltammograms results showed that the peak corresponding to oxidation of platinum disappeared; as the selenium content increased, the peak intensity corresponding to oxidation of selenium increased but the peak of hydrogen desorption decreased, indicating that Se was reduced on the surfaces of Pt nanoparticles. Hydrogen desorption on Pt was hindered due to the change in the surface property of Pt which was caused by addition of Se. Compared to Pt/C, the onset potential and half-wave potential for ORR on Pt@Se/C (0.63:0.37) was shifted positively for about 20 and 41 mV respectively. In the presence of methanol, Pt@Se/C has higher methanol tolerance than Pt/C catalyst.
     Finally, core-shell structured RuFeSe@Pt/C catalyst was prepared for ORR in direct methanol fuel cells. XRD result showed that Ru was alloyed with Se and Fe in the core. The cyclic voltammograms results showed that the peak corresponding to selenium oxidation disappeared, which may use as indirect evidence for the core-shell structure of RuFeSe@Pt. Compared to Pt/C and Ru@Pt/C, the onset potential and half-wave potential for ORR on RuFeSe@Pt/C was shifted positively for ca. 61 and 46 mV respectively. RuFeSe@Pt/C has higher methanol tolerance than Pt/C. To obtain kinetic information, a rotating disk electrode was used and the results showed that the synthesized RuFeSe@Pt/C catalyst had a 4-electron transfer mechanism for oxygen reduction.
引文
[1] Yousfi-Steiner N., Mo?otéguy P., Candusso D., et al. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation [J]. J. Power Sources, 2009, 194(1): 130-145.
    [2] Wang X., Hsing I.M. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells [J]. Electrochim. Acta, 2002, 47(18): 2981-2987.
    [3] Ostwald W. Die wissensehaftliche Elektroehemie der Gegenwart und die teehnische der Zukunft [J]. Z.Elektroehem, 1894, 1:122-124.
    [4] Datta J., Singh S., Das S., et al. A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell [J]. Bull. Mater. Sci., 2009, 32(6): 643-652.
    [5] Fernández J.L., Bard A.J. Scanning Electrochemical Microscopy : Imaging Electrocatalytic Activity for Oxygen Reduction in an Acidic Medium by the Tip Generation?Substrate Collection Mode [J]. Anal. Chem., 2003, 75(13): 2967-2974.
    [6] Neburchilov V., Martin J., Wang H., et al. A review of polymer electrolyte membranes for direct methanol fuel cells [J]. J. Power Sources, 2007, 169(2): 221-238.
    [7] Gu S., He G., Wu X., et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC) [J]. Journal of Membrane Science, 2006, 281(1-2): 121-129.
    [8] Zhang L., Lee K., Zhang J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts [J]. Electrochim. Acta, 2007, 52(9): 3088-3094.
    [9] Prabhuram J., Zhao T.S., Liang Z.X., et al. A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC [J]. Electrochim. Acta, 2007, 52(7): 2649-2656.
    [10] Ge J., Zhang Y., Liu C., et al. Hydrogen Vanadate as an Effective Stabilizer of Pd Nanocatalysts for Formic Acid Electroxidation [J]. J. Phys. Chem. C, 2008, 112(44): 17214-17218.
    [11]张玲玲,唐亚文,陆天虹等.有机溶胶法制备直接甲酸燃料电池用Pd/C阳极催化剂[J].应用化学, 2007, 24(5): 58-61.
    [12] Kowal A., Gojkovic S.L., Lee K.S., et al. Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO2 and Pt-Rh-SnO2 nanoclusters [J]. Electrochem. Commun., 2009, 11(4): 724-727.
    [13] Huang Y., Zhou X., Liao J., et al. Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method [J]. Electrochem. Commun., 2008, 10(4): 621-624.
    [14] Wang R., Liao S., Fu Z., et al. Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction [J]. Electrochem. Commun., 2008, 10(4): 523-526.
    [15] Seo M.H., Choi S.M., Kim H.J., et al. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation [J]. J. Power Sources, 2008, 179(1): 81-86.
    [16] Suslick K.S., Fang M., Hyeon T. Sonochemical Synthesis of Iron Colloids [J]. J. Am. Chem. Soc., 1996, 118(47): 11960-11961.
    [17] Vinodgopal K., He Y., Ashokkumar M., et al. Sonochemically Prepared Platinum?Ruthenium Bimetallic Nanoparticles [J]. J. Phys. Chem. B, 2006, 110(9): 3849-3852.
    [18] Kim J., Momma T., Osaka T. Synthesis of carbon-supported Pd-Sn catalyst by ultrasonic irradiation for oxygen reduction reaction [J]. J. Power Sources, 2009, 189(2): 909-915.
    [19] Wang X., Liao J., Liu C., et al. Facile synthesis of PtRu/C electrocatalyst with high activity and high loading for passive direct methanol fuel cell by synergetic effect of ultrasonic radiation and mechanical stirring [J]. Electrochem. Commun., 2009, 11(1): 198-201.
    [20] Angelucci C.A., D'Villa Silva M., Nart F.C. Preparation of platinum-ruthenium alloys supported on carbon by a sonochemical method [J]. Electrochim. Acta, 2007, 52(25): 7293-7299.
    [21] Xing Y. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes [J]. J. Phys. Chem. B, 2004, 108(50): 19255-19259.
    [22] Wu C., Mosher B.P., Zeng T. Rapid Synthesis of Gold and Platinum Nanoparticles Using Metal Displacement Reduction with Sonomechanical Assistance [J]. Chem. Mater., 2006, 18(13): 2925-2928.
    [23] Chen W., Zhao J., Lee J.Y., et al. Microwave heated polyol synthesis of carbon nanotubessupported Pt nanoparticles for methanol electrooxidation [J]. Mater. Chem. Phys., 2005, 91(1): 124-129.
    [24] Song S., Wang Y., Shen P.K. Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction [J]. J. Power Sources, 2007, 170(1): 46-49.
    [25] Wu J., Hu F., Hu X., et al. Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts [J]. Electrochim. Acta, 2008, 53(28): 8341-8345.
    [26] Wang S., Wang X., Jiang S.P. PtRu Nanoparticles Supported on 1-Aminopyrene-Functionalized Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity for Methanol Oxidation [J]. Langmuir, 2008, 24(18): 10505-10512.
    [27] Liu G., Zhang H. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction [J]. J. Phys. Chem. C, 2008, 112(6): 2058-2065.
    [28] Qian Y.D., Wen W., Adcock P.A., et al. PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM fuel cells [J]. J. Phys. Chem. C, 2008, 112(4): 1146-1157.
    [29]白玉霞,吴建军,邱新平等.反胶束法制备直接甲醇燃料电池Pt-Sn/C催化剂及其表征[J].化学学报, 2006, 64(6): 527-531.
    [30] Machida K. F.A., Ichkkawa M. Preparation of platinum cluster-derived electrodes from metal–carbonyl-complexes and their electrocatalytic properties for anodic-oxdation of methanol [J]. J. Electrochem. Soc., 1991, 138(13): 1958-1965.
    [31] Ordó?ez L.C., Roquero P., Sebastian P.J., et al. Carbon-supported platinum-molybdenum electro-catalysts for methanol oxidation [J]. Catal. Today, 2005, 107-108: 46-52.
    [32] Xiong L., He T. Synthesis and characterization of carbon supported PtW catalysts from carbonyl complexes for oxygen electroreduction [J]. Electrochem. Commun., 2006, 8(10): 1671-1676.
    [33] Ordó?ez L.C., Roquero P., Sebastian P.J., et al. CO oxidation on carbon-supported PtMo electrocatalysts: Effect of the platinum particle size [J]. Int. J. Hydrogen Energy, 2007, 32(15): 3147-3153.
    [34] Ye F., Li J., Wang T., et al. Electrocatalytic Properties of Platinum Catalysts Prepared by Pulse Electrodeposition Method Using SnO2 as an Assisting Reagent [J]. J. Phys. Chem. C, 2008, 112(33): 12894-12898.
    [35] Tang H., Chen J.H., Huang Z.P., et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays [J]. Carbon, 2004, 42(1): 191-197.
    [36] Thompson S.D., Jordan L.R., Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells [J]. Electrochim. Acta, 2001, 46(10-11): 1657-1663.
    [37] Inguanta R., Piazza S., Sunseri C. Synthesis of self-standing Pd nanowires via galvanic displacement deposition [J]. Electrochem. Commun., 2009, 11(7): 1385-1388.
    [38] Mani P., Srivastava R., Strasser P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2011, 196(2): 666-673.
    [39] Selvaraj V., Vinoba M., Alagar M. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes [J]. J. Colloid Interface Sci., 2008, 322(2): 537-544.
    [40] Guo Y., Zheng Y., Huang M. Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells [J]. Electrochim. Acta, 2008, 53(7): 3102-3108.
    [41] Luo J., Maye M.M., Kariuki N.N., et al. Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol [J]. Catal. Today, 2005, 99(3-4): 291-297.
    [42] Xu J.B., Zhao T.S., Liang Z.X. Synthesis of Active Platinum?Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction [J]. J. Phys. Chem. C, 2008, 112(44): 17362-17367.
    [43] Wang L., Guo S., Zhai J., et al. Facile Synthesis of Platinum Nanoelectrocatalyst with Urchinlike Morphology [J]. J. Phy. Chem. C, 2008, 112(35): 13372-13377.
    [44] Zhang J., Qiu C., Ma H., et al. Facile Fabrication and Unexpected Electrocatalytic Activity of Palladium Thin Films with Hierarchical Architectures [J]. J. Phys. Chem. C, 2008, 112(36): 13970-13975.
    [45] Saejeng Y., Tantavichet N. Preparation of Pt–Co alloy catalysts by electrodeposition for oxygen reduction in PEMFC [J]. J. Appl. Electrochem., 2009, 39(1): 123-134.
    [46] Lai F.J. Chou H.L., Sarma L.S. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction [J]. nanoscale, 2010, 2: 573-581.
    [47] Golikand A., Lohrasbi E., Maragheh M., et al. Carbon nano-tube supported Pt–Pd as methanol-resistant oxygen reduction electrocatalyts for enhancing catalytic activity in DMFCs [J]. J. Appl. Electrochem., 2009, 39(12): 2421-2431.
    [48] Li H., Sun G., Li N., et al. Design and Preparation of Highly Active Pt?Pd/C Catalyst for the Oxygen Reduction Reaction [J]. J. Phys. Chem. C, 2007, 111(15): 5605-5617.
    [49] Sode A., Li W., Yang Y., et al. Electrochemical Formation of a Pt/Zn Alloy and Its Use as a Catalyst for Oxygen Reduction Reaction in Fuel Cells [J]. J. Phys. Chem. B, 2006, 110(17): 8715-8722.
    [50] Jung H.Y., Park S., Popov B.N. Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell [J]. J. Power Sources, 2009, 191(2): 357-361.
    [51] Ding E., More K.L., He T. Preparation and characterization of carbon-supported PtTi alloy electrocatalysts [J]. J. Power Sources, 2008, 175(2): 794-799.
    [52] Liu C.W., Wei Y.C., Wang K.W. Preparation and surface characterization of Pt-Au/C cathode catalysts with ceria modification for oxygen reduction reaction [J]. Electrochem. Commun., 2009, 11(7): 1362-1364.
    [53] Yang H., Alonso-Vante N., Léger J.M., et al. Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt?Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes [J]. J. Phys. Chem. B, 2004, 108(6): 1938-1947.
    [54] Wang J., Yin G., Wang G., et al. A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion [J]. Electrochem. Commun., 2008, 10(6): 831-834.
    [55] Wang R.F., Liao S.J., Liu H.Y., et al. Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol [J]. J. Power Sources, 2007, 171(2): 471-476.
    [56] Li B., Prakash J. Oxygen reduction reaction on carbon supported Palladium-Nickel alloysin alkaline media [J]. Electrochem. Commun., 2009, 11(6): 1162-1165.
    [57] Zhang L., Lee K., Zhang J. Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd-Co alloy electrocatalysts [J]. Electrochim. Acta, 2007, 52(28): 7964-7971.
    [58] Song S., Wang Y., Tsiakaras P., et al. Direct alcohol fuel cells: A novel non-platinum and alcohol inert ORR electrocatalyst [J]. Appl. Catal. B: Environ., 2008, 78(3-4): 381-387.
    [59] Cheng L., Zhang Z., Niu W., et al. Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction [J]. J. Power Sources, 2008, 182(1): 91-94.
    [60] Shao M.H., Sasaki K., Adzic R.R. Pd?Fe Nanoparticles as Electrocatalysts for Oxygen Reduction [J]. J. Am. Chem. Soc., 2006, 128(11): 3526-3527.
    [61] Sarkar A., Murugan A.V., Manthiram A. Synthesis and Characterization of Nanostructured Pd?Mo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells [J]. J. Phys. Chem. C, 2008, 112(31): 12037-12043.
    [62] Raghuveer V., Manthiram A., Bard A.J. Pd?Co?Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells [J]. J. Phys. Chem. B, 2005, 109(48): 22909-22912.
    [63] Suárez-Alcántara K., Solorza-Feria O. Evaluation of RuxWySez Catalyst as a Cathode Electrode in a Polymer Electrolyte Membrane Fuel Cell [J]. Fuel Cells, 2010, 10(1): 84-92.
    [64] Suárez-Alcántara K., Solorza-Feria O. Kinetics and PEMFC performance of RuxMoySez nanoparticles as a cathode catalyst [J]. Electrochim. Acta, 2008, 53(15): 4981-4989.
    [65] Ezeta A., Arce E.M., Solorza O., et al. Effect of the leaching of Ru-Se-Fe and Ru-Mo-Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction [J]. J. Alloys Compd., 2009, 483(1-2): 429-431.
    [66] González-Huerta R.G., Chávez-Carvayar J.A., Solorza-Feria O. Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell [J]. J. Power Sources, 2006, 153(1): 11-17.
    [67] Whipple D.T., Jayashree R.S., Egas D., et al. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells [J]. Electrochim.Acta, 2009, 54(18): 4384-4388.
    [68] Serov A.A., Kwak C. Synthesis, characterization and catalytic activity of RuFeSe/C as a cathode catalyst for low-temperature fuel cells [J]. Catal. Commun., 2009, 10(11): 1551-1554.
    [69] Antolini E., Salgado J.R.C., Gonzalez E.R. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review [J]. Appl. Catal. B: Environ., 2006, 63(1-2): 137-149.
    [70] Frelink T., Visscher W., van Veen J.A.R. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation [J]. Electrochim. Acta, 1994, 39(11-12): 1871-1875.
    [71] Lasch K., J?rissen L., Garche J. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium [J]. J. Power Sources, 1999, 84(2): 225-230.
    [72] Gurau B., Smotkin E.S. Methanol crossover in direct methanol fuel cells: a link between power and energy density [J]. J. Power Sources, 2002, 112(2): 339-352.
    [73] ?en F., G?ka?a? G. Different Sized Platinum Nanoparticles Supported on Carbon:? An XPS Study on These Methanol Oxidation Catalysts [J]. J. Phys. Chem. C, 2007, 111(15): 5715-5720.
    [74]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展[J].电源技术, 2007, 31(2): 167-170.
    [75] Hsu N.Y., Chien C.C., Jeng K.T. Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications [J]. Appl. Catal. B: Environ., 2008, 84(1-2): 196-203.
    [76] Gu Y.L., Wu G., Hu X.F., et al. PAMAM-stabilized Pt-Ru nanoparticles for methanol electro-oxidation [J]. J. Power Sources, 2010, 195(2): 425-434.
    [77] Kim M.S., Fang B., Chaudhari N.K., et al. A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell [J]. Electrochim. Acta, 2010, 55(15): 4543-4550.
    [78] Han D.M., Guo Z.P., Zeng R., et al. Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation [J]. Int. J. Hydrogen Energy, 2009, 34(5): 2426-2434.
    [79] Kim Y.S., Nam S.H., Shim H.S., et al. Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation [J]. Electrochem. Commun., 2008, 10(7): 1016-1019.
    [80] Shen J., Hu Y., Li C., et al. Pt-Co supported on single-walled carbon nanotubes as an anode catalyst for direct methanol fuel cells [J]. Electrochim. Acta, 2008, 53(24): 7276-7280.
    [81] Liu Z., Guo B., Tay S.W., et al. Physical and electrochemical characterizations of PtPb/C catalyst prepared by pyrolysis of platinum(II) and lead(II) acetylacetonate [J]. J. Power Sources, 2008, 184(1): 16-22.
    [82] Jeon M.K., Lee K.R., Daimon H., et al. Pt45Ru45M10/C (M = Fe, Co, and Ni) catalysts for methanol electro-oxidation [J]. Catal. Today, 2008, 132(1-4): 123-126.
    [83] Ribadeneira E., Hoyos B.A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells [J]. J. Power Sources, 2008, 180(1): 238-242.
    [84] Chen M., Wang Z.B., Ding Y., et al. Investigation of the Pt-Ni-Pb/C ternary alloy catalysts for methanol electrooxidation [J]. Electrochem. Commun., 2008, 10(3): 443-446.
    [85] Park K.W., Choi J.H., Lee S.A., et al. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell [J]. J. Catal., 2004, 224(2): 236-242.
    [86] Liao S., Holmes K.A., Tsaprailis H., et al. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol [J]. J. Am. Chem. Soc., 2006, 128(11): 3504-3505.
    [87] Shao A.F., Wang Z.B., Chu Y.Y., et al. Evaluation of the Performance of Carbon Supported Pt-Ru-Ni-P as Anode Catalyst for Methanol Electrooxidation [J]. Fuel Cells, 2010, 10(3): 472-477.
    [88] Xu C., Tian Z., Shen P., et al. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media [J]. Electrochim. Acta, 2008, 53(5): 2610-2618.
    [89] Hu F., Cui G., Wei Z., et al. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes [J]. Electrochem. Commun., 2008, 10(9): 1303-1306.
    [90] Xu C., Shen P.k., Liu Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide [J]. J. Power Sources, 2007, 164(2): 527-531.
    [91] Camara G.A., de Lima R.B., Iwasita T. Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition [J]. Electrochem. Commun., 2004, 6(8): 812-815.
    [92] Chatterjee M., Chatterjee A., Ghosh S., et al. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution [J]. Electrochim. Acta, 2009, 54(28): 7299-7304.
    [93] SpinacéE.V., Neto A.O., Vasconcelos T.R.R., et al. Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process [J]. J. Power Sources, 2004, 137(1): 17-23.
    [94] Liu Z., Ling X.Y., Su X., et al. Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells [J]. J. Power Sources, 2005, 149(26): 1-7.
    [95] Zhou W.J., Song S.Q., Li W.Z., et al. Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance [J]. J. Power Sources, 2005, 140(1): 50-58.
    [96] Li H.Q., Sun G.Q., Cao L., et al. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation [J]. Electrochim. Acta, 2007, 52(24): 6622-6629.
    [97] Lamy C., Rousseau S., Belgsir E.M., et al. Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts [J]. Electrochim. Acta, 2004, 49(22-23): 3901-3908.
    [98] Chang Y.W., Liu C.W., Wei Y.C., et al. Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier [J]. Electrochem. Commun., 2009, 11(11): 2161-2164.
    [99] García-Rodríguez S., Pe?a M.A., Fierro J.L.G., et al. Controlled synthesis of carbon-supported Pt3Sn by impregnation-reduction and performance on the electrooxidation of CO and ethanol [J]. J. Power Sources, 2010, 195(17): 5564-5572.
    [100] Fatih K., Neburchilov V., Alzate V., et al. Synthesis and characterization of quaternary PtRuIrSn/C electrocatalysts for direct ethanol fuel cells [J]. J. Power Sources, 2010, 195(21): 7168-7175.
    [101] Bergamaski K., Gonzalez E.R., Nart F.C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts [J]. Electrochim. Acta, 2008, 53(13): 4396-4406.
    [102] Huang M., Wang F., Li L., et al. A novel binary Pt3Tex/C nanocatalyst for ethanol electro-oxidation [J]. J. Power Sources, 2008, 178(1): 48-52.
    [103] Shen P.K., Xu C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochem. Commun., 2006, 8(1): 184-188.
    [104] Xu C.W., Wang H., Shen P.K., et al. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells [J]. Adv. Mater., 2007, 19(23): 4256-4259.
    [105] Nguyen S.T., Law H.M., Nguyen H.T., et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media [J]. Appl. Catal. B: Environ., 2009, 91(1-2): 507-515.
    [106] Tarasevich M.R., Karichev Z.R., Bogdanovskaya V.A., et al. Kinetics of ethanol electrooxidation at RuNi catalysts [J]. Electrochem. Commun., 2005, 7(2): 141-146.
    [107] Lu G.Q., Crown A., Wieckowski A. Formic Acid Decomposition on Polycrystalline Platinum and Palladized Platinum Electrodes [J]. J. Phys. Chem. B, 1999, 103(44): 9700-9711.
    [108] Markovic N.M., Gasteiger H.A., Ross P.N., et al. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces [J]. Electrochim. Acta, 1995, 40(1): 91-98.
    [109] Parsons R., VanderNoot T. The oxidation of small organic molecules: A survey of recent fuel cell related research [J]. J. Electroanal. Chem. Interfacial Electrochem., 1988, 257(1-2): 9-45.
    [110] Chen W., Kim J., Sun S.H., et al. Electro-oxidation of formic acid catalyzed by FePt nanoparticles [J]. Phys. Chem. Chem. Phys., 2006, 8(23): 2779-2786.
    [111] Zhang L.J., Wang Z.Y., Xia D.G. Bimetallic PtPb for formic acid electro-oxidation [J]. J. Alloys Compd., 2006, 426(1-2): 268-271.
    [112] Xu J.B., Zhao T.S., Liang Z.X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells [J]. J. Power Sources, 2008, 185(2): 857-861.
    [113] Liu W., Huang J. Electro-oxidation of formic acid on carbon supported Pt-Os catalyst [J]. J. Power Sources, 2009, 189(2): 1012-1015.
    [114] Li X., Hsing I.M. Electrooxidation of formic acid on carbon supported PtxPd1-x (x = 0-1)nanocatalysts [J]. Electrochim. Acta, 2006, 51(17): 3477-3483.
    [115] Jiang J.H., Kucernak A. Electrocatalytic properties of nanoporous PtRu alloy towards the electrooxidation of formic acid [J]. J. Electroanal. Chem., 2009, 630(1-2): 10-18.
    [116] Ha S., Larsen R., Masel R.I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. J. Power Sources, 2005, 144(1): 28-34.
    [117] Zhou Y., Liu J., Ye J., et al. Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell [J]. Electrochim. Acta, 2010, 55(17): 5024-5027.
    [118] Han S., Choi J., Noh S., et al. Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts [J]. Korean J. Chem. Eng., 2009, 26(4): 1040-1046.
    [119] Wang X., Tang Y., Gao Y., et al. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell [J]. J. Power Sources, 2008, 175(2): 784-788.
    [120] Yu X., Pickup P.G. Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells [J]. J. Power Sources, 2009, 192(2): 279-284.
    [121] Liu Z., Zhang X. Carbon-supported PdSn nanoparticles as catalysts for formic acid oxidation [J]. Electrochem. Commun., 2009, 11(8): 1667-1670.
    [122] Li R., Hao H., Cai W.B., et al. Preparation of carbon supported Pd-Pb hollow nanospheres and their electrocatalytic activities for formic acid oxidation [J]. Electrochem. Commun., 2010, 12(7): 901-904.
    [123] Du C., Chen M., Wang W., et al. Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid [J]. Electrochem. Commun., 2010, 12(6): 843-846.
    [124] Zhang L., Tang Y., Bao J., et al. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell [J]. J. Power Sources, 2006, 162(1): 177-179.
    [125] Wang J.Y., Kang Y.Y., Yang H., et al. Boron-Doped Palladium Nanoparticles on Carbon Black as a Superior Catalyst for Formic Acid Electro-oxidation [J]. J. Phys. Chem. C, 2009, 113(19): 8366-8372.
    [126] Waszczuk P., Barnard T.M., Rice C., et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid [J]. Electrochem. Commun., 2002, 4(7): 599-603.
    [127] Babu P.K., Kim H.S., Chung J.H., et al. Bonding and Motional Aspects of CO Adsorbedon the Surface of Pt Nanoparticles Decorated with Pd [J]. J. Phys. Chem. B, 2004, 108(52): 20228-20232.
    [128] Thomas F.S., Masel R.I. Formic acid decomposition on palladium-coated Pt(1 1 0) [J]. Surf. Sci., 2004, 573(2): 169-175.
    [129] Wu Y.N., Liao S.J., Su Y.L., et al. Enhancement of anodic oxidation of formic acid on palladium decorated Pt/C catalyst [J]. J. Power Sources, 2010, 195(19): 6459-6462.
    [130] Arenz M., Stamenkovic V., Schmidt T.J., et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces [J]. Phys. Chem. Chem. Phys., 2003, 5(19): 4242-4251.
    [131] Liu B., Li H.Y., Die L., et al. Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation [J]. J. Power Sources, 2009, 186(1): 62-66.
    [132]刘志杰,赵斌.超细核壳铜―银双金属粉末的抗氧化性能研究[J].无机化学学报, 1997, 13(1): 30-34.
    [133] Shao M., Sasaki K., Marinkovic N.S., et al. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports [J]. Electrochem. Commun., 2007, 9(12): 2848-2853.
    [134] Yang J., Zhou W., Cheng C.H., et al. Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst [J]. ACS Appl. Mat. Interfaces, 2009, 2(1): 119-126.
    [135] Chen Y., Yang F., Dai Y., et al. Ni@Pt Core?Shell Nanoparticles: Synthesis, Structural and Electrochemical Properties [J]. J. Phys. Chem. C, 2008, 112(5): 1645-1649.
    [136] Chen C.H., Sarma L.S., Wang D.Y., et al. Platinum-Decorated Ruthenium Nanoparticles for Enhanced Methanol Electrooxidation [J]. ChemCatChem, 2010, 2(2): 159-166.
    [137] Henglein A. Preparation and Optical Aborption Spectra of AucorePtshell and PtcoreAushell Colloidal Nanoparticles in Aqueous Solution [J]. J. Phys. Chem. B, 2000, 104(10): 2201-2203.
    [138] Zhao D., Wang Y.H., Xu B.Q. Pt Flecks on Colloidal Au (Pt^Au) as Nanostructured Anode Catalysts for Electrooxidation of Formic Acid [J]. J. Phys. Chem. C, 2009, 113(49): 20903-20911.
    [139] Guo S., Wang L., Dong S., et al. A Novel Urchinlike Gold/Platinum Hybrid Nanocatalystwith Controlled Size [J]. J. Phys. Chem. C, 2008, 112(35): 13510-13515.
    [140] Ma Y., Zhang H., Zhong H., et al. High active PtAu/C catalyst with core-shell structure for oxygen reduction reaction [J]. Catal. Commun., 2010, 11(5): 434-437.
    [141] Yu Y.L., Hu Y.P., Liu X.W., et al. The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement [J]. Electrochim. Acta, 2009, 54(11): 3092-3097.
    [142] Wang Y.H., Zhao D., Xu B.Q. Electro-oxidation of formic acid on nanostructured Pt-on-Au (Pt ^ Au) electrocatalysts [J]. Chin. J. Catal., 2008, 29(3): 297-302.
    [143] Yang L., Chen J.H., Zhong X.X., et al. Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation [J]. Colloids Surf. A, 2007, 295(1-3): 21-26.
    [144] Yang L., Chen J., Zhong X., et al. Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation [J]. Colloids Surf. A ., 2007, 295(1-3): 21-26.
    [145] Zhao D., Wu G., Xu B.Q. Synthesis and characterization of Au@Pt nanoparticles [J]. Chin. Sci. Bull., 2005, 50(17): 1846-1848.
    [146] Zeng J., Yang J., Lee J.Y., et al. Preparation of Carbon-Supported Core?Shell Au?Pt Nanoparticles for Methanol Oxidation Reaction:?The Promotional Effect of the Au Core [J]. J. Phys. Chem. B, 2006, 110(48): 24606-24611.
    [147] Wu Y.N., Liao S.J., Liang Z.X., et al. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt [J]. J. Power Sources, 2009, 194(2): 805-810.
    [148] Wang W., Wang R., Ji S., et al. Pt overgrowth on carbon supported PdFe seeds in the preparation of core-shell electrocatalysts for the oxygen reduction reaction [J]. J. Power Sources, 2010, 195(11): 3498-3503.
    [149] Liu Z., Hu J.E., Wang Q., et al. PtMo Alloy and MoOx@Pt Core?Shell Nanoparticles as Highly CO-Tolerant Electrocatalysts [J]. J. Am. Chem. Soc., 2009, 131(20): 6924-6925.
    [150] Wei Z.D., Feng Y.C., Li L., et al. Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2008, 180(1): 84-91.
    [151] Wang Y., Toshima N. Preparation of Pd?Pt Bimetallic Colloids with ControllableCore/Shell Structures [J]. J. Phys. Chem. B, 1997, 101(27): 5301-5306.
    [152] Wang H., Xu C., Cheng F., et al. Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells [J]. Electrochem. Commun., 2008, 10(10): 1575-1578.
    [153] Hu J.W., Zhang Y., Li J.F., et al. Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy [J]. Chem. Phys. Lett., 2005, 408(4-6): 354-359.
    [154] Baldauf M., Kolb D.M. Formic Acid Oxidation on Ultrathin Pd Films on Au(hkl) and Pt(hkl) Electrodes [J]. J. Phys. Chem., 1996, 100(27): 11375-11381.
    [155] Zhao H.B., Li L., Yang J., et al. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation [J]. Electrochem. Commun., 2008, 10(10): 1527-1529.
    [156] Cheng F.L., Dai X.C., Wang H., et al. Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation [J]. Electrochim. Acta, 2010, 55(7): 2295-2298.
    [157] Sasaki K., Mo Y., Wang J.X., et al. Pt submonolayers on metal nanoparticles--novel electrocatalysts for H2 oxidation and O2 reduction [J]. Electrochim. Acta, 2003, 48(25-26): 3841-3849.
    [158] Wang D., Xin H.L., Yu Y., et al. Pt-Decorated PdCo@Pd/C Core?Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction [J]. J. Am. Chem. Soc., 2010, 132(50): 17664-17666.
    [159] Mazumder V., Chi M.F., More K.L., et al. Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction [J]. J. Am. Chem. Soc., 2010, 132(23): 7848-+.
    [160] Fang B., Kim J.H., Lee C., et al. Hollow Macroporous Core/Mesoporous Shell Carbon with a Tailored Structure as a Cathode Electrocatalyst Support for Proton Exchange Membrane Fuel Cells [J]. J. Phys. Chem. C, 2007, 112(2): 639-645.
    [161] Liu S.H., Yu W.Y., Chen C.H., et al. Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell [J]. Chem. Mater., 2008, 20(4): 1622-1628.
    [162] Razmi H., Habibi E., Heidari H. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles [J]. Electrochim. Acta, 2008, 53(28): 8178-8185.
    [163] Formo E., Peng Z., Lee E., et al. Direct Oxidation of Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of Anatase [J]. J. Phys. Chem. C, 2008, 112(27): 9970-9975.
    [164] Lei Z., Bai S., Xiao Y., et al. CMK-5 Mesoporous Carbon Synthesized via Chemical Vapor Deposition of Ferrocene as Catalyst Support for Methanol Oxidation [J]. J. Phys. Chem. C, 2008, 112(3): 722-731.
    [165] Joo J.B., Kim P., Kim W., et al. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation [J]. Catal. Today, 2008, 131(1-4): 219-225.
    [166] Wang S., et al. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation [J]. Nanotechnology, 2008, 19(26): 265601.
    [167]姜鲁华.直接醇类燃料电池阳极铂基电催化剂的研究[D].大连:中国科学院大连化学物理研究所, 2005.
    [168] Liu Z., Lee J.Y., Chen W., et al. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles [J]. Langmuir, 2003, 20(1): 181-187.
    [169] Lin R., Luo M.f., Xin Q., et al. The Mechanism Studies of Ethanol Oxidation on PdO Catalysts by TPSR Techniques [J]. Catal. Lett., 2004, 93(3): 139-144.
    [170] Li Q., He R., Jensen J.O., et al. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100°C [J]. Chem. Mater., 2003, 15(26): 4896-4915.
    [171] Whittingham M.S., Zawodzinski T. Introduction:? Batteries and Fuel Cells [J]. Chem. Rev., 2004, 104(10): 4243-4244.
    [172] Shen S.Y., Zhao T.S., Xu J.B., et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells [J]. J. Power Sources, 2010, 195(4): 1001-1006.
    [173] Micoud F., Maillard F., Gourgaud A., et al. Unique CO-tolerance of Pt-WOx materials [J].Electrochem. Commun., 2009, 11(3): 651-654.
    [174] Jeon M.K., McGinn P.J. Improvement of methanol electro-oxidation activity of PtRu/C and PtNiCr/C catalysts by anodic treatment [J]. J. Power Sources, 2009, 188(2): 427-432.
    [175] Jiang Q.Z., Wu X., Shen M., et al. Low-Pt Content Carbon-Supported Pt–Ni–TiO2 Nanotube Electrocatalyst for Direct Methanol Fuel Cells [J]. Catal. Lett., 2008, 124(3): 434-438.
    [176] Rolison D.R., Hagans P.L., Swider K.E., et al. Role of Hydrous Ruthenium Oxide in Pt?Ru Direct Methanol Fuel Cell Anode Electrocatalysts:?The Importance of Mixed Electron/Proton Conductivity [J]. Langmuir, 1999, 15(3): 774-779.
    [177] Kim P., Joo J., Kim W., et al. Graphitic spherical carbon as a support for a PtRu-alloy catalyst in the methanol electro-oxidation [J]. Catal. Lett., 2006, 112(3): 213-218.
    [178] Luo J., Wang L., Mott D., et al. Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions [J]. Adv. Mater., 2008, 20(22): 4342-4347.
    [179] Zhao D., Xu B.Q. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts [J]. Phys. Chem. Chem. Phys., 2006, 8(43): 5106-5114.
    [180] Ando Y., Sasaki K., Adzic R. Electrocatalysts for methanol oxidation with ultra low content of Pt and Ru [J]. Electrochem. Commun., 2009, 11(6): 1135-1138.
    [181] Alayoglu S., Nilekar A.U., Mavrikakis M., et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J]. Nat. Mater., 2008, 7(4): 333-338.
    [182] Liu J.M., Meng H., Li J.L., et al. Preparation of High Performance Pt/CNT Catalysts Stabilized by Ethylenediaminetetraacetic Acid Disodium Salt [J]. Fuel Cells, 2007, 7(5): 402-407.
    [183] Lobato J., Ca?izares P., Rodrigo M.A., et al. Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell [J]. Appl. Catal. B: Environ., 2009, 91(1-2): 269-274.
    [184] Chi C.F., Yang M.C., Weng H.S. A proper amount of carbon nanotubes for improving the performance of Pt-Ru/C catalysts for methanol electro-oxidation [J]. J. Power Sources, 2009, 193(2): 462-469.
    [185] Bock C., Paquet C., Couillard M., et al. Size-Selected Synthesis of PtRu Nano-Catalysts:Reaction and Size Control Mechanism [J]. J. Am. Chem. Soc., 2004, 126(25): 8028-8037.
    [186] Liang Y., Li J., Xu Q.C., et al. Characterization of composite carbon supported PtRu catalyst and its catalytic performance for methanol oxidation [J]. J. Alloys Compd., 2008, 465(1-2): 296-304.
    [187] Liu Z., Ling X.Y., Su X., et al. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell [J]. J. Phys. Chem. B, 2004, 108(24): 8234-8240.
    [188] Maiyalagan T. Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation [J]. J. Solid State Electrochem., 2009, 13(10): 1561-1566.
    [189] Fu X.Z., Liang Y., Chen S.P., et al. Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media [J]. Catal. Commun., 2009, 10(14): 1893-1897.
    [190] Li L., Xing Y. Pt?Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts [J]. J. Phys. Chem. C, 2007, 111(6): 2803-2808.
    [191] Selvarani G., Selvaganesh S.V., Krishnamurthy S., et al. A Methanol-Tolerant Carbon-Supported Pt?Au Alloy Cathode Catalyst for Direct Methanol Fuel Cells and Its Evaluation by DFT [J]. J. Phys. Chem. C, 2009, 113(17): 7461-7468.
    [192] Paoletti C., Cemmi A., Giorgi L., et al. Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation [J]. J. Power Sources, 2008, 183(1): 84-91.
    [193] Matsumoto T., Komatsu T., Arai K., et al. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes [J]. Chem. Commun., 2004, (7): 840-841.
    [194] Liu Z., Jackson G.S., Eichhorn B.W. PtSn Intermetallic, Core–Shell, and Alloy Nanoparticles as CO-Tolerant Electrocatalysts for H2 Oxidation [J]. Angew. Chem. Int. Ed., 2010, 49(18): 3173-3176.
    [195] Ghosh T., Vukmirovic M.B., DiSalvo F.J., et al. Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties [J]. J. Am. Chem. Soc., 2009, 132(3): 906-907.
    [196] Srnova-Sloufova I., Lednicky F., Gemperle A., et al. Core?Shell (Ag)Au Bimetallic Nanoparticles: Analysis of Transmission Electron Microscopy Images [J]. Langmuir, 2000, 16(25): 9928-9935.
    [197] Cha H.C., Chen C.Y., Shiu J.Y. Investigation on the durability of direct methanol fuel cells [J]. J. Power Sources, 2009, 192(2): 451-456.
    [198] Sasaki K., Adzic R.R. Monolayer-level Ru and NbO2 Supported platinum electrocatalysts for methanol oxidation [J]. J. Electrochem. Soc., 2008, 155(2): B180-B186.
    [199] Wang R.F., Li H., Feng H.Q., et al. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation [J]. J. Power Sources, 2010, 195(4): 1099-1102.
    [200] Zeng J., Lee J.Y., Zhou W. A more active Pt/carbon DMFC catalyst by simple reversal of the mixing sequence in preparation [J]. J. Power Sources, 2006, 159(1): 509-513.
    [201] Chetty R., Kundu S., Xia W., et al. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation [J]. Electrochim. Acta, 2009, 54(17): 4208-4215.
    [202] AricòA.S., Antonucci P.L., Modica E., et al. Effect of Pt-Ru alloy composition on high-temperature methanol electro-oxidation [J]. Electrochim. Acta, 2002, 47(22-23): 3723-3732.
    [203] Zhou Y.k., He B.l., Zhou W.j., et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites [J]. Electrochim. Acta, 2004, 49(2): 257-262.
    [204] Li X.W., Liu J.Y., He W., et al. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction [J]. J. Colloid Interface Sci., 2010, 344(1): 132-136.
    [205] Zhu L.D., Zhao T.S., Xu J.B., et al. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media [J]. J. Power Sources, 2009, 187(1): 80-84.
    [206] Rice C., Ha S., Masel R.I., et al. Catalysts for direct formic acid fuel cells [J]. J. Power Sources, 2003, 115(2): 229-235.
    [207] Wang X., Hu J.M., Hsing I.M. Electrochemical investigation of formic acidelectro-oxidation and its crossover through a Nafion membrane [J]. J. Electroanal. Chem., 2004, 562(1): 73-80.
    [208] Willsau J., Heitbaum J. Analysis of adsorbed intermediates and determination of surface potential shifts by dems [J]. Electrochim. Acta, 1986, 31(8): 943-948.
    [209] Macia M.D., Herrero E., Feliu J.M. Formic acid oxidation on Bi-Pt(111) electrode in perchloric acid media. A kinetic study [J]. J. Electroanal. Chem., 2003, 554(25-34.
    [210] Park S., Xie Y., Weaver M.J. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles: Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation [J]. Langmuir, 2002, 18(15): 5792-5798.
    [211] Xu J.B., Zhao T.S., Liang Z.X. Synthesis of Active Platinum-Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction [J]. J. Phys. Chem. C, 2008, 112(44): 17362-17367.
    [212] Persson K., Ersson A., Jansson K., et al. Influence of co-metals on bimetallic palladium catalysts for methane combustion [J]. J. Catal., 2005, 231(1): 139-150.
    [213] Zhou W., Lee J.Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation [J]. Electrochem. Commun., 2007, 9(7): 1725-1729.
    [214] Wang S., Kristian N., Jiang S., et al. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation [J]. Electrochem. Commun., 2008, 10(7): 961-964.
    [215] Xu L., Liao S., Yang L., et al. Investigation of a Novel Catalyst Coated Membrane Method to Prepare Low-Platinum-Loading Membrane Electrode Assemblies for PEMFCs [J]. Fuel Cells, 2009, 9(2): 101-105.
    [216] Wang R., Li H., Feng H., et al. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation [J]. J. Power Sources, 2010, 195(4): 1099-1102.
    [217] Gao H., Liao S., Zeng J., et al. Platinum decorated Ru/C: Effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction [J]. J. Power Sources, 2011, 196(1): 54-61.
    [218] Li W., Haldar P. Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell [J]. Electrochem. Commun., 2009, 11(6): 1195-1198.
    [219] Zhang Z., Ge J., Ma L., et al. Highly Active Carbon-supported PdSn Catalysts for FormicAcid Electrooxidation [J]. Fuel Cells, 2009, 9(2): 114-120.
    [220] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J]. Catal. Today, 1997, 38(4): 445-457.
    [221] Vigier F., Coutanceau C., Hahn F., et al. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies [J]. J. Electroanal. Chem., 2004, 563(1): 81-89.
    [222] Lai S.C.S., Koper M.T.M. Ethanol electro-oxidation on platinum in alkaline media [J]. Phys. Chem. Chem. Phys., 2009, 11(44): 10446-10456.
    [223] Gosselink J.W. Pathways to a more sustainable production of energy: sustainable hydrogen-a research objective for Shell [J]. Int. J. Hydrogen Energy, 2002, 27(11-12): 1125-1129.
    [224] Colmati F., Antolini E., Gonzalez E.R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts [J]. J. Power Sources, 2006, 157(1): 98-103.
    [225] Gomes J.F., Busson B., Tadjeddine A. SFG Study of the Ethanol in an Acidic Medium?Pt(110) Interface:?Effects of the Alcohol Concentration [J]. J. Phys. Chem. B, 2006, 110(11): 5508-5514.
    [226] Shin J., Tornquist W.J., Korzeniewski C., et al. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes [J]. Surf. Sci., 1996, 364(2): 122-130.
    [227] Zhou W.J., Li W.Z., Song S.Q., et al. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells [J]. J. Power Sources, 2004, 131(1-2): 217-223.
    [228] Huang M.H., Li L.R., Guo Y.L. Enhanced electrochemical activity for ethanol oxidation on the carbon-supported Pt3Te nanocatalysts by addition of Ru [J]. J. Solid State Electrochem., 2009, 13(9): 1403-1409.
    [229] Bai Z., Yang L., Li L., et al. A Facile Preparation of Hollow Palladium Nanosphere Catalysts for Direct Formic Acid Fuel Cell [J]. J. Phys. Chem. C, 2009, 113(24): 10568-10573.
    [230] Lopes T., Antolini E., Gonzalez E.R. Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells [J]. Int. J. Hydrogen Energy,2008, 33(20): 5563-5570.
    [231] Moore J.T., Corn J.D., Chu D., et al. Synthesis and Characterization of a Pt3Ru1/Vulcan Carbon Powder Nanocomposite and Reactivity as a Methanol Electrooxidation Catalyst [J]. Chem. Mater., 2003, 15(17): 3320-3325.
    [232] Pattabiraman R. Electrochemical investigations on carbon supported palladium catalysts [J]. Appl. Catal. A, 1997, 153(1-2): 9-20.
    [233] Lamy C., Lima A., LeRhun V., et al. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. J. Power Sources, 2002, 105(2): 283-296.
    [234] Zhou W., Zhou Z., Song S., et al. Pt based anode catalysts for direct ethanol fuel cells [J]. Appl. Catal. B: Environ., 2003, 46(2): 273-285.
    [235] Li H., Sun G., Gao Y., et al. Effect of Reaction Atmosphere on the Electrocatalytic Activities of Pt/C and PtRu/C Obtained in a Polyol Process [J]. J. Phys. Chem. C, 2007, 111(42): 15192-15200.
    [236] Song S., Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs) [J]. Appl. Catal. B: Environ., 2006, 63(3-4): 187-193.
    [237] Lederhos C.R., L’Argentière P.C., Coloma-Pascual F., et al. A study about the effect of the temperature of hydrogen treatment on the properties of Ru/Al2O3 and Ru/C and their catalytic behavior during 1-heptyne semi-hydrogenation [J]. Catal. Lett., 2006, 110(1): 23-28.
    [238] Kowalczyk Z., Sentek J., Jodzis S., et al. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon [J]. Catal. Lett., 1997, 45(1): 65-72.
    [239] Arico A.S., Monforte G., Modica E., et al. Investigation of unsupported Pt-Ru catalysts for high temperature methanol electro-oxidation [J]. Electrochem. Commun., 2000, 2(7): 466-470.
    [240] Liang Y., Zhang H., Zhong H., et al. Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells [J]. J. Catal., 2006, 238(2): 468-476.
    [241] Li X., Chen W.X., Zhao J., et al. Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J]. Carbon, 2005, 43(10): 2168-2174.
    [242] Eccarius S., Garcia B.L., Hebling C., et al. Experimental validation of a methanol crossover model in DMFC applications [J]. J. Power Sources, 2008, 179(2): 723-733.
    [243] Ramya K., Dhathathreyan K.S. Methanol crossover studies on heat-treated Nafion? membranes [J]. J. Membr. Sci., 2008, 311(1-2): 121-127.
    [244] Jha N., Leela Mohana Reddy A., Shaijumon M.M., et al. Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell [J]. Int. J. Hydrogen Energy, 2008, 33(1): 427-433.
    [245] Gochi-Ponce Y., Alonso-Nu?ez G., Alonso-Vante N. Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction [J]. Electrochem. Commun., 2006, 8(9): 1487-1491.
    [246] Morales-Acosta D., Arriaga L.G., Alvarez-Contreras L., et al. Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes [J]. Electrochem. Commun., 2009, 11(7): 1414-1417.
    [247] Park Y.C., Peck D.H., Kim S.K., et al. Operation characteristics of portable direct methanol fuel cell stack at sub-zero temperatures using hydrocarbon membrane and high concentration methanol [J]. Electrochim. Acta, 2010, 55(15): 4512-4518.
    [248] Rolison D.R., Hagans P.L., Swider K.E., et al. Role of Hydrous Ruthenium Oxide in Pt?Ru Direct Methanol Fuel Cell Anode Electrocatalysts: The Importance of Mixed Electron/Proton Conductivity [J]. Langmuir, 1999, 15(3): 774-779.
    [249] Su F., Zeng J., Yu Y., et al. Template synthesis of microporous carbon for direct methanol fuel cell application [J]. Carbon, 2005, 43(11): 2366-2373.
    [250] Zhong H., Zhang H., Liang Y., et al. A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells [J]. J. Power Sources, 2007, 164(2): 572-577.
    [251] Convert P., Coutanceau C., Crou?gneau P., et al. Electrodes modified by electrodeposition of CoTAA complexes as selective oxygen cathodes in a direct methanol fuel cell [J]. J. Appl. Electrochem., 2001, 31(9): 945-952.
    [252] He W., Liu J., Qiao Y., et al. Simple preparation of Pd-Pt nanoalloy catalysts formethanol-tolerant oxygen reduction [J]. J. Power Sources, 2010, 195(4): 1046-1050.
    [253] Zhang L., Lee K., Bezerra C.W.B., et al. Fe loading of a carbon-supported Fe-N electrocatalyst and its effect on the oxygen reduction reaction [J]. Electrochim. Acta, 2009, 54(26): 6631-6636.
    [254] Liu G.C.K., Dahn J.R. Fe-N-C oxygen reduction catalysts supported on vertically aligned carbon nanotubes [J]. Appl. Catal. A, 2008, 347(1): 43-49.
    [255] Zhang Z., Wang X., Cui Z., et al. Pd nanoparticles supported on WO3/C hybrid material as catalyst for oxygen reduction reaction [J]. J. Power Sources, 2008, 185(2): 941-945.
    [256] Wang W., Zheng D., Du C., et al. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction [J]. J. Power Sources, 2007, 167(2): 243-249.
    [257] Zhao J., Sarkar A., Manthiram A. Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells [J]. Electrochim. Acta, 2010, 55(5): 1756-1765.
    [258] Luna A.M.C., Bonesi A., Triaca W.E., et al. Investigation of a Pt-Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells [J]. J. Nanopart. Res., 2010, 12(1): 357-365.
    [259] Zhang J., Vukmirovic M.B., Sasaki K., et al. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics [J]. J. Am. Chem. Soc., 2005, 127(36): 12480-12481.
    [260] Mani P., Srivastava R., Strasser P. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes [J]. J. Phys. Chem. C, 2008, 112(7): 2770-2778.
    [261] Serov A.A., Min M., Chai G., et al. Preparation, characterization, and high performance of RuSe/C for direct methanol fuel cells [J]. J. Power Sources, 2008, 175(1): 175-182.
    [262] Cheng H., Yuan W., Scott K., et al. The catalytic activity and methanol tolerance of transition metal modified-ruthenium-selenium catalysts [J]. Appl. Catal. B: Environ., 2007, 75(3-4): 221-228.
    [263] Jeon M.K., Liu J.H., Lee K.R., et al. Combinatorial Search for Quaternary Methanol Tolerant Oxygen Electro-Reduction Catalyst [J]. Fuel Cells, 2010, 10(1): 93-98.
    [264] Alonso-Vante N., Tributsch H., Solorza-Feria O. Kinetics studies of oxygen reduction inacid medium on novel semiconducting transition metal chalcogenides [J]. Electrochim. Acta, 1995, 40(5): 567-576.
    [265] Suárez-Alcántara K., Rodríguez-Castellanos A., Dante R., et al. RuxCrySez electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell [J]. J. Power Sources, 2006, 157(1): 114-120.
    [266] Tributsch H., Bron M., Hilgendorff M., et al. Methanol-resistant cathodic oxygen reduction catalysts for methanol fuel cells [J]. J. Appl. Electrochem., 2001, 31(7): 739-748.
    [267] Joo J., Kim Y., Kim W., et al. Methanol-tolerant PdPt/C alloy catalyst for oxygen electro-reduction reaction [J]. Korean J. Chem. Eng., 2008, 25(4): 770-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700