碳化硅等含硅纳米材料的溶剂热合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC半导体材料是第三代宽带隙(WBP)半导体材料。由于具有优异的性质如:宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等,使其在高温、高频、大功率、光电子及抗辐射等方面具有巨大的应用前景。纳米尺度SiC具有单晶、薄膜和纤维材料不同的性质,如光学、场致电子发射、硬度、拉伸强度等,因此SiC纳米材料的制备,纳米结构的测量,光、电学性能的测试,纳米器件的组装,SiC增韧陶瓷等成为当今SiC纳米材料领域的重要研究方向。最近,多种一维SiC纳米材料,包括纳米线、纳米管、纳米棒、纳米带、实心纳米球、纳米笼以及一些复杂的纳米结构已经被成功的合成出来。目前国内外已报道的制备一维3C-SiC纳米材料的方法很多,主要是用高温(>1000℃)的方法制备,如碳纳米管模板法、化学气相沉积和电弧放电法等。而且从文献分析发现,3C-SiC一维纳米线易于生长,制备和性质研究主要集中在此,其它一维、二维和三维结构的SiC制备和性质研究较少,更少有报道其它相如2H-,4H-SiC等纳米材料的合成。课题组利用溶剂热的方法在450-700℃制备3C-SiC纳米线、纳米带、纳米空心球等,并在180℃制备出2H-SiC纳米片。
     本论文旨在利用溶剂热的方法低温或温和的温度下制备SiC并实现形貌、物相控制生长,合成SiC复合纳米材料,并在此基础上拓展溶剂热的应用范围到三元含硅材料的制备上。低温制备SiC纳米材料及形貌的控制生长。选择Na-K合金为催化剂,CHBr_3、SiCl_4作为溶剂和反应物,控制反应条件,在高压釜中较温和的温度下进行还原和结晶过程,制备3C-SiC纳米空心球结构;单独使用Na(K)为催化剂,调节反应温度实现3C-SiC纳米线的生长。探索化学反应的机理并研究反应物、溶剂和催化剂,以及反应温度及时间等条件对产物尺寸、形貌和性能的影响及可能的机理。制备SiC-Al_2O_3纳米复合粉体。通过一种金属Al协助的溶剂热反应路线,成功的制备了SiC/Al_2O_3纳米复相粉体。使得SiC和Al_2O_3均为纳米级且均相混合,为后期的复相陶瓷制备及性能研究提供了基础。α相SiC的制备。在金属Al协助的溶剂热反应的基础上,利用放热更高的金属Mg与硅藻土、TEOS或硅油反应,分别制备了4H-SiC六棱柱和2H-SiC三角片。研究不同的合成条件下可能出现的其它α相SiC的制备及其形成机理,实现常规高压釜有机溶剂热条件下难以制备的晶型。针对溶剂热制备主要集中在二元化合物,尝试拓展溶剂热的制备范围。成功制备了MgSiN_2刺球状MgSiN_2微米颗粒。研究不同的合成条件对产物的影响及其形成机理,并讨论了不同氮源对结果的影响。具体归纳如下:
     (1)低温制备SiC纳米材料及其控制生长。选择Na-K合金为催化剂,CHBr_3、SiCl_4作为溶剂和反应物,放入12ml容量的不锈钢釜中封好后,在烘箱中加热到130摄氏度进行还原和结晶过程,反应15小时后自然冷却到室温,制得的粉末经HClO_4于180℃回流热处理最终得到3C-SiC的纳米空心球结构。电子显微镜(TEM)观察到空心球直径为80-120nm平均壳层厚度15 nm,空心球约占产物的80%。HRTEM显示空心球具有粗糙的表面,并由更小的颗粒团聚而成。单独使用Na(或K)为催化剂,调节反应温度可实现3C-SiC纳米线的生长。当反应的催化剂金属由Na-K合金换成单一的Na或K并将反应温度升高到240℃,其它反应和处理条件不变,可得到大量的随机分散的SiC纳米线。其直径为30至50nm,长度约几十微米,其生长方向为[111]。为了充分的理解空心纳米球的生长过程,我们通过系统的改变生长时间而其它的条件不进行变化。反应开始7个小时后,当反应釜冷却并打开后,我们发现几乎所有的CHBr_3都转变为黑色的物质同时大多数SiCl_4和Na-K合金仍然没有反应掉。剩余的SiCl_4可以通过加热挥发掉,Na-K合金可以用乙醇洗涤。TEM照片显示产物由直径50-150 nm的颗粒团聚而成并有一些衬度更暗的几个纳米的颗粒分散在其中,而且颗粒被一层几个纳米厚的壳所包覆。ED显示除了碳的多晶环外一些晶体的衍射点也存在其中,与TEM的结果相一致,XRD衍射花样证实产物主要是无定形的碳峰。反应10小时后冷却得到产物的XRD衍射花样证实主要有立方SiC和少量的Si组成。对单个球放大20万倍后其TEM照片显示球在边缘处具有不同的衬度,有残余的核存在。因此,有理由相信SiC的空心球保存了碳纳米颗粒的尺寸和形状并显示出一种原位的形状记忆效应。纳米线的制备与制备空心球的反应类似,加热7个小时迅速冷却反应釜发现几乎所有的CHBr_3都转变为黑色的物质,同时大多数SiCl_4和Na(或K)仍然没有全部反应掉。TEM测试是样品在乙醇中超声10分钟后分散到铜网上,显示产物主要由无定形的物质团聚而成。反应9小时的照片中可以看出产物中有大量直径约50-80hm的颗粒存在,并有部分纳米线生成。而反应12小时的照片表明此时产物中纳米线的长度达到几个微米。我们发现,本试验中反应9小时的纳米颗粒在最终15小时产物中很少存在,且其直径与纳米线的直径非常接近。因此,我们猜测9小时前后是其VLS生长的开始。在金属的催化作用下大量的SiC颗粒开始生成,并随着时间的增长SiC在催化剂作用下沿其[111]方向逐渐生长成纳米线。从而使得纳米颗粒逐渐减少而纳米线增多并生长成为微米级长度。温度也是得到不同形貌SiC的关键,只有在合适的温度下空心球和纳米线才能得到选择性合成。
     (2)制备SiC-Al_2O_3纳米复合粉体。制备SiC和Al_2O_3均为纳米级且均相混合的SiC/Al_2O_3粉体是复相陶瓷制备及性能提高研究的基础。本文中通过一种金属Al协助的溶剂热反应路线,成功的制备了SiC/Al_2O_3纳米复相粉体。粉末X-射线衍射(XRD)显示制得的样品产物是3C-SiC晶格常数:a=4.349(?)与标准粉末衍射数据卡片(JCPDS,NO.29-1129,a=4.359(?))以及α-Al_2O_2晶格常数:a=4.749(?),c=12.834(?)与标准粉末衍射数据卡片(a=4.76(?)和c=12.99(?),JCPDS card no.46-1212)是接近的。SEM和TEM照片可以看出,产物主要由纳米线和纳米颗粒两种形貌组成。分析多根纳米线的结果显示,纳米线的直径在20-40nm之间,长度为几个微米,个别纳米线的长度可以达到几百微米;纳米颗粒在50-300纳米之间,表面不规则由大量的几十纳米的颗粒团聚而成。进一步的HRTEM、EDS和ED显示纳米线为3C-SiC而纳米颗粒为α-Al_2O_3。
     (3)α相SiC的制备。4H、2H、6H等SiC相是SiC研究的重要方向,但相对于3C-SiC相纳米材料的广泛制备和研究,很少有报道4H、2H、6H等SiC相纳米材料的制备。本文中,我们在金属Al协助的溶剂热反应的基础上,利用放热更高的金属Mg与硅藻土、TEOS或硅油反应,分别制备了4H-SiC六棱柱和2H-SiC三角片。研究不同的合成条件下可能出现的其它α相SiC的制备及其形成机理,实现常规高压釜中有机溶剂热条件下难以制备的晶型。
     (4)对含硅三元化合物进行制备。针对溶剂热制备主要集中在二元化合物,尝试拓展溶剂热的制备范围。成功制备了MgSiN_2刺球状微米颗粒。FE-SEM照片可以观测到产物由大量单分散的微米级的颗粒组成,表面粗糙,直径在0.5-3μm之间。高放大倍数的照片显示颗粒由枝状突出团聚组成且每个枝状表面粗糙并由更加小的纳米颗粒团聚而成。TEM照片观察到大量的这种纳米颗粒相互团聚,颗粒直径在30-50nm之间。研究不同的合成条件对产物的影响及其形成机理。讨论了不同的氮源对制备MgSiN_2的影响。
Silicon carbide is an important wide band gap semiconducting material,and has attracted extensively attention due to its excellent properties,including high breakdown electric field strength,high saturated drift velocity of electrons,wide band gap,high thermal conductivity,high mechanical strength,high chemical stability,and low induced activity;therefore,SiC-based devices could be used at higher temperature and in harsh conditions as a functional ceramic or as a high temperature semiconductor.SiC with different nanostructures including nanowires,nanotubes, nanorods,nanobelts,solid nanospheres,nanocages,etc.have been synthesized,and many indications show that their electrical and optical properties exhibit strong dependences on shape-structure and size.Moreover 3C-SiC nanowires,because of their high strength,low density,high stiffness and high temperature stability,are of considerable interest as reinforcements for composites.Heretofore,a lot of efforts have been devoted to the synthesis of silicon carbide nanocrystals.Various techniques have been used for the synthesis of silicon carbide nanocrystals,especially one-dimensional(1D) SiC nanomaterials.Such as carbon nanotube confined growth, chemical vapor deposition,and arc discharge et al.These methods have been successfully used to synthesize pure SiC nanorods or nanowires.However,there are several important questions still exists,for example,high temperature thermal methods in the temperature of generally above 1000℃are successfully used to synthesize SiC nanocrystals but with a relative higher industrial cost.Therefore, low-temperature synthetic route for the high yield synthesis of SiC nanocrystals is an effective approach to reduce the industrial cost;most works were focused on the 3C-SiC nanowires,there were few reports about the 2D and 3D SiC nanostructures; Compared with 3C-SiC,there are few reports about the synthesis ofα-SiC nanocrystals,such as 2H-SiC,4H-SiC.
     On the basis of comprehensive and thorough literature investigations,in this dissertation,3C-SiC hollow nanospheres with a high yield(~80%) were prepared by using SICl_4,CBr_3H,and Na-K alloy at 130℃for 15 h and a subsequent HClO_4 treatment process at 180℃.When Na-K alloy was substituted by Na(or K) and in the mean time the temperature was set at 240℃while keeping other conditions unchanged,a large quantity of randomly distributed and highly crystalline SiC nanowires also can be produced.The possible formation mechanisms of the products with distinct dimensions were briefly discussed.Another novel aluminum catalyzed reduction route was developed for the large-scale synthesis of SiC/Al_2O_3 nano-composite powder.When aluminum was substituted by Magnesium,4H-SiC prisms and 2H-SiC triangle flakes were synthesized by using diatomite(TEOS) and Silicone oil,respectively.Magnesium silicon nitride(MgSiN_2) has an orthorhombic structure,and it has been widely studied owning to its attractive properties.MgSiN_2 powders have been synthesized by the reaction of SICl_4,N_2H_4-HCl,and Mg in an autoclave at 450℃for 5 h.The effects of different synthesis conditions on the final formation of MgSiN_2 powder,such as the different ratios of the precursors,reaction temperature,and nitrogen sources were also investigated.The main research contents are listed as follows:
     (1) A novel metal reduction route was developed for the large-scale synthesis of 3C-SiC hollow nano-spheres at relative low temperature by using SiCl_4,CBr_3H, and Na-K alloy at 130℃for 15 h in 12ml autoclave and a subsequent HClO_4 treatment process at 180℃.TEM Analysis results of a number of products produced by the same process indicate that the proportion of the nanospheres (most of them have diameters ranging from 80 to 120 nm) in the product is approximately 80%.The HRTEM image of a randomly selected nanosphere shows that the nanosphere has a rough surface,and its corresponding HRTEM image reveals that the nanostructure has an average interplanar spacing of 0.25 nm,which corresponds to(111) spacing of 3C-SiC.When metallic Na(or K) was used instead of Na-K alloy as the reductant.It is found that the final morphology of the as-obtained crystalline SiC product at 240℃was distinct from those that using the Na-K alloy.TEM image shows that the sample is composed of a large quantity of randomly distributed nanowires with uniform diameters.Analysis of a number of the nanowires shows that most of them have diameters ranging from 30 to 50 nm and lengths of several tens of micrometers. To substantially study the formation process of the hollow nanospheres under the present synthesis route,we have systematically surveyed their growth process by changing the reaction time.It is found that in the first 7 h(at 130℃),nearly all the CBr_3H reacts and converts into black solids.Meanwhile,most SiCl_4 and part of the Na-K alloy remain unreacted(which were removed carefully before the dilute acid treatment process).The TEM image shows that the product is composed of aggregated and uniform particles with diameters of 50-150 nm. Some dark spots dispersed in the light particles with size of several nanometers also can be seen,and these particles are sheathed by a thin shell on the surface. The result of the XRD pattern confirms that these particles are mainly composed of amorphous graphite.The XRD pattern of another sample(obtained after heating at 130℃for 10 h process) reveals a little Si coexisted with SiC.Their TEM image shows a solid sphere with a residual core.So it is reasonable to speculate that the SiC hollow nanospheres hold the shape and diameter of carbon nanoparticles,which implies that the final shape of spherical SiC partilces maintain the original carbon sphere skeleton and reflects an in situ shape memory.The formation process of the nanowires was also investigated.Similar results were obtained when the autoclave was heated at 240℃for 7h except the sample is composed of amorphous morphology.And a large quantity of nanoparticles were formated when the reaction time was 9h.However,most of them vanished when the reaction time was 12h,and nanowires became the main products of the sample.It is considered that a similar self-catalyzed vapor-liquid-solid(VLS) growth process was largely responsible for the formation of SiC nanowires.Studies show that the low reaction temperature and appropriate metal reductants are the key factors for the formation of SiC hollow nanospheres or nanowires.
     (2) SiC-Al_2O_3 nano-composite powders have been prepared by the reaction of Al, CH_2Cl_2 and diatomite in an autoclave at 700℃.According to X-ray powder diffraction,the powders are composed of SiC and Al_2O_3.Electron microscopy investigations have revealed that the products are usually complexed of nanoparticles of 50-300 nm and nanowires of 20-40 nm wild and up to tens of micrometers long.HRTEM.EDS and ED shows that the nanoparticles and nanowires are Al_2O_3 and SiC,respectively.
     (3) A magnesium reduction route was developed for the synthesis of 4H- and 2H-SiC.Crystalline SiC hexagonal prisms were obtained through an in situ magnesium reduction route by using Mg,diatomite,and CH_2Cl_2 as reactants in an autoclave at 600℃.According to XRD and HRTEM analysis,the as-obtained hexagonal prisms were 4H-SiC.Scanning electron microscopy(SEM) images show that the hexagonal prisms with smooth surface,they have typical diameters in the range of 300-800 nm and thickness of 200-500 nm.And a magnesium reduction organic precursor(TEOS or Silicone oil) was also developed to synthesize 4H-SiC flakes and 2H-SiC triangle flakes,respectively.The effects of different synthesis conditions on the final formation 4H- and 2H-SiC,such as the different precursors,reaction temperature,and time were also investigated.
     (4) Low-temperature solvothermal method was developed to prepare ternary nitride. Recently,Magnesium silicon nitride(MgSiN_2) has been widely studied owing to its attractive properties such as high hardness,reasonable strength,fracture toughness,and high electrical resistance at room temperature.In this study, MgSiN_2 powders have been synthesized by the reaction of SiCl_4,N_2H_4-HCl,and Mg in an autoclave at 450℃for 5 h.The yield of the product is calculated to be about 90%according to the amount of SiCl_4.X-ray powder diffraction patterns indicated that the products are orthorhombic MgSiN_2(cell parameters:a=5.252 A,b=6.426 A,and c=4.979 A) together with little amount of Si.The results of scanning electron microscopy and transmission electron microscopy(TEM) observations indicate that the particles have rough surfaces,and have diameters in the range of 0.5-3 um.The high-resolution TEM image shows clearly resolved fringes separated by 0.248 nm,which corresponds to the(002) d-spacing of the orthorhombic MgSiN_2.The effects of different synthesis conditions on the final formation of MgSiN_2 powder,such as the different ratios of the precursors,reaction temperature,and nitrogen sources were also investigated.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [2]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [3]R.Bnrnger,H.Glelter,H.R.Klein,P.Marquit,Phys.Let.,1984,IOZA,365.
    [4]C.Suiyanarayana,F.H.Froes,Metall.Trams.1992,A23,1071.5Yoffe,A.D.Advancees in Physics 1993,2,173.
    [5]巩雄,张桂兰,汤国庆等,化学进展,1997,9,349
    [6]A.Henglein,Chem.Rev.,1989,89,1861.
    [7]H.W.Kroto,Nature 1985,318,162.
    [8]郭春丽,氮化硅等耐高温纳米材料的溶剂热合成,山东大学博士毕业论文,2007,P.3.
    [9]K.J.Klabunde,J.Stark,O.Koper,et al,J.Phys.Chem.,1996,100,12142.
    [10]A.Henglein,Chem.Rem,1989,89,1861.
    [11]A.I.Ekimov,A.A.Onushchenko,JEPT Lett,1984,40,1136.
    [12]J.Q.Fang,D.Lu,Solid State Physics,1981,2.
    [13]R.Kubo,J.Phys.Soc.Jpn,1962,17,975.
    [14]Y.Wang,N.Herron,J.Phys.Chem.,1991,95,525.
    [15]P.V.Kamat,N.M.Dimitrijevic,Sol.Energy.,1990,44,83.
    [16]L.E.Brus,J.Phys.Chem.,1986,90,2255.
    [17]Y.Wang,J.Chem.Phys.,1987,87,7315.
    [18]M.L.Steigerwald,L.E.Brus,Ace.Chem.Res.,1990,23,183.
    [19]T.Trindade,P.O.Brien,N.L.Pickett,Chem.Mater.,2001,13,3843.
    [20]A.Hagfeldt,M.Graetzel,Chem.Rev.,1995,95,49.
    [21]J.C.Hulteen,C.R.Martin,Chapter 10,in:Fend J H,Nanoparticles and Nanostructured Films.WILEY-VCH,Weinheim,New York,Chichester,Brisban,Singapore,Toronto,1998,235.
    [22]A.Ferrari,Development,Industrialization of Nanostructure Materials and Coatings,Atlanta Airport Marriott,Atlanta,Georgia,USA.1995.
    [23]Y.Ping,G.C.Hdjinanayis et al,Appl.Phys.,1990,67,4502.
    [24]S.Linderoth,S.Morup,J.Appl.Phys.,1990,67,4496.
    [25]D.D.Awschalom,M.A.Mccord,G Grinstein,Observation of macroscopic spin phenomenain nanometerscalem agnets,J.Phys.Rev.Lett.,1990,65,783-786.
    [26]T.Takagahara,Phys.Rev.B,1993,47,4569.
    [27]C.C.Kock,Nanostructured Lett.,1993,2,109.
    [28]J.Kuyama,H.Inui,S.Imaoka,et al.,Jpn.J.Appl.Phys.,1991,30(5A),L864.
    [29]G.T.Fei,L.Liu,X.Z.Ding,et al.,J.Alloys and Compounds,1995,129,280.
    [30]M.S.EI-Eskandarany,et al.,J.Mater.Res.,1992,7,888.
    [31]M.S.EI-Eskandarany,et al.,Appl.Phys.Lett.,1992,60,1562.
    [32]M.S.EI-Eskandarany,et al.,J.Mater.Res.,1994,9,2891.
    [33]H.Yang,et al.,J.Mater.Sci.Lett.,1993,17,314.
    [34]洪广言,李红云,无机化学学报,1991,7(1),241.
    [35]于德才,洪广言,中国稀土学报,1992,10(1),44.
    [36]范福康等,硅酸盐通报,1993,6,17.
    [37]赵振国等,应用化学,1993,10(1),99.
    [38]M.R.De Guire,et al.,J.Mater.Res.,1993,8(9),2327.
    [39]K.N.Clson,R.L.Cook,J.Am.Ceram.Soc.,1959,38,499.
    [40]J.L.Shi et al.,J.Bur.Ceram.Soc.,1993,13,265.
    [41]J.L.Shi,et al.,J.Mater.Sci.,1995,30,793.
    [42]C.W.Lu,J.L.Shi,et al.,Thenrochimica Acta,1994,132,77.
    [43]D.Jezequel,et al.,J.Mater.Res.1995,10(1),77.
    [44]X.T.Dong,G.Y.Hong,et al.,J.Mater.Sci.Technol.1997,13,11.
    [45]董相廷,洪广言,于德财,硅酸盐学报,1997,15(3),323.
    [46]T.W.Shaw,et al.,J.Am.Ceram.Soc.,1986,69(1),979.
    [47]G.Pacheco-Malagon,et al.,J.Mater.Res.,1995,10,1264.
    [48]K.S.Mazdiyasni,et al.,J.Am.Ceram.Soc.,1969,52(10),523.
    [49]K.S.Mazdiyasni,et al.,Ceram.Bull.,1984,63(4),591
    [50]笠井纪宏等,窑业协会志,1987,93(10),912.
    [51]X.Li,H.Zhang,S.Li,B.Xu,M.Zhao,J.Mater.Chem.,1993,3,547.
    [52]H.Gleiter,Prog.Mater.Sci.,1990,33,223.
    [53]肖汉宁等,无机化学学报,1993,9,96.
    [54]X.Z.Ding,et al.,J.Mater.Sci.Lett.,1995,14,21.
    [55]刘杏芹等,应用化学,1996,13,65.
    [56]张宗涛,化学学报,1996,54,329.
    [57]J.Shen,et al.,J.Phys.Chem.,1993,97,8504.
    [58]沈俭一等,化学学报,1994,52,858.M.Fiever,J.P.Lagier,et al.,MRS Bull.,1989,14,29.
    [59]M.Fievet,J.P.Lagier,et al.,MRS Bull.,1989,14,29.
    [60]C.Ducamp-Sanguesa,et al.,J.Solid State Chem.,1992,100,272.M.Fievet,et al.,J.Mater.Chem.,1993,9,627.
    [61]M.Fievet,et al.,J.Mater.Chem.,1993,9,627.
    [62]沈兴海等,化学通报,1995,11,6.
    [63]M.Boutonnet,et al.,Colloid and Surfaces,1982,5,209.
    [64]J.Nagy,Colloid and Surfaces,1989,35,201.
    [65]Kaiharak,J.Am.Chem.Soc.,1983,105,2574.
    [66]K.Kandorl,et al.,J.Colloid and interface,1988,122(1),78.
    [67]吴晓春等,化学学报,1996,54,146.
    [68]K.Osseo-Asare,F.Arriageala,J.Colloids and Surfaces,1990,50,321.
    [69]D.Hayers,O.L.Micic,et al.,J.Phys.Chem,1989,93,603.
    [70]Y.J.Zhu,Y.T.Oian,et al.,Mater.Lett.,1993,17,314.
    [71]Y.J.Zhu,Y.T.Qian,et al.,Mater.Sci.Eng.B,1994,23,116.
    [72]Y.J.Zhu,Y.T.Qian,et al.,Mater.Lett.,1996,28,119.
    [73]Y.Liu,Y.T.Qian,et al.,Mater.Res.Bull.,1994,29,377.
    [74]Y.J.Zhu,Y.T.Qian,et al.,Mater.Sci.Lett.,1996,15,1700.
    [75]朱英杰,钱逸泰等,科学通报,1994,39,1440.
    [76]K.S.Suslick,S.B.Choe,A.A.Cichowals,et al.,Phys.Today,1991,44(1),17.
    [77]H.Gleiter,Euro.Physics.News,1989,20,130.
    [78]Z.L.Cui,et al.,Nanostructured Mater.,1995,5,829.
    [79]R.Birringer,H.Gleiter,et al.,Phys.Lett.,1984,102A,365.
    [80]隋同波等,硅酸盐学报,1993,21(1),33.
    [81]郭广生等,无机材料学报,1993,8(3),377.
    [82]高晓云等,无机材料学报,1993,8(1),57.
    [83]G.P.Vlssokov,J.Mater.Sci.1988,23,2415.
    [84]杨修春,丁子上,材料学报,1996,2,34.
    [85]K.Is hzaki,et al.,J.Mater.Sci.1989,24,3553.
    [86]D.R.Uhlman,et al.,Mater.Res.Soc.Symp.Proc.1984,32,59.
    [87]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,2001,北京
    [88]李春忠,胡黎明,陈敏恒等,硅酸盐学报,1993,21(1),93.
    [89]朱宏杰等,无机材料学报,1995,10(1),43.
    [90]梁博等,无机材料学报,1996,11(3),441.
    [91]刘淑玲 过渡金属氮化物、磷化物和硫化物纳米晶的溶剂热合成与表征 山东大学博士学位论文P.8-10.
    [92]王月平,杨中民,信文瑜,纳米粒子及纳米化学研究进展,云南化工,2000,1.22-25.
    [93]彭龙,徐光亮,刘莉,水热法制备磁性材料粉体的研究进展,磁性材料及器件,2005,6,13-15.
    [94]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,北京,2001.
    [95]Y.G.Zhang,Y.Liu,F.Guo,et al.,Solid State Comun.,2005,134,523-527.
    [96]张卫民,张玉,董光明,等,水热-热解法制备具有一维结构的Co_3O_4多晶,高等学校化学学报,2006,10,1791-1794.
    [97]T.Sugimoto,Y.S.Wang,J.Colloid Interface Sci.,1998,207,137-149.
    [98]H.Itoh,T.Sugimoto,J.Colloid.Interface Sci.,2003,265,83-295.
    [99]T.Sugimoto,H.Itoh,T.Mochida,J.Colloid.Interface,Sci.,1998,205,42-52.
    [100]吴东辉,章忠秀,徐玲芳,等,无机化学学报,2004,20(1),31-35.
    [101]Q.W.Chen,Y.T.Qian,and Z.Y.Chen,Appl.Phys.Lett.,1996,66(13),1608-1610.
    [102]M.Voshimura,H.Suda,K.Okamoto,et al.,The Chemical Society of Japan,1991,(10),1402-1407.
    [103]M.Fang,H.B.Du,W.G.Xu,et al.,Microprous Mtater.,1997,5(1-2),59-61.
    [104]S.R.Dhage,W.B.Khollam,H.S.Potdar,et al.,Mater.Lett.,2002,7(2),457-462.
    [105]C.Li,Sel.Pap.Eng.Chem.Metal,1996,8(5),111-116.
    [106]陈耀祖,陈吹,朱英杰,等,化学物理学报,1997,1(1),26.
    [107]Y.Zhou,H.J.Liu,S.H.Yu,et al.,Mater.Res.Bull.,1996,34(10-11),1683-1688.
    [108]V.A.Hackley,J.Am.Ceram.Soc.,1997,80(9),2315.
    [109]J.H.Jean,H.R Wang,J.Am.Ceram.Soc.,1998,81(6),1589-1599.
    [110]D.M.Bibby,M.P.Dale,Nature,1985,317,157.
    [111]M.Inoue,et al,J.Am.Ceram.Soc,1989,72,352.
    [112]Q.Gao,R.Xu,et al,J.Am.Chom.Soc,1994,1364.
    [113]Q.Huo,R.Xu,et al,J.Chem.Soc.Chem.Commun,1992,875.
    [114]W.S.Sheldrick,M.Wachold,Angew.Chem.Int.Ed,1997,36,206.
    [115]L.Bulter,J.Phys.Chem,1993,97,10750.
    [116]Y.D.Li,H.W.Liao,Y.T.Qian,et al,Inorg.them,1999,38,1382.
    [117]J.Yang,C.Xue,S.H,Yu,J.Zhang,Y.T.Qian,Angew.Chem.Int.Ed,2002,41,4697.
    [118]D.B.Yu,D.B.Wang,Z.Meng,Y.r.Qian,J.Mater.them,2002,12,403.
    [119]Y.Xie,et al,Science,1996,272,1926.
    [120]Y.D.Li,Y.T.Qian,et al,Inorg,Chem,1998,37,2844.
    [121]S.H.Yu,Y.T.Qian,et al,Chem.Mater,1998,10,2309.
    [122]Y.Xie,Y.T.Qian,et al,Appl.Phys.Lett,1996,69,334.[61]Y.Jiang,Y.T.Qian,et al,J.Am.Chem.Soc,2000,122,12383.
    [123]Y.D.Li,et al,Science 1998,281,246.
    [124]Y.Jiang,Y.T.Qian,et al,J.Mater.Res,2001,10,1.
    [125]张容等,固体电子学研究与进展,1996,16,94.
    [126]S.E.Saddow,and A.Agarwal,Advances in Silicon Carbide Processing and Applications,Artech House,Inc.Boston·London,2004,p.25.
    [127]郝跃,彭军,杨银堂,“碳化硅宽带隙半导体技术”,北京,科学出版社,2000年,pp17-18.
    [128]王晓刚,“碳化硅合成理论与技术”,西安,陕西科学技术出版社,2001年,pp35.
    [129]张汉三,“电力器件用的6H-SiC 3C-SiC和Si的比较”,半导体学报,1995,32(5),pp23-33.
    [130]缪向水,李佐宜,“磁光盘的介质膜材料AlN AlSiN薄膜的电子显微分析”,无机材料学报,1994,9(2),pp249-253.
    [131]宋登元,“GaN薄膜异质外延制备技术的进展”,半导体光电,1995,15(4),pp303-309.
    [132]曹传宝,彭定坤,孟广耀,“微波等离子体低温制备金刚石薄膜”,1994,25(6),pp570-574.
    [133]梁静秋,姚劲松,王飞,“LIGA技术中的X射线掩膜”,1997,(3),pp23-26.
    [134]周天翔,“用硅晶体管芯替代光敏电阻和光电池”,教学仪器与实验,1994,(6),pp13.
    [135]张光照,“微系统技术(连载五)”,传感器技术,1996,(2),pp61-65.
    [136]向涛,黄庆安,奏明,“反向刻蚀法制备场发射阴极阵列”,电子器件,1994,17(3),pp86-89.
    [137]W.J.Schaffer,G.H.Negley,K.G.Irvine,and J.W.Palmour,"Conductivity anisotropy in epitaxial 6H and 4H Sic," in Diamond,SiC,and Nitride Wide Bandgap Semiconductors,C.H.Carter,Jr.,G.Gildenblatt,S.Nakamura,and R.J.Nemanich,Eds.,Material Research Society Proc.,vol.339.Pittsburgh,PA:MRS,1994,pp.595-600.
    [138]J.W.Schaffer,In Diamond,Silicon Carbide and Nitride Wide Band Gap Semiconductors,Ed.by Carter CH,MRS Symposium Proceedings,1994,339,595.
    [139]S.Yoneda,T.Furusho,H.Takagi,S.Ohta,S.Nishino,Mater.Sci.Forum,2005,483-485,129.
    [140]M.Okamoto,S.Suzuki,M.Kato,T.Yatsuo,K.Fukuda,Mater.Sci.Forum,2005,483-485,805.
    [141]D.C.Blasciuc,A.B.Horsfall,N.G.Wright,C.M.Johnson,K.V.Vassilevski,A.G.Oneill,Semicond.Sci.Tech.,2005,20,10.
    [142]M.Willander,M.Friesel,Q.U.Wahab,B.Straumal,J.Mater.Sci.,2006,17,1.
    [143]Choyke,W.J.,and G.Pensl,"PhySiCal Properties of SIC," MRS Bulletin,March 1997.pp.25-29.
    [144]张荣等,固体电子学研究与进展,1996,16,94.
    [145]L.S.Liao,et al.,Appl.Phys.Lett.,1995,66:6951.
    [146]廖良生等,半导体学报,1996,17:76.
    [147]R.Liu,B.Yang,Z.Fu,P.He,Y.Ruan,Solid State Commun.,1998,106,211.
    [148]杨修春,韩高荣,张孝彬,丁子上,半导体学报,1998,19(685):5.
    [149]刘瑜珍,黄允兰,石万全等,发光学报,1999,20(1):51.
    [150]X.L.Wu,G.G.Siu,M.J.Stokes,et al.,Appl.Phys.Lett.,2000,77:1292.
    [151]Y.P.Guo,J.C.Zheng,et al.,Chem.Phys.Lett.,2001,339:319.
    [152]Z.An,R.K.Fu,P.Chert,et al.,J.Vac.Sci.Technol B,2003,21:1375.
    [153]D.Chen,Z.M.Liao,L.Wang,et al.,Opt.Mater.,2003,23:65.
    [154]J.Y.Fan,X.L.Wu,et al.,Appl.Phys.Lett.,2005,86:171903.
    [155]W.Q.Han,S.S.Fan,Q.Q.Li,et al,Chem.Phys.Lett.,1997,265:374.
    [156]J.Q.Hu,Q.Y.Lu,K.B.Tang,et al.,J.Phys.Chem.B,2000,104:5251.
    [157]Y.C.Ying,Y.L.Gu,et al.,Journal of Solid State Chemistry,2004,177:4163.
    [158]G.Z.Shen,D.Chen,K.B.Tang,V.T.Qian,Chem.Phys.Lett.,2003,375:177.
    [159]G.C.Xi,Y.Y.Pens,et al,J.Phys.Chem.B,2004,108:20102.
    [160]G.C.Xi,Y.K.Liu,et al.,J.Phys.Chem.B,2006,110:14172.
    [161]D.H.Fens,Z.Z.Xu,T.Q.Jia,et al.,Phys.Rey.B,2003,68:035334.
    [162]F.A.Reboredo,L.Pizzagalli,G.Galli,Nano.Lett.,2004,4:801.
    [163]R.Rurali.Phys.Rev.B,2005,71:205405.
    [164]J.Drowart et al.,J.Chem.Phys.1958,29,101.
    [165]G.Wiebke,Berichte der Deutschen Keramichan Gesellschaft,1960,37,H5,219.
    [166]R.I.Scace,G.A.Sack,J.Chem.Phys.,1959,30:1551.
    [167]J.A.Lely,et al.,Proc.Int.Cong.Semiconductors and Phosphors,Vieweg Braunschweig,1958,514.
    [168]Goknur Z.Cambaz,Gleb N.Yushin,Yury Gogotsi,and Vadim G.Lutsenko,Nano.Lett.,2006,6(3),548-551.
    [169]鞠治诚,碳化硅和碳化钛纳米材料的制备和表征,山东大学硕士毕业论文,2008.
    [170]张爱霞,蔡克峰,材料导报,2006,zl.
    [171]董超,碳化硅及其复合纳米材料的合成与表征,中国科学技术大学硕士毕业论文,2007.
    [172]D.Zhou,S.Seraphin,Chem.Phys.Lett,1994,222,223.
    [173]H.J.Dai,E.W.Wong,Y.Z.Lu,et al.,Nature,1995,375,769.
    [174]C.C.Tang,S.S.Fan,H.Y.Dang,et al.,J.Crystal.GrowtA 2000,210,595.
    [175]Z.W.Pan,H.L.Lai,F.C.K.Au,et al.,Adv.Mater,2000,12,1186.
    [176]Z.W.Pan,S.S.Xie,B.H.Chang,et al.,Nature,1998,394,631.
    [177]X.H.Sun,C.P.Li,W.K.Wong,et al.,J.Am.Chem.Soc.,2002,124,14464.
    [178]W.S.Shi,Y.F.Zhang,H.Peng,et al.,J.Am.Ceram.Soc.,2000,83,3228.
    [179]A.M.Morales,C.M.Libber,Science,1998,279,208.
    [180]H.Mukaida,H.Okumura,J.H.Lee,et al.,J.Appl.Phys.,1987,62,254.
    [181]张洪涛,徐重阳,Sol-gel法制备纳米碳化硅晶须的研究,电子元件与材料,2000,34(1),4.
    [182]G.W.Meng,L.D.Zhang,C.M.Mo,et al,J.Mater.Res.,1998,13,2533.
    [183]H.W.Cheng,F.Li,G.Su,et al.,Appl.Phys.Lett,1998,72,3282.
    [184]J.Zhang,N.L.Wang,R.R.He,et al,Solid.State.Comm,2001,118,595.
    [185]T.Seer,P.Redlich,M.Ruble,Adv.Mater,2000,12,279.
    [186]Y.B.Li,S.S.Xie,X.P.Zhou,et al,J.Crystal.Growth,2001,223,12.
    [187]K.F.Cai,Q.Lei,A.X.Zhang,J.Nanoscience and Nanotechnology,2007,2,580.
    [188]W.Y.Yang,H.Z.Zhao,et al,Chem.Phys.Lett,2004,383,441.
    [189]Q.Y.Lu,J.Q.Hu,K.B.Tang,Y.T.Qian,Appl.Phys.Lett,1999,75,50.
    [190]Hu,J.Q.;Lu,Q.Y.;Tang,K.B.;Deng,B.;Jiang,R.R.;Qian,Y.T.;Yu,W.C.;Zhou,G.E.;Liu,X.M.;Wu,J.X.J.Phys.Chem.B 2000,104,5251.
    [191]Shen,G.Z.;Chen,D.;Tang,K.B.;Qian,Y.T.;Zhang S.Y.Chem.Phys.Lett.2003,375,177.
    [192]Xi,G.C.;Peng,Y.Y.;Wan,S.M.;Li,T.W.;Yu,W.C.;Qian,Y.T.J.Phys.Chem.B 2004,108,20102.
    [193]G.C.Xi,Y.K.Liu,et al,J.Phys.Chem.B,2006,110,14172.
    [194]G.F.Zou,C.Dong,K.Xiong,H.Li,C.L.Jiang,and Y.T.Qian,Appl.Phys.Lett.2006,88,071913.
    [195]C.H.Wang,Y.H.Chang,M.Y.Ren,C.W.Peng,et al,Adv.Mater,2005,17,419.
    [196]J.Zhou,J.Liu,R.S.Yang,C.S.Lao,P.X.Gao,R.Tummala,N.S.Xu,and Z.L.Wang,small 2006,2,1344-1347.
    [197]D.A.White,S.M.Oleff,R.D.Boyer,P.A.Budinger,J.R.Fox,Adv.Ceram.Mater.1987,2,45.
    [198]F.Hatakeyama,and S.Kanzaki,J.Am.Ceraz.Soc.1990,73,2107.
    [199]I.S.Seog,and C.H.Kim,J.Mater.Sci.1993,28,3277.
    [200]Y.Zhang,E.W.Shi,Z.Z.Chert,X.B.Li,B.J.Xiao,Mater.Chem.2006,16,4141.
    [201]Z.Y.Liu,L.J.Ci,N.Y.Jin-Phillipp,and M.Rulhle,J.Phys.Chem.C 2007,111,12517.
    [202]A.H.Chokshi,J.R.Porter J.Am.Ceram.Soc.1985,68,C144.
    [203]J.H.Lee,C.Y.An,C.W.Won,S.S.Cho,B.S.Chun,Mater.Res.Bull.2000,35,945.
    [204]L.S.Abovyan,H.H.Nersisyan,S.L.Kharatyan,R.OrruA,R.Saiu,G.Cao,D.Zedda,Ceram.Int.2001,27,163.
    [205]C.P.Lokesh,B.Debajyoti,S.Srinivasan,K.D.Swapan,P.Ramachandrarao,J.Am.Ceram.Soc.2001,84,915.
    [206]H.H.Nersisyan,L.S.Abovyan,S.L.Kharatyan,Int.J.SHS 1999,8,153.
    [207]R.A.Cutler,K.M.Rigtrup,A.V.Virkar,J.Am.Ceram.Soc.1992,75,36.
    [208] L. K. Frevel, C. K. Saha, D. R. Petersen, J. Mater. Sci. 1995, 30, 3734.
    [209] J. M. Tian, J. W. Li, L. M. Dong, J. Am. Ceram. Soc. 1999, 82, 2548.
    [210] P. K. Panda, L. Mariappan, V. A. Jaleel, T. S. Kannan, A. Amroune, J. Du bois, G. Fantozzi, J. Mater. Sci. 1996, 31, 4277.
    [211] A. Nakahira, and K. Niihara, J. Ceram. Soc. Jpn., 1992, 100, 448-453.
    [212] A. Nakahira, and K. Niihara, Strengthening of oxide ceramics by SiC and Si_3N_4 reinforcements. In Proceedings of the Third International Conference on Ceramic Materials and Components in Engines. Edited by Tennery VJ. Westerville, Ohio, J. Am. Ceram. Soc, 1988, 919-926.
    [213] R. W. Davidge, R. J. Brook, F. Gambler, M. Poorteman, A. Leriche, D. O'Sullivan, S. Hampshire, T. Kennedy, Fabrication, properties, and modelling of engineering ceramics reinforced with nanoparticles of silicon carbide. Brit Ceram Trans 1997, 96, 121-127.
    [214] L. C. Stearns, J. Zhao, and M. P.. Harmer, Processing and Microstructure development in Al_2O_3-SiC 'Nano-composites' , J Eur. Ceram . Soc. , 1992, 10, 473-477.
    [215] R. J. Conder, Microstructure , Procesing and Properties of Nanocomposite Ceramics. PhD thesis, University of Birmingham, 1994
    [216] D. O'Sullivan, M. Porteman, P. Descamps, F. Cambier, A. Leriche, and B. Thierry Optimisation of alumina-silicon carbide dispersions and the fabrication of nanocomposite ceramic materials. ln Key Engineering Materials, 99-100, ed. Trans. Tech. Publications, Switzerland, 1995, P. 247-256.
    [217] G. A. Slack, "Nonmetallic crystals with high thermal conductivity" , J. Phys. Chem. Solids, 34[5] 321-335 (1973).
    [218]A.Anderson,and R.B.Kaner,"A solid-state metathesis route to MgSiN_2",Chem.Mate.,17[8]2155-2161(2005).
    [219]Z.Lences,K.Hirao,S.Kanzaki,M.J.Hoffmann,and P.Sajgalik,"Reaction sintering of fluorine-doped MgSiN_2",J.Euro.Ceram.Soc.,24[12]3367-3375(2004).
    [220]R.G.Blair,"The thermal conductivity of magnesium silicon nitride,MgSiN2,ceramics and related materials",p.177-201 in Ph.D.Thesis(CIP-DATA Library Technische Universities Eindhoven(Eindhoven University of Technology),Eindhoven,The Netherlands,2000).
    [221]H.T.Hintzen,P.Swaanen,R.Metselaar,W.A.Groen,and M.J.Kraan,"Hot-pressing of MgSiN_2 ceramics",J.Mater.Sci.Lett.,13 1314-1316(1994).
    [222]R.G.Blair,A.A.KUDYBA-JANSEN,P.GERHARTS,H.T.HINTZEN,R.METSELAAR,"Preparation,characterization and properties of MgSiN_2ceramics",J.Mater.Sci.:Mater.Electron.,13[2]63-75(2002).
    [223]G.A.Slack,pp.1 in Solid-State Physics Vol.34,edited by F.Seitz,D.Turnbull and H.Ehrenereich Academic Press,New York,1979.
    [224]J.David and J.Lang,"Sur un Nitrure Double de Magnesium et de Silicium",C.R.Acad.Sci.Paris.,261 1005-1007(1965).
    [225]F.F.Grekov and B.V.Chernovets,"Methods for MgSiN_2synthesis",Russ.J.Appl.Chem.,77[8]1223(2004).
    [226]R.J.Bruls,H.T.Hintzen and R.Metselaar,"Preparation and.characterization of MgSiN_2 powders",J.Mater.Sci.,34 4519-4531(1999).
    [227]G.H.Peng,G.J.Jiang,H.R.Zhuang,W.L.Li and S.Y.Xu,"A novel route for preparing MgSiN_2 powder by combustion synthesis",Mat.Res.Bull.,397[1-2]65-68(2005).
    [228]Z.Lenoes,K.Hirao,Y.Yamauchi and S.Kanzaki,"Reaction synthesis of magnesium silicon nitride powder",J.Am.Ceram.Soc.,86[7]1088-1093(2003).
    [1]J.A.Powell,L.G.Matus,and M.A.Kuczmarski,d.Electrochem.Soc.1987,134,1558,
    [2](a)O.Madelung,Intrinsic Properties of Group Ⅱ-Ⅴ and Ⅰ-Ⅵ Compounds;Landolt-Bornstein New Series,Group Ⅲ,;Springer:Berlin,1987,Vol.22.
    (b) A.O.Konstantinov,Q,Wahab,N.Nordell,and U.Lindefeltal,Appl.Phys.Lett.1997,71,90.
    (c) B.J.Baliga,Power Semiconductor Devices,Boston,MA:PWS Publishing Company,1996,74.
    (d) S.T.Allen,S.T.Sheppard,W.L.Pribble,R.A.Sadler,T.S.Alcom,and Z.Ring,;Palmour J.W.Mat.Res.Symp.Proc.1999,572,15.
    (e) K.J(a|¨)rrendahl,and R.Davis,SiC Materials and Devices,Y.S.Park.1998,52.
    (f) S.G.M(u|¨)ller,M.F.Brady,W.H.Brixius,G.Fechko,R.C.Glass,D.Henshall,et al.,Mat.Sci.Forum,2002,389-393,23.
    [3](a) Y.B.Li,P.S.Dorozhkin,Y.Bando,and D.Golberg,Adv.Mater.2005,17,545.
    (b) C.C.Tang,and Y.Bando,Appl.Phys.Lett.2003,83,659.
    (c) J.Q.Hu,Q.Y.Lu,K.B.Tang,B.Deng,R.R.Jiang,Y.T.Qian W.C.,Yu,G.E.Zhou,X.M.Liu,and J.X.Wu,J.Phys.Chem.B 2000,104,5251.
    (d) G.Gundiah,G.V.Madhav,A.Govindaraj,M.M.Seikh,and C.N.R.Rao,J.Mater.Chem.2002,12,1606.
    [4](a) J.Q.Hu,Y.Bando,J.H.Zhan,Golberg,D.Appl.Phys.Lett.2004,85,2932.
    (b) E.Borowiak-Palen,M.H.Ruemmeli,T.Gemming,M.Knupfer,K.Biedermann,A.Leonhardt,T Pichler,and R.J.Kalenczuk,J.Appl.Phys.2005,97,056102.
    [5](a) S.B.Qadri,M.A.Imam,C.R.Feng,B.B.Rath,M.Yousuf,S.K.Singh,Appl.Phys.Lett.2003,83,548.
    (b) Q.Y.Lu,J.Q.Hu,K.B.Tang,Y.T.Qian,G.E.Zhou,X.M.Liu,J.S.Zhu,Appl.Phys.Lett.1999,75,507.
    (c) H.J.Dai,E.W.Wong,Y.Z.Lu,S.S.Fan,C.M.Lieber,Nature 1995,3 75,769.
    [6]G.C.Xi,Y.Y.Peng,S.M.Wan,T.W.Li,W.C.Yu,Y.T.Qian,J.Phys.Chem.B 2004,108,20102.
    [7](a) D.A.White,S.M.Oleff,R.D.Boyer,P.A.Budinger,J.R.Fox,Adv.Ceram.Mater.1987,2,45.
    (b) F.Hatakeyama,and S.Kanzaki J.Am.Ceram.Soc.1990,73,2107.
    (c) I.S.Seog,and C.H.Kim J.Mater.Sci.1993,28,3277.
    [8]C.-H.Wang,Y.-H.Chang,M.-Y.Yen,C.-W.Peng,C.-Y.Lee,H.-T.Chiu Adv.Mater.2005,17,419.
    [9](a) A.P.Alivisatos,Science 1996,271,933.(b) T.Matsumoto,J.Takahashi,T.Tamaki,T.Futagi,H.Mimura,Y.Kanemitsu,Appl.Phys.Lett.1994,64,226.
    (c) J.Y.Fan,X.L.Wu,R.Kong,L.T.Qiu,G.S.Huang,Appl.Phys.Lett.2005,86,171903.
    (d) X.L.Xu,G.G.Siu,M.J.Stokes,D.J.Fan,Y.Gu,X.M.Bao,Appl.Phys.Lett.2000,77,1292.
    (e) E.W.Wong,P.E.Sheehan,C.M.Lieber,Science 1997,277,1971.
    (f) W.Yang,H.Araki,C.Tang,S.Thaveethavom,A.Kohyama,H.Suzuki,T.Noda,Adv.Mater.2005,17,1519.
    [10](a) F.Caruso,R.A.Caruso,H.Mohwald,Science 1998,282,1111.
    (b) Y.G.Sun,Y.N.Xia,Science 2002,298,2176.
    (c) S.Kidambi,J.H.Dai,J.Li,M.L.Bruening,J.Am.Chem.Soc.2004,126,2658.
    (d) Kim,J.Yoon,S.Yu,J.Chem.Commun.2003,790.
    (e) W.Scha¨rtl,Adv.Mater.2000,12,1899.
    (f) F.Caruso,Adv.Mater.2001,13,11.
    [11]S.J.Yoon,J.K.Ou,M.Oh.Seung,J.Am.Ceram.Soc.2002,85,2134.
    [12]J.Ritter,J.Adv.Ceram.1987,21,21.
    [13]G.Z.Shen,D.Chen,K.B.Tang,Y.T.Qian,S.Y.Zhang Chem.Phys.Lett.2003,375,177.
    [14]Y.Zhang,E.W.Shi,Z.Z.Chen,X.B.Li,B.Xiao,J.Mater.Chem.2006,16,4141.
    [15]Z.Y.Liu,L.J.Ci,N.Y.Jin-Phillipp,M.Rulhle,J.Phys.Chem.C 2007,111,12517
    [16]Y.F.Zhang,X.D.Han,K.Zheng,Z.Zhang,X.N.Zhang,J.Y.Fu,Y.Ji,Y.J.Hao,X.Y.Guo,Z.L.Wang Adv.Funct.Mater.2007,17,3435.
    [17]W.Q.Han,S.S.Fan,Q.Q.Li,W.J.Liang,B.L.Gu,D.P.Yu,Chem.Phys.Lett.1997,265,374.
    [18]S.-C.Chiu,C.-W.Huang,Y.-Y.LiJ.Phys.Chem.C 2007,111,10294.
    [19]K.Koumoto,S.Takeda,C.Pai,T.Sata,H.Yanagida,J.Am.Ceram.Soc.1989,72,1985.
    [20]L.S.Liao,X.M.Bao,Z.F.Yang,N.B.Min,Appl.Phys.Lett.1995,66,2382.
    [21]Y.Yao,S.T.Lee,F.H.Li,Chem.Phys.Lett.2003,381,628.
    [22]H.W.Shim,K.C.Kim,Y.H.Seo,K.S.Nahm,E.-K.Suh,H.J.Lee,Y.G.Hwang,Appl.Phys.Lett.1997,70,1757.
    [23]A.M.Morales,C.M.Lieber Science 1998,279,208.
    [24]W.Q.Han,S.S.Fan,Q.Q.Li,Y.Hu,Science 1997,227,1287.
    [1]R.Verma,P.Krishna Polymorphism and Polytypism in Crystals,Wiley,New York,1966,p 92
    [2]Z.L.Wang,Z.R.Dai,R.P.Gao,Z.G.Bai,Appl.Phys.Lett.2000,77,3349.
    [3]G.Pennington,N.Goldsman,Phys.Rev.B 2001,64,04.5104.
    [4]J.B.Casady,R.W.Johnson,Solid-State Electron.1996,39,1409.
    [5]O.Madelung Intrinsic Properties of Group Ⅱ-Ⅴ and Ⅰ-Ⅵ Compounds;Landolt-Bornstein New Series,Group Ⅲ,Springer,Berlin,1987,Vol.22.
    [6]a) Y.B.Li,P.S.Dorozhkin,Y.Bando,D.Golberg,Adv.Mater.2005,17,545;
    b) C.C.Tang,Y.Bando,Appl.Phys.Lett.2003,83,659;
    c)J.Q.Hu,Q.Y.Lu,K.B.Tang,B.Deng,R.R.Jiang,Y.T.Qian,W.C.Yu,G.E.Zhou,X.M.Liu,J.X.Wu,J.Phys.Chem.B 2000,104,5251;
    d) G.Gundiah,G.V.Madhav,A.Govindaraj,M.M.Seikh,C.N.R.Rao,J.Mtater.Chem.2002,12,1606.
    [7]a) J.Q.Hu,Y.Bando,J.H.Zhan,D.Golberg,Appl.Phys.Lett.2004,85,2932;
    b) E.Borowiak-Palen,M.H.Ruemmeli,T.Gemming,M.Knupfer,K.Biedermann,A.Leonhardt,T.Pichler,R.J.Kalenczuk J.Appl.Phy.2005,97,056102.
    [8]a) S.B.Qadri,M.A.Imam,C.R.Feng,B.B.Rath,M.Yousuf,S.K.Singh,Appl.Phys.Lett.2003,83,548;
    b)Q.Y.Lu,J.Q.Hu,K.B.Tang,Y.T.Qian,G.E.Zhou,X.M.Liu,J.S.Zhu,Appl.Phys.Lett.1999,75,507;
    c) H.J.Dai,E.W.Wong,Y.Z.Lu,S.S.Fan,C.M.Lieber,Nature 1995,375,769.
    [9]G.C.Xi,Y.Y.Peng,S.M.Wan,T.W.Li,W.C.Yu,Y.T.Qian,J.Phys.Chem.B 2004,108,20102.
    [10]C.-H.Wang,Y.-H.Chang,M.-Y.Yen,C.-W.Peng,C.-Y.Lee,H.-T.Chiu,Adv.Mater.2005,17,419.
    [11]a) A.H.Chokshi,J.R.Porter J.Am.Ceram.Soc.1985,68,C144;
    b) J.H.Lee,C.Y.An,C.W.Won,S.S.Cho,B.S.Chun,Mater.Res.Bull.2000,35,945;
    c) L.S.Abovyan,H.H.Nersisyan,S.L.Kharatyan,R.OrruA,R.Saiu,G.Cao,D.Zedda,Ceram.Int.2001,27,163;
    d) C.P.Lokesh,B.Debajyoti,S.Srinivasan,K.D.Swapan,P.Ramachandrarao,J.Am.Ceram.Soc.2001,84,915;
    e) H.H.Nersisyan,L.S.Abovyan,S.L.Kharatyan,Int.J.SHS.,1999,8,153;
    f) R.A.Cutler,K.M.Rigtrup,A.V.Virkar,J.Am.Ceram.Soc.,1992,75,36.
    [12]L.K.Frevel,C.K.Saha,D.R.Petersen,J.Mater.Sci.1995,30,3734.
    [13]J.M.Tian,J.W.Li,L.M.Dong,J.Am.Ceram.Soc.1999,82,2548.
    [14]P.K.Panda,L.Mariappan,V.A.Jaleel,T.S.Kannan,A.Amroune,J.Du bois,G.Fantozzi,J.Mater.Sci.1996,31,4277.
    [15]J.Zhang,J.C.Jeong,J.H.Lee,C.W.Won,D.J.Kim,C.O.Kim,Mater.Res.Bull.2002,37,319.
    [16]G.McMahon,G.J.C.Carpenter,T.F.Mails,J.Mater.Sci.1991,26,5655.
    [17]S.Nakashima,H.Harima,phys.stat.sol.(a) 1997,162,39.
    [18]C.H.Shek,J.K.L.Lai,T.S.Gu,and G.M.Lin.NanoStructured Mater.,1997,8(5),605.
    [19]Rafal R.Ciechonski Device characteristics of sublimation grown 4H-SiC layers.
    [20]M.B.Sigman,J.AliGhezelbash,T.Hanrath,A.E.Saunders,F.Lee,B.A.Korgel,J.Am.Chem.Soc.,2003,125,16050.
    [1] G. A. Slack, "Nonmetallic crystals with high thermal conductivity", J. Phys. Chem. Solids, 34[5] 321-335 (1973).
    [2] A. Anderson, and R. B. Kaner, "A solid-state metathesis route to MgSiN_2", Chem. Mate., 17[8]2155-2161 (2005).
    
    [3] Z. Lences, K. Hirao, S. Kanzaki, M. J. Hoffmann, and P. Sajgalik, "Reaction sintering of fluorine-doped MgSiN_2", J Euro. Ceram. Soc, 24[12] 3367-3375 (2004).
    [4] R. G. Blair, "The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials", p. 177-201 in Ph.D. Thesis (CIP-DATA Library Technische Universiteit Eindhoven (Eindhoven University of Technology), Eindhoven, The Netherlands, 2000).
    [5] H. T. Hintzen, P. Swaanen, R. Metselaar, W. A. Groen, and M. J.Kraan, "Hot-pressing of MgSiN2 ceramics",J. Mater. Sci. Lett., 13 1314-1316 (1994).
    [6] R. G. Blair, A. A. KUDYBA-JANSEN, P. GERHARTS, H. T. HINTZEN, R. METSELAAR, "Preparation, characterization and properties of MgSiN_2 ceramics", J Mater. Sci.: Mater. Electron., 13[2] 63-75 (2002).
    [7] G. A. Slack, pp. 1 in Solid-State Physics Vol. 34, edited by F. Seitz, D. Turnbull and H. Ehrenereich Academic Press, New York, 1979.
    [8] J. David and J. Lang, "Sur un Nitrure Double de Magnesium et de Silicium", C. R. Acad. Sci. Paris., 261 1005-1007 (1965).
    [9] F. F. Grekov and B. V. Chernovets, "Methods for MgSiN_2 synthesis", Russ. J. Appl. Chem., 77[8] 1223 (2004).
    [10]R. J. Bruls, H. T. Hintzen and R. Metselaar, "Preparation and. characterization of MgSiN_2 powders", J Mater. Sci., 34 4519-4531 (1999).
    [11]G. H. Peng, G. J. Jiang, H. R. Zhuang, W. L. Li and S. Y. Xu, "A novel route for preparing MgSiN_2 powder by combustion synthesis", Mat. Res. Bull., 397[1-2] 65-68 (2005).
    [12]Z. Lenoes, K. Hirao, Y. Yamauchi and S. Kanzaki, "Reaction synthesis of magnesium silicon nitride powder",J. Am. Ceram. Soc., 86[7] 1088-1093 (2003).
    [13]G. F. Zou, B. Hu, K. Xiong, H. Li, C. Dong, J.B. Liang, and Y. T. Qian, "Single-crystalline alpha silicon-nitride nanowires:Large-scale synthesis,characterization,and optic properties',Appl.Phys.Lett.,86 181901(2005)
    [14]G.F.Zou,C.Dong,K.Xiong,H.Li,C.L.Jiang,and Y.T.Qian,"Low-temperature solvothermal route to 2H-SiC nanoflakes" Appl.Phys.Lett.,88071913(2006)
    [15]Janes,RA;Low,MA and Kaner,RB" Rapid Solid-State Metathesis Routes to Aluminum Nitride",Inorg.Chem.,42(8) 2714-2719(2003).
    [16]C.Z.Wu,Q.Yang,C.Huang,D.Wang,P.Yin,T.W.Li and Y.Xie,"Facile solvent-free synthesis of pure-phased AIN nanowhiskers at a low temperature",J.Solid.State.Chem.,177 3522-3528(2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700