Cr、V在Ti-Al系合金中合金化效应及扩散理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-Al系合金具有低密度,良好的高温强度、抗蠕变和抗氧化能力,其密度只是Ni基高温合金的一半,因而常用作Ni基高温合金低温段的候选材料,是航天、航空飞行器理想的新型高温结构材料。但由于其硬度低,耐磨性较差,在用作滑动部件(如活塞锁,连杆轴及导杆等)时,容易与对磨材料粘着产生磨损,限制了其应用范围。很多学者在实验上对如何改善Ti-Al系合金的硬度和耐磨性都进行了研究,并取得了一定的成功,如Cr的合金化作用对硬度、耐磨性等的改善起到了主要作用等。但其微观强化机理和微观扩散原理目前尚不清楚,因此如何从原子层次上对其进行模拟并加以解释显的尤为重要。
     本文采用第一性原理对含Cr、V的Ti-Al系合金进行了研究。首先,基于第一性原理研究了合金元素Cr、V对Ti-Al系合金电子结构的影响,计算了含Cr、V的Ti-Al系合金的总能量、形成能、给合能和力学性能,从理论上解释了在Ti-Al系合金中固溶合金元素Cr后其性能得到改善的原因,并通过电荷密度和态密度的分布探讨Cr、v对Ti-Al系合金的微观作用机理。研究结果表明:合金元素Cr、V在Ti4Al4和Ti4Al12中固溶时都占据了Ti原子的位置,Cr固溶于Ti4Al4和Ti4Al12后的结构稳定性随着Cr含量的增加而增加;V固溶于Ti4Al4和Ti4Al12后的结构稳定性随V含量的增加而减小,而实际实验中固溶的V是微量的,因此微量V的溶入对复合化合物的稳定性影响不明显;微量的合金元素Cr、V就能较大幅度地提高Ti-Al系合金的力学性能(包括杨氏模量E、切变模量G和体模量B),而材料的强度与切变模量G和杨氏模量E密切相关,G和E的值越大,材料的强度越高,耐磨性能越好。
     其次,本文还对搭建的Ti-Al系合金(100)面进行晶体结构优化,系统地研究Cr、V在Ti-Al系合金(100)面中的扩散情况,并从电子结构角度分析了Cr、V在Ti-Al系合金中的强化机理,从理论上解释了表面Cr、V合金化后Ti-Al系合金性能得到改善的原因。当单个Cr或V原子向Ti5Al5和Ti5Al15中扩散的时候,其优先占据第二层Ti原子的位置,且占据第二层Ti原子时的结构稳定性最好;当两个Cr或V原子向Ti5Al5和Ti5Al15中扩散的时候,它们优先同时占据第二层和第三层Ti原子的位置,且同时占据第二层和第三层Ti原子时的结构稳定性最好。并通过分析得出:在Ti-Al系合金中添加合金元素Cr后,使Cr3d轨道上的电子、Al3p轨道上的电子和Ti3d轨道上的电子相互杂化,结合能力变强;添加合金元素V后,使V3d轨道上的电子、Ti3d轨道上的电子和Al3p轨道上的电子相互杂化,结合能力增强。
Ti-Al alloys is deal new-type heat structural material in aerospace and aviaTion aircraft, being used as Ni base superalloy low-temperature segment of the candidate materials, because of its properTies of low density department, good contravariance and oxidaTion resistance etc. But it is easy to sTick with grinding materials produced wear and limits its applicaTion scope when it is acted as sliding parts(such as the piston lock, the connecTing rod shaft and guide bar). The reason is its properTies of low hardness and poor wear resistance. Much research was studied on how to improve the Ti-Al alloy of department of hardness and abrasion resistance in the experiment, and has been achieved some successes. For example, Cr's alloying effect plays a main role to improve Ti-Al alloy of department of hardness and abrasion resistance. But its microscopic strengthening mechanisms and microcosmic diffusion principle is unclear. So how to simulate and expound this phenomenon from its atomic level is parTicularly important.
     The research of Ti-Al alloys with Cr、V addiTions was studied using the first-principle. Firstly, the electronic structures of Ti-Al alloys with Cr、V addiTions were studied using the first-principle. The total energy, formaTion energy, cohesive energy, the charge density and Density of statess were calculated, and explained the reason that the mechanical property was improved after infiltraTion chromium in Ti-Al alloys in terms of theory. The microscopic mechanism of Ti-Al alloys with Cr and V was explored through the charge density and Density of states distribuTion. The results of the study indicate that alloying element Cr and V occupied Ti atomic posiTion when being doped in Ti4Al4 and Ti4Al12. As the alloying element Cr content increasing, the structure stability increased after Cr was doped in Ti4Al4 and Ti4Al12. But it decreased after V was doped. The doping of V is trace in actual experiment, so the influence of the structure stability of composite compounds is not obvious. The department of mechanical properTies of Ti-Al alloys that included Shear modulus G, Young's modulus E and Body modulus B were greatly improved by the trace of alloying element Cr and V. The material of strength is closely related to Young's modulus E and Shear modulus G, the bigger of the value of G and E, the strength of the material and the better of the wear-resisTing performance.
     Secondly, the crystal structure opTimizaTion of the building of the Ti-Al alloy (100) plane was also studied. The department of the diffusion of the Ti-Al alloy (100) plane with Cr and V was systermaTically studied. The strengthening mechanisms of Ti-Al alloy with Cr and V were analyzed from the electronic structure. The reason of the properTies improving of Ti-Al alloy with Cr and V was explained in theory. The alloying element Cr or V priority occupied second Ti atomic posiTion when it doped in Ti5Al5 and Ti5Al15, and their structures' stability was best. The two alloying elements Cr or V preferred simultaneously occupied the second and third floor Ti atomics'posiTion when their doped in Ti5Al5 and Ti5Al15, and their structures'stability was best. The reason through analyzing is that the addiTion of Cr in the alloys enhanced reciprocal hybridizaTion of Cr(3d)、Al(3p) and Ti(3d), while V in the alloys enhanced reciprocal hybridizaTion of V(3d、Ti(3d) and Al(3p), and the alloys'binding capacity increased.
引文
[1]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社,2001:56-60.
    [2]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社,1999:70-89.
    [3]闰蕴琪,张振棋,周廉,γ—TiAl金属间化合物研究现状与未来展望[J],材料导报,2003,14(2):31.
    [4]钱九红,祁学忠.钛基合金的研究与应用[J],稀有金属,2002,26(6):47-48.
    [5]Hongzhi Fu, Dehua Li, Feng Peng, et al. Structural and elasTic properTies of γ-TiAl under high pressure from electronic structure calculaTions[J]. Journal of Alloys and Compounds,2009,473:255-261.
    [6]王薇.γ-TiAl基合金的高温循环氧化性行为及离子注入防护研究[D],北京:北京航空航天大学,1999.
    [7]王华明,李晓轩,于利根.γ-TiAl金属间化合物激光表面制备Al2O3/TiAl耐磨复合材料涂层[J],应用激光,1999,19(5):247-252.
    [8]陈瑶,王华明.TiAl合金激光表面合金层中TiC凝固生长形态及机制[J],中国有色金属学报,2002,12(5):863-868.
    [9]贺志勇,王振霞,王小峰等.TiAl金属间化合物等离子固溶Cr表面改性研究[J],稀有金属材料与工程,2008,37:849-852.
    [10]C.Coelho, A.S.Ramos. Structure and properTies of sputtered TiAl-M (M=Ag, Cr) thin films[J], Surface and CoaTings Technology,1999,120-121:297-302.
    [11]贲海峰,郭朝丽,刘小萍.TiAl基合金的离子表面Nb-C复合渗研究[J],新技术新工艺,2007,6:79-81.
    [12]王利捷,陈宏,郝建民.钛铝基合金离子碳氮共渗及其耐磨性的研究[J],材料保护,2005,38(8):49-53.
    [13]曾宪波,彭平.α2-Ti-25Al-xNb合金力学性质的第一性原理计算[J],金属学报,2009,49(9):1049-1056.
    [14]郑冬冬,张平则,吴红艳.添加钨对γ-TiAl价电子结构和性能的影响[J],稀有金属,2010,34(1):89-102.
    [15]Yong-li Liu, Hong Li, Lin Zhang, et al. First-principles study of Be content on the structural and mechanical properTies of TiAl alloy[J], Journal of Alloys and Compounds,2009,475:401-407.
    []]李强.掺杂ZnO电子结构及光学性质的第一性原理研究[D].保定:河北大学,2010.
    [2]Perdew J. P. Density-funcTional approximaTion for the correlaTion energy of the inhomogeneous electron gas[J]. Phys. Rev. B,1986,33(12):8822-8824.
    [3]Philips J. C. Energy-Band InterpolaTion Seheme Based on a PseudopotenTial[J]. Phys. Rev.,1958,112(3):685-695.
    [4]Cohen M. L, Heine V. Solid State Physics[M]. NewYork:Academic Press,1970:24.
    [5]Yin M. T, Cohen M. L. Theory of abiniTio pseudopotenTial caleulaTions[J]. Phys. Rev. B, 1982,25(12):7403-7412.
    [6]Lassonen K, Car R, Lee C, et al. ImplementaTion of ultrasoft pseudopotenTials in ab iniTio molecular dynamies[J]. Phys. Rev. B,1991,43(8):6796-6799.
    [7]张彩丽,李晋敏,韩培德等.Cr对Ni3Al合金化效应的赝势平面波方法研究[J],稀有金属材料与工程,2008,37(10):1705-1709.
    [8]O. Beckstein, J. E. Klepeis, G. L. W. Hart, et al.Phys. ReV. B [J],2001,63:134112
    [9]曾宪波,彭平.a2—Ti—25A1—xNb合金弹性性能的第一性原理计算[J],金属学报,2009,45(9):1049-1056.
    [1]Zhou Chungen, Yang Ying, Gong Shengkai, et al. Effect of Ti-A1-Cr coaTings on the high temperature oxidaTion behavior of TiAl alloys [J]. Materials Science and Engineering A, 2001,307(1):182.
    [2]徐福松,耿浩然,王守仁.镧对TiAl3金属间化合物显微组织及力学性能的影响[J],稀有金属材料与工程,2009,38(2):361.
    [3]P.Wodniecki, A.Kulinska, B.Wodniecka, et al. Experimental and ab iniTio study of the electric field gradients at Ta and Cd impuriTies in TiAl3[J]. Journal of Alloys and Compounds,2009,479:56.
    [4]贺志勇,王振霞,王小峰等.TiAl金属间化合物等离子固溶Cr表面改性研究[J1,稀有金属材料与工程,2008,37:849-852.
    [5]Van loo, Rieck. Acta Metall.1973,21 (61).
    [6]Agden, et al. Trans. Am Inst.Min Eng.1951,191 (1150).
    [7]黄尊行,王秀丽,周立新等.TiAl中掺杂原子取代位置的量子化学研究[J].结构化学,2002,21(2):218-221.
    [8]Yang J L, Xiao C Y, Xin S D. Phys.Rev.B[J].1992,4613709.
    [9]Y Song, R. Yang, D.Li, et al. A first principles study of the influence of alloying elements on TiAl:site preference[J], Intermetallics 2000,8:563-568.
    [10]W.B. Pearson. A handbook of latTice spacing and structure of metals and alloys[J], Pergamon, Oxford,1987, pp.1-2.
    [11]Mehl M J, Osburn J E, Papaconstantopplous D A, et al. Alloy phase stability and design, materials research society symposia [J]. Materials Research Society, Pittsburgh,PA,1991,186:277—282.
    [12]Amador C, Hoyt JJ, Chakoumakos BC, et al. Phys ReV Lett [J],1995,65:4995
    [13]K. Tanaka, K. Okamoto, H. Inui, et al. Philos. Mag. A,1996,73:1475.
    [14]M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, et al. Alloy phase stability and design[J]. Mater. Res. Soc. Symp. Pro,1991,186:p.277.
    [15]Y. He, R.B. Schwarz, A. Migliori, et al. Res.1995,10:1187.
    [16]K. Tanaka, T. Ichitsubo, H. Inui, et al. Philos. Mag. Lett.1996,73:71.
    [1]Nazmy M, Staubli M. Alloy modificaTion of TiAl for improved mechanical properTies[J]. Scri. Metall. Mater,1994,31:829.
    [2]Kong Fantao(孔凡涛). Journal of the Chinese Rare Earth Society(中国稀土学报) [J], 2002,1:72-74.
    [3]贺志勇,王振霞,王小峰等.TiAl金属间化合物等离子固溶Cr表面改性研究[J].稀有金属材料与工程,2008,37:849-852.
    [4]C.Coelho, A.S.Ramos. Structure and properTies of sputtered TiA1-M (M=Ag, Cr) thin films[J]. Surface and CoaTings Technology,1999,120-121:297-302.
    [5]S. J. Clark, M. D. Segall, C. J. Pickard, et al. First principles methods using CASTEP[J]. Zeitschrift fuer Krystallographie,2005,220(5-6):567.
    [6]Gregorio H, Cocoletzi. Ma, T. Romero de la Cruz, et al. First principles total energy calculaTions of the surface atomic structure of yttrium disilicide on Si(111)[J], Surface Science,2008,602:644-649.
    [7]M. Wen, S. Fukuyama, K. Yokogawa, et al. First-principles study of oxidized Nb(100) surface structures [J]. Surface Science,2009,603:216-220.
    [8]朱建新,李永华,孟繁玲等.NiTi合金的第一性原理研究[J],物理学报,2008,57(11):7204-7209.
    [9]W.B. Pearson. A Handbook of LatTice Spacing and Structure of Metals and Alloys(M), Pergamon, Oxford,1987, pp.1-2.
    [10]Mehl M J, Osburn J E, Papaconstantopplous D A, et al.Alloy phase stability and design materials research society symposia[J]. Materials Research Society, Pittsburgh,PA,1991, 186; 277—282.
    [11]Amador C, Hoyt JJ, Chakoumakos BC, et al. Phys ReV Lett [J],1995,65:4995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700