奥氏体不锈钢层错能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层错能是材料塑性变形中的重要本征参数,对材料的脆性-韧性转变有着重要影响。常温下材料最常见的两种塑性变形方式是位错滑移和孪生,位错的滑移和孪生导致了滑移带和孪晶的产生。虽然滑移带和孪晶引起晶格的畸变量较小,但是层错能的高低,尤其是本征层错能(γisf)和非稳定层错能(γus),却影响着位错的形核、运动、束集、交滑移和分解。降低材料的层错能有利于进一步激发位错的滑移和孪生,从而改善材料的力学性能。
     N和Ni是奥氏体不锈钢中主要的合金化元素,对不锈钢的组织、性能有着重要影响。尽管实验上已有不锈钢γisf的值,但是测量过程对实验设备要求很高,并且只能获得γisf,且实验测得的γisf偏差较大。而计算材料科学的发展刚好弥补了实验上的不足,目前已经成功应用于Al、Fe、Cu、Ni等材料的层错能的研究。
     本论文采用基于密度泛函理论的第一性原理,从原子层次上研究了Ni、N对奥氏体不锈钢层错能的影响。主要研究内容如下:
     (1)研究了Ni、N对奥氏体不锈钢稳定性的影响。结果表明Ni、N固溶后都能够提高奥氏体不锈钢的稳定性,Ni、N的占位对于奥氏体不锈钢的稳定性影响不明显。
     (2)从电子层次上探索了Ni、N对于奥氏体不锈钢的影响:Ni固溶于奥氏体不锈钢后改善了Fe和Cr原子周围的电荷分布,加强了Cr原子和Fe原子之间的成键能力,N固溶于304不锈钢中能与Fe、Cr、Ni元素产生强烈的共价作用。
     (3)研究了Ni、N对奥氏体不锈钢γus、γisf的影响:Ni含量的增加,提高了位错滑移所需克服的势垒,增加了位错滑移的难度,而N的固溶却能够降低奥氏体不锈钢中位错滑移所需克服的势垒,有利于位错滑移。随着Ni含量的增加γus/γisf降低,有利于Frank全位错的形成,而γus/γisf却随着N含量的增加而增加,有利于Stockley部分位错和孪晶的形成。
     (4)综合分析对比了Ni、N对于奥氏体不锈钢的影响:Ni含量的增加使γus/γisf降低,但减缓的幅度很小,而微量的N含量即可使304奥氏体不锈钢的γus/γisf增加,且提高的幅度远高于镍。
Stacking fault energies (SFE) is a crucial intrinsic parameter of materials plastic deformation, and has significient effect on brittle-to-ductile transition (BDT). At normal temperature, two of the most common and important plastic deformation modes of materials are dislocation slipping and deformation twinning, which will result in glide band (GB) and deformation twin (DT), respectively. GB and DT will not result in disorder of crystal obviously, however, the SFE, especially intrinsic stacking fault energies (γisf) and unstable stacking fault energies (γus), caused by crystal slipping, influence nucleation, movement, bundle, across glide, dissociation of dislocation. Reducing stacking fault energy of materials is conducive to further stimulate dislocation slipping and twinning, thus improving mechanical properties.
     Nitrogen and nickel belongs to key alloying elements in austenitic stainless steel, and has significient influence on texture and properties of austenitic stainless steel. Throughγisf had been got from experimental method, the criterion for experimental equipment is high, and cannot be measured the whole SFE curve except forγisf. In addition, the difference of results between various experimental methods is large. The development of calculational science remedy imperfection of experiment. At present, computational science has been successfully used to calculate SFE such as aluminium, iron, copper, nickel etc.
     Therefore, the first-principle, which based on density functional theory (DFT), is used to study the effect of nitrogen and nickel on SFE from atom and electron level. The main contents are as follows.
     (1) Effect of nickel and nitrogen on the stability of austenitic stainless steel was studied. The results show that nickel and nitrogen can stabilize austenitic stainless steel, and atomic position influence on stability is not obvious.
     (2) The effect of nitrogen and nickel on austenitic stainless steel was studied from electron level. Nickel doped in austenitic stainless steel can optimize density of electron around iron and chromium and imprive binding capacity of iron and chromium. Nitrogen doped in 304 austenitic stainless steel create covalence with iron, chromium and nickel.
     (3) The influence of nickel and nitrogen on yus,γisf of austenitic stainless steel was studied. With nickel content increase, the potential barrier which must be overcome for dislocation slipping increase. This will result whole dislocation dissociate partial dislocation difficulty. By contrast, nitrogen will decrease potential barrier, and result whole dislocation dissociate partial dislocation easy. For nickel content increase,γus/γisf will reduce which is beneficial for Frank whole dislocation formation. However, nitrogen will increaseγus/γisf and is beneficial for Shockley partial dislocation and twinning forming.
     (4) The comprehensive analyses of the effect of nickel and nitrogen on austenitic stainless steel indicate that nickel can reduceγus/γisf in small range. By contrast, a minute of nitrogen can increaseγus/γisf evidently compared with nickel.
引文
[1]陆世英,张廷凯,康喜范等.不锈钢[M].北京:原子能出版社,1998:62-63.
    [2]高娟.经济节镍型不锈钢局部腐蚀行为研究[D].上海:上海交通大学,2010.
    [3]李洪飞.254SM0奥氏体不锈钢高温析出相及热模拟断口断裂机制分析[D].太原:太原理工大学,2010.
    [4]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院金属研究所,2008.
    [5]Tobler R. L., Meyn D. Cleavage-like fracture along slip planes in Fe-18Cr-3Ni-13Mn-0.37 N austenitic stainless steel at liquid helium temperature[J]. Metall. Trans A.,1988,19(6): 1626-1631.
    [6]Tomota Y, Endo S. Cleavage-like Fracture at Low Temperatures in an 18Mn-18Cr-0.5N Austenitic Steel[J]. ISIJ Intnl.,1990,30(8):656-662.
    [7]Mullner P., Solenthaler C., Uggowitzer P. et al. Brittle Fracture in Austenitic Steel[J]. Acta Metall. Mater.,1994,42(7):2211-2217.
    [8]Simmons J.W., Covino B. S., et. al. Effect of Nitride (Cr2N) Precipitation on the Mecha-nical, Corrosion, and Wear Properties of Austenitic Stainless Steel[J]. ISIJ Intnl.,1996, 36(3):840-845.
    [9]HeonY. H., Hyuk S. K. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels[J]. Electr. Acta,2007,52(5):2175-2180.
    [10]冯端.金属物理学(第一卷,结构与缺陷)[M].北京:科学出版社,1998:331-334.
    [11]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2006:368-369.
    [12]Kibey S., Liu J. B., Johnson D. D. et al. Predicting twinning stress in fcc metals:Linking twin-energy pathways to twin nucleation[J]. Acta Mater,2007,55(4):6843-6851.
    [13]胡赓祥,蔡殉,戎咏华.材料科学基础(第2版)[M].上海:上海交通大学出版社,2006:111-112.
    [14]宋维锡.金属学(第2版)[M].北京:冶金工业出版社,1989:48-49.
    [15]Hirth J. P., Lothe J. Theory of Dislocations (2nd edition)[M]. New York:Wiley-Interscience,1982:78-81.
    [16]Kibey S., Liu J. B., Curtis M. J. et al. Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels[J]. Acta Mater.,2006,54(6): 2991-3001.
    [17]Lu G. K. Generalized-stacking-fault energy surface and dislocation properties of alum-Inum[J]. Phys. Rev. B,2000,62(5):3099-3108.
    [18]Hartford J., Sydow B. V., Wahnstrom G. et al. Peierls barriers and stresses for edge disloc-ations in Pd and Al calculated from first principles [J]. Phys. Rev. B,1998,58(5): 2487-2496.
    [19]Foiles S. M., Baskes M. I., Daw M. S. Embedded atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt and their alloys[J]. Phys. Rev. B,1986,33(12):7983-7991.
    [20]Hoagland R. G., Daw M. S., Foiles S. M. et al. An atomic model of crack tip deformation in aluminum using an embedded atom potential [J]. J. Mater. Res.,1990,5(2):313-324.
    [21]Daw M. S., Baskes M. I. Two-Photon Transitions in Positronium[J]. Phys. Rev. Lett., 1983,50(17):1285-1260.
    [22]Daw M. S., Baskes M. I. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals[J]. Phys. Rev. B,1984,29(12):6443-6453.
    [23]Manninen M. Interatomic interactions in solids:An effective-medium approach[J]. Phys. Rev. B,1986,34(12):8486-8459.
    [24]Jacobsen K. W.. Norskov J. K., Puska M. J. Interatomic interactions in the effective-medium theory[J]. Phys. Rev. B,1987,35(14):7423-7442.
    [25]Johnson R. A. Analytic nearest-neighbor model for fee metals[J]. Phys. Rev. B,1988,37 (8):3924-3931.
    [26]张建民,吴喜军,黄育红等.fcc金属层错能的EAM法计算[J].物理学报,2006,55(01):393-396.
    [27]Jonathan A. Z., Gao H. J., Farid F. A. Generalized stacking fault energies for embedded atom FCC metals[J]. Modelling Simul. Mater. Sci. Eng.,2000,8(5):103-115.
    [28]Kontsevoi O. Y., Gornostyrev Y. N., Mryasov O. N. et al. Electron localization on dislocations in metals:Real-space first-principles calculations [J]. Phys. Rev. B,2001,64 (13):134103-134114.
    [29]Yan J. A.,Wang C. Y., Wang S. Y Generalized-stacking-fault energy and dislocation properties in bec Fe:A first-principles study[J]. Phys. Rev. B,2004,70(17):174105-174109.
    [30]Vitos L., Korzhavyi P. A., Johansson B. Evidence of Large Magnetostructural Effects in Austenitic Stainless Steels[J]. Phys. Rev. Lett.,2006,96(11):117210-117213.
    [31]Vitos L., Nilsson J. O., Johansson B. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory[J], Acta Mater.,2006,54(14):3821-3826.
    [32]Rhodes C. G., Thompson A. W. The composition dependence of stacking fault energy in austenitic stainless steels[J]. Metall. Mater. Trans. A,1977,8(12):1901-1906.
    [33]Lee Y. K., Choi C. S. Driving force for γ→ε martensitic transformation and stacking fault energy of γin Fe-Mn binary system[J]. Metall. Mater. Trans. A,2000,31(2):355-360.
    [34]Dulieu D., Nutting J. Metallurgical Developments in High-alloy Steels[C]. London, Iron and Steel Institute,1964:140.
    [35]Ohkubo N., Miyakusu K., Uematsu Y. et al. Effect of Alloying Elements on the Mechanical Properties of The Stable Austenitic Stainless Steel[J].ISIJ Int.,1994,34(9): 764-772.
    [36]Pickering F. B. Proceedings of the Stainless Steels 84[C]. London, The Institute of Metals,1985:12.
    [37]Breedis J. F. Institute of Metals Division Martensitic Transformations in Iron-Chrom ium-Nickel Alloys[J]. Trans. AIME,1964,230(5):1583-1596.
    [38]Murayama M., Hono K., Hirukawa H. et al. The combined effect of molybdenum and nitrogen on the fatigued microstructure of 316 type austenitic stainless steel[J]. Scripta Mater.,1999,41(5):467-473.
    [39]Scharmm R. E., Reed R. P. Stacking fault energies of seven commercial austenitic stainless steels[J]. Metall. Mater. Trans. A,1975,6(7):1345-1351.
    [40]Stoltz R. E., Vandersande J. B. The effect of nitrogen on stacking fault energy of Fe-Ni-Cr-Mn steels[J]. Metall. Mater. Trans. A,1980,11(6):1033-1037.
    [41]Flawley R., Quader M. A., Dodd R. A. Compositional Effects on the Deformation Modes, Annealing Twin Frequencies, and Stacking Fault Energies of Austenitic Stainless Steels[J]. Trans. AIME,1969,242(7):771-115.
    [42]Dulieu D., Nutting J. Metallurgical Developments in High-alloy Steels[C]. London, Iron and Steel Institute,1964:140.
    [43]Jiang B. H., Qi X., Zhou W. M. et al., The effect of nitrogen on shape memory effect in Fe-Mn-Si alloys[J]. Scripta Mater.,1996,34(9):1437-1441.
    [44]Gaviriljuk V., Petrov Y., Shanina B. Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels[J]. Scripta Mater.,2006,55(6):537-540.
    [45]Taillard R., Foct J. High Nitrogen Steels, HNS 88[C]. London, The Institute of Metals, 1989:387.
    [46]Gavriljuk V. G, Berns H., Escher C. et al. Grain boundary strengthening in austenitic nitrogen steels[J]. Mater. Sci. Eng. A,1999,271(1-2):14-21.
    [47]Yakubtsov I. A., Ariapour A., Perovic D. D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys[J]. Acta Mater.,1999,47(4):1271-1279.
    [48]Fujita M., Kaneko Y, Nohara A. et al. Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel[J].ISIJ Int.,1994,34(8):697-703.
    [49]张福州.广义层错能第一性原理计算及定域分析[D].重庆:重庆大学,2008.
    [50]吴宝善.用X射线测定α黄铜的层错能[J].兰州大学学报(自然科学版),1979,6(3): 33-37.
    [51]李晓风.用弱束技术研究Co对γ→γ'双相合金层错能的影响[J].电子显微学报,1984,14(6):76-79.
    [52]戴起勋,王安东,程晓农.低温奥氏体钢的层错能[J].钢铁研究学报.2002,14(4):34-37.
    [53]王新瑞,陈宝琴.稀土对304型不锈钢层错能影响的测量[J].兵器材料科学与工程,1985,10:13-17.
    [54]Samules J., Roberts S. G. The brittle-ductile transition in silicon-I. Experiments[J]. Proc. R. Soc. Lond. A,1989,421:1-23.
    [55]Rice J. R. Dislocation nucleation from a crack tip:an analysis based on the Peierls concept[J]. J. Mech. Phys. Solids,1992,40(2):239-271.
    [56]Zhou S. J.,Carlsson A. E. Crack blunting effects on dislocation emission from cracks[J]. Phys. Rev. Lett,1994,72(6):852-855.
    [57]Zhu Y. T., Narayan J., Hirth J. P. et al. Formation of single and multiple deformation twins in nanocrystalline fcc metals[J]. Acta Mater.,2009,57(13):3763-3770.
    [58]Swygenhoven H. V., Derlet P. M., Froseth A. G. Stacking fault energies and slip in nanoc-rystalline metals[J]. Nat. Mater.,2004,3:399-403.
    [1]李强.掺杂ZnO电子结构及光学性质的第一性原理研究[D].保定:河北大学,2010.
    [2]Ceperley D. M., Alder B. J. Ground States of the Eleetron Gas by a Stoehastic Method[J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [3]Jones R. O., Gunnarsson O. The density funetional formalism. its applications and prospects[J]. Rev. Mod. Phys.,1989,61(3):689-746.
    [4]Perdew J. P., Chevary J. A., Vosko S. H. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1993,46(11):6671-6687.
    [5]Perdew J. P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys. Rev. B,1996,54(23):16533-16539.
    [6]Filatov M., Thiel M. Anew gradient-corrected exchange-correlation density functional [J]. Mol. Phys.,1997,91(5):847-859.
    [7]Laming G. J., Termath V., Handy N. C. A general purpose exchange-correlation energy functional [J]. J. Chem. Phys.,1993,99(11):8765-8773.
    [8]Becke A. D. Density functional calculations of molecular-bond energies[J]. J. Chem. Phys., 1986,84(8):4524-4529.
    [9]Perdew J. P., Wang Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Phys. Rev. B,1986,33(12):8800-8802.
    [10]Lacks D. J., Gordon R. G. Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients[J]. Phys. Rev. A,1993, 47(6):4681-4690.
    [11]Perdew J. P., Burke K., Ernzerh M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [12]Perdew J. P. Density-functional approximation for the correlation energy of the inhomo-geneous electron gas[J]. Phys. Rev. B,1986,33(12):8822-8824.
    [13]Lee C. T., Yang W. T., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37(2):785-789.
    [14]王秦镜.金属/graphene接触性质的第一性原理研究[D].上海:复旦大学,2009.
    [15]Philips J. C. Energy-Band Interpolation Seheme Based on a Pseudopotential[J]. Phys. Rev.,1958,112(3):685-695.
    [16]Cohen M. L., Heine V. Solid State Physics[M]. NewYork:Academic Press,1970:24.
    [17]Yin M. T., Cohen M. L. Theory of ab initio pseudopotential caleulations [J]. Phys. Rev. B, 1982,25(12):7403-7412.
    [18]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41(11):7892-7895.
    [19]Payne M. C., M. P. Teter, D. C. Allan, et al. Iterative minimization techniques for ab initio total-energy caleulations-moleeular dynamics and conjugate gradients[J].Rev. Mod. Phys., 1992,64(4):1045-1097.
    [20]Louie S. G., Chelikows J. R., Cohen M. L. Ionicity and the theory of Sehottky barriers[J]. Phys. Rev. B,1977,15(4):2154-2162.
    [21]Hamann D. R., Sehluter M., Chiang C. Norm-Conserving pseudopotentials[J]. Phys. Rev. Lett.,1979:43(20):1494-1497.
    [22]Baehelet G. B., Hamaun D. R., Sehluter M. Pseudopotentials that work:From H to Pu[J]. Phys. Rev. B,1982,26(8):4199-4228.
    [23]Hamann D. R. Generalized norm-conserving pseudopoteniials[J]. Phys. Rev. B,1989, 40(5):2980-2987.
    [24]Kleinman L., Bylande D. M. Efficacious Form for Model Pseudopotentials[J]. Phys. Rev. Lett.,1982,48(20):1425-1428.
    [25]Troullier N., J. Martins. Efficient pseudopotentials for plane-wave calculations[J]. Phys. Rev. B,1991,43(3):1993-2006.
    [26]Lassonen K., Car R., Lee C. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamies[J]. Phys. Rev. B,1991,43(8):6796-6799.
    [27]Meyer R., Lewis L. Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials[J]. J. Phys. Rev. B,2002,66(5):052106-052109.
    [28]Swygenhoven H. V., Derlet P. M., Froseth A. G. Stacking fault energies and slip in nanocrystalline metals[J]. Nature,2004,3:399-403.
    [29]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev.,1965,140(4A):A1133-A1138.
    [1]Lo K. H., Shek C. H., Lai J. K. L. Recent developments in stainless steels[J]. Mater. Sci. Eng.R,2009,65(4-6):39-104.
    [2]Fanourgakis G. S., Pontikis V., Zerah G. Phase stability and intrinsic stacking faults in aluminum under pressure [J]. Phys. Rev. B,2003,67(9):094102-094109.
    [3]Gang L., Kioussis N., Bulatov V. V. et al. Generalized-stacking-fault energy surface and dislocation properties of aluminum [J]. Phys. Rev. B,2000,62(5):3099-3108.
    [4]Rester M., Motz C., Pippan R. Stacking fault energy and indentation size effect:Do they interact?[J]. Scripta Mater.,2008,58(3):187-190.
    [5]Zhao Y. H., Zhu Y. T., Liao X. Z. et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Appl. Phys. Lett.,2006,89(12): 121906-121908.
    [6]Karaman I., Sehitoglu H., Chumlyakov Y. I. et al. The deformation of low stacking fault energy austenitic steels[J]. JOM,2002,54(7):31-37.
    [7]Karaman I., Sehitoglu H., Maier H. et al. Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen[J]. Acta Mater.,2001,49(19):3919-3933.
    [8]Wu X. Z., Wang R., Wang S. F. et al. Ab initio calculations of generalized stacking fault energy surfaces and surface energies for FCC metals[J]. Appl. Surf. Sci.,2010,256(21): 6345-6349.
    [9]Wang Y, Chen L. Q., Liu Z. K. et al. First-principles calculations of twin boundary and stacking-fault energies in magnesium[J]. Scripta Mater.,2010,62(9):646-649.
    [10]Wu X. Z., Wang R., Wang S. F. et al. Generalized-stacking-fault energy surfaces for B2-MgRE (RE=Y, Dy, Pr, Tb) intermetallic compounds:ab initio calculations[J]. Physica B,2011,406(4):967-971.
    [11]Wu X. Z., Wang R., Wang S. F. et al. Ab initio calculations of generalized stacking fault energy surfaces and surface energies for FCC metals[J]. Appl. Surf. Sci.,2010,256(21): 6345-6349.
    [12]Vitos L., Korzhavyi P. A., Johansson B. Evidence of large magneto structural effects in austenitic stainless steels[J]. Phys. Rev. Lett.,2006,96(11):117210-117213.
    [13]Vitos L., Johansson B. Large magnetoelastic effects in paramagnetic stainless steels from first principles[J]. Phys. Rev. B,2009,79(2):024415-024419.
    [14]Vitek V. Intrinsic stacking faults in body-centered cubic crystals[J]. Philos. Mag.,1968, 18(154):773-786.
    [15]Acet M., Zahres H., Wassermann E. F. et al. High-temperature moment-volume instability and anti-Invar of y-Fe[J]. Phys. Rev. B,1994,49(9):6012-6017.
    [16]Wang Y. F., Zhang W. B., Wang Z. Z. et al. First-principles study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds[J]. Comput. Mater. Sci., 2007,41(4):78-82.
    [17]Zhang C. L., Han P. D., Yan X. et al. First-principles study of typical precipitates in creep resistant magnesium alloys[J]. J. Phys. D:Appl. Phys.,2009,42(12):125403-125407.
    [18]Hirth J. P., Lothe J. Theory of Dislocations[M]. New York:Wiley-Interscience Press, 1982:315-316.
    [19]Van Swygenhoven H., Derlet P. M., Frφseth A. G. Stacking fault energies and slip in nanocrystalline metals[J]. Nat. Mater.,2004,3:399-403.
    [20]Vitos L., Nilsson J. O., Johansson B. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory[J]. Acta Mater.,2006,54(14):3821-3826.
    [21]Yakubtsov I. A., Ariapour A., Perovic D. D. Effects of nitrogen on stacking fault energy of FCC iron-based alloys[J]. Acta. Mater.,1999,47(4):1271-1279.
    [1]余存烨.节镍不锈钢的开发与展望[J].化工设备与管道,2008,45(2):4-8.
    [2]袁志钟,戴起勋,程晓农等.氮在奥氏体不锈钢中的作用[J].江苏大学学报(自然科学版),2002,23(3):72-75.
    [3]陆世英,张廷凯,康喜范等.不锈钢[M].北京:原子能出版社,1998:62-63.
    [4]Kubota S., Xia Y, Tomota Y. Work-hardening Behavior and Evolution of Dislocation mic-rostructures in High-nitrogen Bearing Austenitic steels[J]. ISIJ Intnl.,1998,38(5):474-481.
    [5]任伊宾.新型医用无镍不锈钢的研究[D].沈阳:中国科学院金属研究所,2004.
    [6]Zhao Y. H., Zhu Y. T.. Liao X. Z. et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Appl. Phys. Lett.,2006,89(12): 121906-121908.
    [7]Miillner P., Solenthaler C., Uggowitzer P. et al. On the effect of nitrogen on the disloca-tion structure of austenitic stainless steel[J]. Mater. Sci. Eng. A,1993,164(1-2):164-169.
    [8]Gavriljuk V. G., Shanina B. D., Berns H. O. The Correlation Between Electron Structure And Short Range Atomic Order In Iron-Based Alloys[J]. Acta mater.,2000,48(15): 3879-3893.
    [9]Jiang B. H., Qi X., Zhou W. M. et al., The effect of nitrogen on shape memory effect in Fe-Mn-Si alloys[J]. Scripta Mater.,1996,34(9):1437-1441.
    [10]Gaviriljuk V., Petrov Y., Shanina B. Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels[J]. Scripta Mater.,2006,55(6):537-540.
    [11]Gavriljuk V. G, Berns H., Escher C. et al. Grain boundary strengthening in austenitic nitrogen steels[J]. Mater. Sci. Eng. A,1999,271(1-2):14-21.
    [12]Yakubtsov I. A., Ariapour A., Perovic D. D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys[J]. Acta Mater.,1999,47(4):1271-1279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700