元素W对镍基合金组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用Nv法和Md法对不同W含量镍基合金进行成分设计及TCP相的析出倾向预测;通过合金制备及长期时效处理,研究了元素W含量对合金TCP相析出倾向的影响;通过对不同合金进行蠕变性能测试和组织形貌观察,研究了W含量对镍基单晶合金组织稳定性及蠕变性能的影响。
     结果表明,在Md、Nv最大值分别为0.9836和2.210的系列合金成分中,无TCP相析出。随元素W含量提高,经1080℃时效300h,合金中γ'相仍保持立方体形态,具有较好的组织稳定性;与7.5%W单晶合金相比,9%W合金具有较好的蠕变抗力,在实验的温度和应力范围内,该合金在稳态期间的蠕变激活能为Q=465kJ/mol。在高温蠕变初期,合金中γ'相已转变成N-型筏状结构,在稳态蠕变期间合金的变形机制是位错攀移越过筏状Y'相,其中,筏状γ'相与应力轴垂直可有效阻碍位错运动是使合金具有较好蠕变抗力的主要原因。在蠕变断裂样品的不同区域,筏状γ'相具有不同的形貌,在远离断口区域,筏状γ'相与应力轴方向垂直,近断口区域筏状γ'相尺寸及扭曲程度增加的原因是γ'相承受的应力及变形程度增大所致。中温高应力蠕变期间,合金中γ'相不形成筏状组织,其变形机制是<110>超位错剪切立方γ'相,其中,切入γ'相内的<110>超位错可发生分解,形成(1/3)<112>不全位错+层错的位错组态,该位错组态可抑制位错的交滑移,提高合金的蠕变抗力;而合金在高温蠕变后期的变形机制是<110>超位错剪切筏状γ'相。提高固溶温度可降低合金在枝晶臂/间的成分偏析,改善均匀化程度及蠕变寿命。随W含量提高,可有效提高合金的高温蠕变抗力;而合金中存在组织缺陷,可明显降低合金的蠕变寿命。
By means of Md and Nv methods, nickel-base superalloys with different tungsten content have been designed to predict the precipitated tendency of TCP phase. The influence of tungsten content on the precipitated tendency of TCP phase is investigagted by means of the preparing alloys and long term aging treatment. And the effects of the element W content on the microstructure stability and creep properties of the single crystal nickel-base superalloys are investigated by means of the measuring creep properties and microstructure observation.
     Results show that no TCP phase is precipitated when the maximum of Md and Nv values were calculated to be 0.9836 and 2.210, respectively, in the composition designed of the alloys. After aged for 300 h at 1080℃, theγ' phase in the alloy still remains the cubical configuration with the increase of the element W content, therefore, the alloy displays a better microstructure stability. Compared to the alloy with 7.5% W,9%W alloy has a better creep resistance, in the ranges of the applied stress and temperature, the activation energy of the alloy during steady state creep is calculated to be Q= 465kJ/mol. In the initiation period of high temperature creep, theγ' phase in the alloy is transformed into the N-type rafted structure, and the deformation mechanism of the alloy during steady state creep is that dislocation climbs over the raft-likeγ' phase, thereinto, the raftedγ' phase which is perpendicular to the applied stress axis may effectively hinder the dislocation movement, which is thought to be the main reason of the alloy possessing the better creep resistance. The various morphology of the raftedγ' phase is displayed in the different regions of the creep samples, the raftedγ' phase which is vertical to the applied stress axis appears in the region far from the fracture, and the twisted raftedγ' phase appears in the region near the fracture, which is attributed to the servere plastic deformation occurred in the region. During middle temperature creep, no rafted of theγ' phase is detected in the alloy, and the deformation mechanism in the alloy is that the cubicalγ' phase is sheared by the<110> super-dislocation which may be decomposed into the the configuration of (1/3)<112> partials+stacking faults, which may hinder the cross-slipping of the dislocations to improve the creep resistance of the alloy. And the deformation mechanism of the alloy in the later stage of creep at high temperature is that<110> super dislocation shears into the raftedγ' phase. The uniformity composition and creep lifetimes of the alloy may be improved by enhancing the solution temperature to decrease the segregation in the dendrite /interdendric regions. The creep resistance of the alloy at high temperature may be enhanced with the increase of the element W content. And the microstructure defection may obviously deteriorate the creep properties of the alloy.
引文
[1]郑运荣,张德堂.高温合金与钢的彩色金相研究.北京:国防业出版社,1999.
    [2]周瑞发,韩雅芳,李树索.高温结构材料.北京:国防工业出版社,2006.
    [3]梁兴华,周克崧,刘敏,等NiCoCrAlYTa涂层/镍基单晶高温合金界面再结晶.稀有金属材料与工程,2009,38(3):545-549.
    [4]赵明汉,邵冲,李俊涛,等.高温合金精密铸造工艺技术的发展.新技术新工艺,2005,(10):37-38.
    [5]Mclean M. Directionally solidified materials for high temperature service, Warrendale:TMS, London,1983:9-14.
    [6]陈荣章.航空铸造涡轮叶片合金和工艺发展的回顾与展望.航空制造技术,2002,(2):19-23.
    [7]师昌绪.中国高温合金四十年.北京:中国科学技术出版社,1996,33(1):1-8.
    [8]汤鑫,刘发信,韩梅.高温合金细晶铸造技术研究.材料工程,1997(9):24-25.
    [9]王桂.镍基单晶高温合金热处理工艺的确定及组织形貌的研究.宁夏机械2009, (1):22-23.
    [10]Giamei A F, Anton D L. Effect of Rhenium additions on microstructure of a Ni-base superalloy. Metal mater trans,1985,16A:1997-2005
    [11]陈荣章.单晶高温合金发展现状.材料工程,1995,(9):3-12.
    [12]何明辉,李海燕,聂景旭.DD6单晶合金的高温蠕变损伤研究.燃气涡轮试验与研究,2002(1):24-28.
    [13]Francis I, Versnyder M, Shank E. The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering,1970, 6(4):213-247
    [14]张卫国,刘林,赵新宝,等.定向凝固高温合金的研究进展.铸造,2009,58(1):1-6.
    [15]Gell M, Dupta D N, Sheffler K D. High temperature super conductors with Tc over 30K. Journal of Metals,1987,(7):11-15
    [16]田素贵.单晶镍基合金组织演化与蠕变行为及微观特征的研究:(博十学位论文).沈阳:东北大学,1998.
    [17]陈金国.军用航空发动机的发展趋势.航空科学技术,1994,(5): 9-12.
    [18]陈荣章.北京航空材料研究院铸造高温合金发展40年.材料工程,1998,(10):3-7.
    [19]Cetel A D, Duhl D N. Second-generation nickel-base single crystal superalloy, Proc.6th Int. Symp on Superalloys, eds.1988:2-12.
    [20]Blavette D, Caron P and Khan T. An atom-probe study of some fine-scale microstructural features in Ni-based single crystal superalloys, Superalloys 1988, Reichman S, et al. eds. The Metallurgical Society,1988:3-12
    [21]Erickson G L. The development and application of CMSX-10, Superalloys 1996, Kissinger R D, Deye D J, Cetel A D, et al. eds. TMS 1996:35-47.
    [22]Erickson G L. The development of the CMSX -11B and CMSX -11C alloys for industrial gas turbine application, Superalloys 1996, Kissinger R D, Deye D J, Cetel A D, et al. eds. TMS 1996: 45-53.
    [23]Walston W S and Rose E W. ReneN6. Third generation single crystal superalloy, Superalloys 1996, Kissinger R D, Deye D J, Cetel A D, et al. eds. TMS 1996:27-39.
    [24]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,20(1):55-60.
    [25]孔祥鑫.第四代战斗机及其动力装置.航空科学技术,1994,(5):21-27.
    [26]石琳.涡轮叶片用单晶高温合金的发展.航空工程与维修,2000,(6):35-36.
    [27]孙跃军,康俊国,宫声凯.Al、Ti、Ta对镍基单晶高温合金组织和性能的影响.特种铸造及有色合金,2008,28(9):660-662.
    [28]吴凯,刘国权,胡本芙,等.合金元素对新型镍基粉末高温合金的热力学平衡相析出行为的影响.北京科技大学学报,2009,31(6):721-725.
    [29]Walston S, Cetel A, MacKay R. Joint development of a fourth generation single crystal superalloy. Superalloys 2004,15-24
    [30]Burgel R, Grossmann J. Development of a new alloy for directional solidification of large industrial gas turbine blades. Superalloys 2004,25-34
    [31]Erickson G L, Proc of second pacific rim international conference on advanced materials and processing (PRCIM-2). Kyongju, Korea,1995,6:18-24
    [32]Walston W R, et al. Nickel-base superalloy and article with high temperature strength and improved stability, USP 5270123,1993,12.
    [33]Didier A, Cyril V, Yves D, et al. Dominique. MC-NG:A 4th generation single-crystal superalloy for future aero-nautical turbine blades and vanes, Superalloys 2000, Pol-lock T M, Kissinger R D, Bowman R R, et al. eds. TMS,2000:829-835.
    [34]黄乾尧,李汉康,等编著.高温合金.北京:冶金工业出版社,2000.
    [35]Lall C, Chin S, Pope D. The orientation and temperature dependence of the yield stress of Ni3 (Al, Nb) single crystals. Metal Trans,1979, A(10):1323-1331.
    [36]刘丽荣,金涛,孙晓峰等.Al、Ti和Ta含量对镍基单晶高温合金时效组织的影响.稀有金属材料与工程,2008,37(7):1253-1256.
    [37]Campbell C E, Boettinger W J, Kattner U R, Development of a diffusion mobility database for Ni-based superalloys. Acta Mater.2002,50,775-792.
    [38]Pessah M, Caron P. Khan T. Effect of μ phase on the mechanical properties of a nickel-base single crystal superalloy Superalloys 1992, Minerals, Metals and. Materials Society, Warrendale, PA, USA,1992, pp.567-576.
    [39]师昌绪.材料大辞典.北京:化学工业出版社,1994.
    [40]Wlodek S T, Kelly M, Alden D A, The structure of RENE'88DT. Superalloys 1996, Minerals,Metals and Materials Society, Warrendale, PA, USA,1996,129-136.
    [41]Bor H Y, Chao C G, Ma C Y. The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy. Scripta Mater,1998,38(2):329-335.
    [42]J. R. Stephens, R. L. Dreshfield, M. V. Nathal et al. Refractory alloying elements in superalloys. Metal Park: ASM,1984:39-44
    [43]Komenda J, Henderson P J. Growth of pores during the creep of a single crystal Ni-base superalloy. Scripta Mater,1997,37(11):1821-1826.
    [44]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [45]胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000.
    [46]胡壮麒,刘丽荣,金涛等.单晶镍基高温合金的发展.航空发动机,2005,31(3):1-7.
    [47]孔祥鑫.航空发动机叶片的腐蚀与防护.航空科学技术,1994,(5):24-26.
    [48]唐定中,李嘉荣,吴仲棠,等.低成本的代单晶合金DD398.材料工程,1999,(3):8-10.
    [49]蔡玉林,郑运荣.高温合金的金相研究.北京:国防工业出版社,1986,225-226.
    [50]Jumoni S U, Miyahara A, Kato M. Structure/property interaction in a long range order strengthened superalloy. Phil. Mag.,1994,70(2):435-442.
    [51]傅恒志.预测高温合金中拓扑相(TCP)的新方法.机械工程材料,1980,(6):19-24.
    [52]Moringa M, Yukawa N, Ezaki H. Solid solubilities in transition-metal-based f.c.c alloys. Phil.Mag. A.1985, (51):223-246.
    [53]Zhang J S, Hu Z Q, Murata Y, Morinaga M, Yukawa N. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electron alloy design theory. A. 1993,24A,2451-2462.
    [54]Gabrisch H, Mukherji D, Wahi R P. Deformation induced dislocation networks at the γ/γ' interfaces in the single crystal superalloy. Philosophical Magazine,1996, A74 (1):229-241.
    [55]Gabb T P, Draper S L, Hull D R et al. The role of interfacial dislocation networks in high temperature creep of superalloys. Material Science and Engineering,1989, Al 18 (3):59-69.
    [56]Kobayash Toshiharu, Harada Hiroshi, Zhan Jianxin. Influence of heat treatment on microstructure and mechanical properties of a 1st generation single-crystal superalloy. Journal of the Japan Institute of Metals,2006,7:47-50.
    [57]Rusing J, Wanderka N. Rhenium distribution in the matrix and near the particle matrix interface in a model Ni-Al-Ta-Re superalloy. Scripta. Mater.,2002,46(3):235-242.
    [58]Yun, H.M. Effect of composition and microstructure on the creep and stress-rupture behavior of tungsten alloy wires at 1366-1500 K. Materials Science & Engineering, A165,1993:65-74.
    [59]夏丹,田素贵,李唐,等.固溶温度对镍基单晶合金蠕变性能的影响.铸造,2008,57(6):549-552.
    [60]管秀荣,郑志,刘恩泽,翟玉春.一种新型高温合金的固溶处理条件与高温时效的研究.热加工工艺,2009,38(12):145-148.
    [61]李楠,金涛,刘金来等.热处理对一种镍基单晶高温合金高温蠕变性能的影响.稀有金属材料与工程,2008,37(5):789-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700