不同形貌的铌基和钨基纳米材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统地研究了溶剂热方法的合成条件、气—固反应的反应条件对制备纳米材料和改性纳米材料的影响,并用SEM、TEM、XRD、XPS、IR、Raman等技术对合成和改性的纳米材料进行了结构表征。具体做了以下几个方面的工作:
     (1)以为NbCl_5原料,用溶剂热方法制备了不同长径比的Nb_2O_5纳米棒、三维Nb_2O_5纳米网和多边形Nb_2O_5纳米棒片,并研究了反应温度、反应时间、反应物浓度以及溶液pH值对合成反应的影响,实验表明235℃为最佳反应温度。用SEM、TEM、XRD对其结构进行了表征。得到长度约为300nm、500nm、800nm和1μm,直径约为50-80nm的Nb_2O_5纳米棒和具有三维结构特征的Nb_2O_5纳米树—一头逐渐变细的树干大约长1—2μm,直径约80—100nm,树枝相对较小,长约100—500nm,直径约40—80nm以及约100nm厚,直径为300-500nm的Nb_2O_5多边形纳米片。纳米棒和纳米片均由Nb_2O_5单晶组成。
     (2)用一维Nb_2O_5纳米棒和三维Nb_2O_5纳米网作为模板与H_2S气体反应得到核壳结构的一维和三维Nb_2O_5/NbS_2纳米电缆,用Nb_2O_5多边形纳米片作为模板与H_2S气体反应得到NbS_2多边形纳米片。研究了反应温度、反应时间对合成一维、三维Nb_2O_5/NbS_2纳米电缆和NbS_2多边形纳米片的影响,实验表明适宜的反应温度时780℃。并用SEM、TEM、XRD对其结构进行了表征。Nb_2O_5纳米棒硫化后,得到由六方NbS_2包裹的正交Nb_2O_5一维和三维Nb_2O_5/NbS_2纳米电缆,硫化产物遗传了反应物的形貌。若反应3min,壳由2-5层NbS_2组成,约1.2-3nm厚;若反应6min,壳由4-10层NbS_2组成,约2.4-6nm厚。Nb_2O_5多边形纳米片硫化后,得到由六方NbS_2和正交Nb_2O_5混合相组成的多边形纳米片,NbS_2-Nb_2O_5多边形纳米片的厚度约为100nm,直径在300-500nm之间。
     (3)用Nb_2O_5纳米棒作为模板与NH_3气体反应得到一维纳米棒;用多边形Nb_2O_5纳米片作为模板与NH_3气体反应得到多边形纳米片。讨论了反应温度、反应时间对合成一维氮化物纳米棒和多边形氮化物纳米片的影响。并用SEM、TEM、XRD对其结构进行了表征。氮化产物分别为一维Nb_(3.49)N_(4.56)O_(0.44)纳米棒和多边形Nb_(3.49)N_(4.56)O_(0.44)纳米片,均由Nb_(3.49)N_(4.56)O_(0.44)单晶组成,它们也遗传了反应物的几何形貌和尺寸大小。
     (4)以WEl_6和FeCl_3为原料,用溶剂热方法制备了FeWO_4纳米花,用SEM、TEM、XRD、XPS、Raman和IR对其结构进行了表征,并研究了它们的磁性能。当改变WCl_6/FeCl_3的摩尔比值时,实现从长的、细的WO_3纳米线到短的、粗的纳米线束,到短的纳米线束和纳米片的混合物,到含有短的纳米线束的‘沙漠玫瑰'类结构,再到完全变成3-D纳米花的转变,最后完全变成纳米片。测定了3-D FeWO_4纳米花的光致发光性能。3-D FeWO_4纳米花的磁性测定结果表明,3-D FeWO_4纳米花在60K处发生反铁磁转变,但是块状FeWO_4的Neel温度为66K或者75K,比FeWO_4纳米花要高一些,可能是由于FeWO_4纳米花的小尺寸所致。
The effects of different synthysis conditions by solvothermal method on generation of nanomaterials,different reacting conditions by gas-solid reaction on modify of nanomaterials have been investigated in this work.The nanomaterials were charactered by SEM,TEM,XRD,IR,XPS and Raman techelonegies.These works as fellow:
     (1) Novel orthorhombic Nb_2O_5 nanorods and polygonal Nb_2O_5 platelets have been generated by a simple solvothermal technique.The geometry evolution of the resultant Nb_2O_5 from amorphous nanoparticles to crystallized particles,from polygonal platelets to well-elongated nanorods has been studied in detail.The processing parameters,including the reaction temperatures,reaction time,concentration of the precursors,and pH values of the solution,that affect the shape and size of the nanorods have been investigated.The nanomaterials were charactered by SEM,TEM and XRD technologies.
     (2) One-dimensional(1-D) NbS_2/Nb_2O_5 nanocables have been generated by a two-step process,a simple solvothermal technique for a Nb_2O_5 nanorod core and subsequent reaction with H_2S to form the NbS_2 shells at 800℃.Under optimal conversion conditions,the final geometry features of the sulfide-sheathed oxide nanocables are predetermined by the size and morphology of the Nb_2O_5 nanorods which grow along the equivalent crystallographic directions of[110]in the orthorhombic Nb_2O_5.Three-dimensional(3-D) Nb_2O_5/NbS_2 cabled networks have been synthesized via gas-solid reactions between the three-dimensional(3-D) Nb_2O_5 single crystalline nanostructures and H_2S gas.The nanostructures produced by 3 min sulphidization usually consist of 2-5 layers of lattice fringe.Those reacted for 6 min comprise 4-10 NbS_2 layers.
     (3) The reactions of the Nb_2O_5 nanoplatelets with NH_3 or the reactions of the Nb_2O_5 nanorods with NH_3 lead to another two types of interesting structures:The Nb_(3.49)N_(4.56)O_(0.44) nanoplatelets and the Nb_(3.49)N_(4.56)O_(0.44) nanorods.The Nb_2O_5 nanoplatelets can be employed asprecursors for the creation of the Nb_(3.49)N_(4.56)O_(0.44) nanoplatelets and the Nb_(3.49)N_(4.56)O_(0.44) nanorods.By modifying the processing parameters,we have subsequently achieved nanoplatelets and nanorods with tuneable geometry identical to their parent oxide nanoplatelets,which is important for understanding nanostructure processing.
     (4) we describe the first successful creation of 1-D Fe-doped tungsten oxide and ferberite nanowires by employing a simple solvothermal technique,and then uncover the interesting evolution secrets toward a class of complex and amazingly elegant 3-D flower-like structures made of 6-folded blades of ferberite.It is found that different Fe ions addition has a profound impact on the geometry and morphology of the products.The resulting nanostructures obtained under diverse Fe ions additions in respective chloride solvents demonstrate clearly the geometry evolution routes of these structures,from long and fine(bundled and ultra thin) WO_3 nanowires to short and heavily bundled nanowires, and to irregular mixture of short nanowires and nanoplatelets,then to 'desert rose' type structures accompanied with many nanoparticles,and eventually to completely converted 3-D nanoflowers,along with the increase of the Fe concentration.
引文
[1]Kroto H W,Heath J R,O'Brien S C,et al.C_(60):Buckminsterfullerene.Nature,1985,318:162
    [2]Iijima S,Helical microtubules of graphitic,carbon.Nature,1991,354(7):56-59
    [3]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.1-10
    [4]Nasreen G C,Luyken R J,Cherrey K,et al.Boron nitride nanotubes.Science,1995,296(18):966-967
    [5]Weng Sieh Z,Cherrey K,Chopra N G,et al.Synthesis of B_xC_xN_x nanotubules.Phys Rev B,1995,51(16):11229-11232
    [6]a)Tenne R,Margulis L,Genutand M,et al.Polyhedral and cylindrical structures of tungsten dissuphide,Nature,1992,360(3):444-446.
    b) Christoph Schuffenhauer,Gerhard Wildermuth,Jurgen Felsche et al.How stable are inorganic fullerene-like particles? Thermal analysis(STA) of inorganic fullerene-like NbS_2,MoS_2,and WS_2in oxidizing and inert atmospheres in comparison with the bulk materialw.Phys.Chem.Chem.Phys.,2004,6,3991-4002
    [7]Feldman Y,Wasserman E,Srolovitt D J,et al.High-rate,gas-phase growth of MoS_2nested inorganic fullerenes and nanotubes.Science,1995,267(13):222-225
    [8]Zhu Y Q,Hu W B,Hsu W K,et al.SiC-SiO_x heterojunction in nanowires.J.Mater.Chem.,1999,9(12):3173-3178
    [9]Qian F,Gradecak S,Li Y,et al,Nano.Lett.2005,5(11),2287-2291.
    [10]Zhu Y Q,Hu W B,Hsu W K,et al.Tungsten Oxide Tree-Like Structures.Chemical Physics Letters,1999,309,327
    [11]Xia Y,Yang P,Sun Y,etal.One-dimensional nanostructures:Synthesis,Characterization,and Applications.Adv.Mater.,2003,15(5),353-389
    [12]Song J H,Messer B,Wu Y,et al.MMo_3Se_3(M=Li,Na,Rb,Cs,NMe_4) Nanowire Formation via Cation Exchange in Organic Solution.J.Am.Chem.Soc.,2001,123(39):9714-9715
    [13]Jana N R,Gearheart L,Murphy C J,Wet Chemical Synthesis of High Aspect Ratio CylindricalGold Nanorods.J.Phys.Chem.B,2001,105(19):4065-4067
    [14]Greene L E,Law M,Goldberger J,et al.Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays.Angew.Chem.Int.Ed.,2003,42,3031-3034
    [15]Li B,Xie Y,Huang J,et al.Solvothermal Route to Tin Monoselenide Bulk Single Crystal with Different Morphologies.Inorg.Chem.,2000,39:2061-2064
    [16]Pacholski C,Kornowski A,Weller H,Self-assembly of ZnO:from Nanodots to Nanorods.Angew.Chem.Int.Ed.,2002,1(7)41:1188-1191
    [17]Guo L,Ji Y L,Xu H,et al.Regularly Shaped,Single-Crystalline ZnO Nanorodswith Wurtzite Structure.J.Am.Chem.Soc.,2002,124:14864-14865
    [18]Wu M L,Chen D H and Huang T C,Preparation of Au/Pt Bimetallic Nanoparticles in Water-in-Oil Microemulsions.Chem.Mater.,2001,13(2):599-606
    [19]Walther M,Kaplon E and Bhat R,Carder capture and quantum confinement in GaAs/AlGaAs quantum wire lasers grown on V-grooved substrates.Appl.Phys.Lett.,199260(5),521-523
    [20]Niu J,Sha J,Yang D,et al.Crystallization and Disappearance of defects of the annealed silicon nanowires.Microelectron.Eng.,2003,66(1-4):65-69
    [21]Han W,Fan S,Hu Y,et al.Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction.Science,1997,277(5330):1287-1289
    [22]Wagner R S,Ellis W C,Vapor-Liquid-Solid Mechanism of Single Crystal Growth.Appl.Phys.Lett.,1964,4(5):89-90
    [23]Morales A M,Lieber C M,A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.Science,1998,279(5348):208-211
    [24]Huang M H,Wu Y,Yang P,et al.Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport.Adv.Mater.,12001,3(2):113-116
    [25] Yuan Z, Zhang Z, Su B , et al. A simple method to synthesis single-crystalline manganese oxide nanowires.Chem. Phys. Lett., 2003,378(3-4):349-353
    [26] Gao Y, Jiang P, Xie S S, et al.Synthesis,characterization and self-assembly of silver nanowires.Chem. Phys. Lett., 2003,380(1-2):146-149
    [27] Y'm Y, Liu Y, Xia Y, et al.Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Weil-Defined Sizes, Shapes, and Structures.J. Am.Chem. Soc,, 2001,23(36):8718-8729
    [28] a)Jackson J B, Halas N J,Silver nanoshells: variations in morphologies and optical properties.Journal of Physical Chemistry B, 2001, 105(14): 2743-2746.
    
     b)Shuijin Lei, Kaibin Tang, Qing Yang,et al.Solvothermal Synthesis of Metastable γ-MnS Hollow Spheres and Control of Their Phase.Eur. J. Inorg. Chem.2005:4124-4128.
    
    c)Zhengshui Hu, Lanying Li, Xiaodong Zhou, et al.Solvothermal synthesis of hollow ZnS spheres.Journal of Colloid and Interface Science ,2006,294:328-333
    [29] Westcott S L, Oldenburg S J, Lee T R, et al.Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions.Chemical Physics Letters, 1999, 300(5-6): 651-655.
    [30] Younan Xia, Naomi J Halas,Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures.MRS Bulletin, 2004, 30(5): 338-348.
    [31] Traci Jensen, Lance Kelly, Anne Lazarides, et al.Electrodynamics of noble metal nanoparticles and nanoparticle clusters.Journal of Cluster Science, 1999, 10(2):295-317
    [32] Kottmann J P, Martin O J F, Smith D R, et al.Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B,Condensed Matter and Materials Physics, 2001, 64(23): 1-10.
    [33] Ivan O Sosa, Cecila Noguez, Ruben G Barrera,Optical properties of metal nanoparticles with arbitrary shapes.Journal of Physical Chemistry B, 2003,107(26): 6269-6275.
    [34] Sun Yugang, Xia Younan. Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. The Analyst, 2003, 128(6):686-691
    [35] Chen Sihai, Webster S, Czerw R, et al. Morphology effects on the optical properties of silver nanoparticle.Journal of Nanoscience and Nanotechnology, 2004, 4(3):254-259.
    [36] Catherine J, Murphy, Nikhil R Jana. Controlling the aspect ratio of inorganic nanorods and nanowires.Advanced Materials, 2002,14(1): 80-82.
    [37] Zhou H H, Fan F R, Jiang Y X, et al.SERS and SEM characterization on silver nanocubes with various sizes, Proceedings of the XIX International Conference on Raman Spectroscopy.Gold Coast, Queensland, Austra: CSIRO Publishing, 2004.246-247.
    [38] Lisa A Dick, Adam D McFarland, Christy L Haynes, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced raman spectroscopy (SERS):improvements in surface nanostructure stability and suppression of irreversible loss. Journal of Physical Chemistry B, 2002,106(4): 853-860.
    [39] Cao Yunwei, Jin Rongchao, Chad A Mirkin. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection.Science, 2002, 297(5586):1536.
    [40] Stuart D A, Haes A J, Yonzon C R. et al. Biological applications of localised surface plasmonic phenomenae.IEEProceedings-Nanobiotechnnology, 2005, 152(1):13-32.
    [41] Kadir Asian, Ignacy Gryczynski, Joanna Malicka, et al. Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology,2005,16(1):55-62
    [42] Yugang Sun, Younan Xia. Shape-controlled synthesis of gold and silver nanoparticles.Science, 2002, 298(5601):2176-2179
    [43] Rongchao Jin, Yunwei Cao, Chad A Mirkin, et al. Photoinduced conversion of silver nanospheres to nanoprisms.Science, 2001, 294(5548): 1901-1903.
    [44] Yu Dabin, Vivian Wing-Wah Yam. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.Journal of Physical Chemistry B, 2005,109(2): 5497-5503.
    [45] Zheng X W, Zhu L Y, Yan A H, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions.Journal of Colloid and Interface Science,2003,268(2): 357-361.
    [46] Zheng X W, Zhu L Y, Wang X J, et al. A simple mixed surfactant route for the preparation of noble metal dendrites,Journal of Crystal Growth, 2004, 260:255-262.
    [47] Debao Wang, Caixia Song, Zhengshui Hu, et al. Synthesis of silver nanoparticles with flake-like shapes.Materials Letters, 2005, 59(14-15): 1760-1763.
    [48] Sun Yugang, Xia Younan,Multiple-welled nanotubes made of metal.Advanced Materials, 2004,16(3): 264-268.
    [49] Sun Yugang, Brian T Mayers and Xia Younan. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors.Nano Letters, 2002, 2(5): 481-484
    [50] Sun Yugang, Byron Gates, Brian Mayers, et al. Crystalline silver nanowires by soft solution processing.Nano Letters, 2002, 2(2): 165-168
    [51] Sun Yugang, Yin Yadong, Brian T Mayers, et al. Uniform silver nanowires synthesis by reducing AgNO_3 with ethyleneglycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002,14(11):4736-4745
    [52] Xia Younan, Yang Peidong, Sun Yugang, et al. One-dimensional nanostructures: synthesis, characterization, and applications.Advanced Materials, 2003, 15(5):353-389
    [53]Parkinson B,The Emerging Art of Solid-State Synthesis Science,1995,270:1157-1158
    [54]Li Y D,Duan X F,Oian Y T,et al.Solvothermal Co-reduction Route to the Nanocrystalline Ⅲ-Ⅴ Semiconductor InAs.J.Am.Chem.Soc.,1997,119(33):7869-7870
    [55]Murray C B,Norris D J,Bawendi M G.Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites.J.Am.Chem.Soc.,1993,115(119):8706-8715
    [56]Trentler T J,Denler T E,Bertoneetal J ESynthesis of TiO_2 nanocrystals by nonhydrolytic solution-based reactions.J.Am.Chem.Soc.,1999,121(7):1613-1649
    [57]Green M,Brien P O,A simple one phase preparation of organically capped gold nano-crystals.Chem.Commun.,2000,(3):183-184
    [58]Rockenberger J,Scher E C and Alivisatos A P,A new nonhydrolytic single-precursorapproach to surfactant-capped nanocrystals of transition metal oxides.J.Am.Chem.Soc.,1999,121(49):11595-11596
    [59]Li J,Chen Z,Wang R J,et al.Low temperature route towards new materials:Solvothermal synthesis of metal chalcogenides in ethylenediamine.Coordination Chemistry Reviews,1999,192:707-735
    [60]陈震,郑曦,陈日耀等.有机溶剂热生长晶体及其应用.材料研究学报,2001,15(2):151-158
    [61]钟淮真,何晓云,李国强等.有机溶剂热生长技术制备硫族化合物及其光学特性的研究.感光科学与光化学,2004,22(6):420-426
    [62]Liao J H,Kanatzidis M G.Hydrothermal polychalcogenide chemistry.Stabilization of selenidomolybdate,[Mo_9Se_(40)]~(8-),a cluster of clusters,and[Mo_3Se_(18)]_n~(2n-) a polymeric polyselenide novel phases based on trinuclear[Mo_3Se_7]~(4+) building blocks.Inorg.Chem.,1992,31(3):431-439
    [63]Ballman A A,Laudies R A,The Art and Science of Growing crystals,New York,London,Sydney:John Wileg&Sons.Inc.,1963
    [64]仲维卓,华素坤.晶体生长形态学.北京:中国科技大学出版社,1999.50-60
    [65]仲维卓,人工晶体.第二版.北京:科学出版社,1994.515
    [66]施尔畏,夏长泰,王步国.水热法的应用与发展.无机材料学报,1996,11(2):193-206
    [67]张立德,牟季美.纳米材料与纳米结构,北京:科学出版社.2002:133
    [68]An Y,Feng S,Xu Yihua,et al.Hydrothermal Synthesis and Characterization of a New Potassium Phosphatoantimonate,K_8Sb_8P_2O_(29)·8H_2O.Chem.Mater.,1996,8:356-359
    [69]Zhao C,Feng S,Hydrothermal synthesis of the complex fluorides LiBaF_3 and KMgF_3 with perovskite structures under mild conditions.Chem.Commun.,1996,1641-1642
    [70]Deng H,Wang J W,Peng Q,et al.Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes.Chem.Eur.J.,2005,11(22):6519-6524
    [71]Hou B,Li Z J,Xu Y,et al.Solvothermal synthesis of single-crystalline BaTiO_3nanocubes in a mixed solution.Chem.Lett.,2005,34(7):1040-1041
    [72]Kuo C L,Kuo T J,Huang M H.Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures.J.Phys.Chem.B,2005,109(43):20115-20121
    [73]Yin H B,Wada Y,Kitamura T,et al.Novel synthesis of phase-pure nano-particulate anatase and ruble TiOz using TiCl_4 aqueous solutions.J.Mater.Chem.,2002,12(2):378-383
    [74]Zhang Y C,Wang G Y,Hu X Y,et al.Phase-controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an air-stable single-source molecular precursor.J.Cryst.Growth,2005,284(3-4):554-560
    [75]Wang W Z,Poudel B,Yang J,et al.High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach.J.Am.Chem.Soc.,2003,127(40):13792-13793
    [76] Wang W Z, Poudel B, Wang D Z. Synthesis of PbTe nanoboxes using a solvothermal technique.Adv. Mater., 2005,17(17): 2110-2114
    [77] Xiong Y J, Xie Y, Du G A, et al. A solvent-reduction and surface-modification technique to morphology control of tetragonal InzS_3 nanocrystals.J. Mater. Chem.,2002, 12(1):98-102
    [78] Zhang Z K. Synthesis of high quality CdS nanorods by solvothermal process and their photoluminescence.J. Nanopart. Res., 2005, 7(6): 685-689
    [79] Deng Z X, Lin X Q, Tong Z H,Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route.Inorg. Chem., 2002,41(4): 869-873
    [80] Dai J, Jiang Z J, Li W G, et al. Solvothermal preparation of inorganic-organic hybrid compound of [(ZnS)(2)(en)](infinity) and its application in photocatalytic degradation.Mater. Lett., 2002,55(6): 383-387
    [81] Yu S H, Yang J, Qian Y T, et al. Optical properties of ZnS nanosheets, ZnO dendrites,and their lamellar precursor ZnS}(NH_2CH_2CH_2NH_2)_(0.5) .Chem. Phys. Lett.,2002, 361(5-6):362- 66
    
    [82] Deng Z X, Li L B, Li Y D, et al. Novel Inorganic-Organic-Layered Structures: Cry-stallographic Understanding of Both Phase and Morphology Formations of One-Dimensional CdE(E=S, Se, Te) Nanorods in Ethylenediamine.Inorg. Chem.,2003, 42(7): 2331-234
    
    [83] Bibby D M, Dale M P. Synthesis of silica-sodalite from nan-aqueous systems. Nature,1985, 317: 157-158
    [84] Huo Q, Xu R R, Li S. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc. Chem. Commun.,1992: 875-876
    [85] Roberts M A, Sankar G, Thomad J M, et al. Synthesis and Structure of a Layered Titanosilicate Catalyst with five-Corrordinate Titanium.Nature, 1996, 381:401-404
    [86] Zheng N F, Bu X H, Feng P Y Pentasupertetrahedral clusters as building blocks for a three-dimensional sulfide supedattice.Angew.Chem.Int.Ed.Engl.,2004,43(36):4753-4755
    [87]Fujihare S,Maeda T,Ohgi H,et al.Hydrothermal routes to prepare nanocrystalline mesoporous SnO_2 having high thermal stability.Langmuir,2004,20(15):6476-6481
    [88]Shi F N,Shen Z,You X Z,et al.[H_2(C_4H_(10)N_2)]_2(H_2PO_4)4:hydrothermal synthesis and single crystal structure of an inclusive supramolecular phosphoric salt.J.Mole.Stru.,2000,523:143-147
    [89]Zhao E,Zhao X M,Zheng H G,Solvothermal reduction-polymerization route to linear conjugated nitrile polymer nanowires and circular nanostructures.Mater.Chem.Phys.,2006,95(1):135-139
    [90]Choi J L,Gillan E G,Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor.Inorg.Chem.,2004,44(21):7385-7393
    [91]Cao J M,Ma X J,Zheng M B,et al.Solvothermal preparation of single-crystalline gold nanorods in novel nonaqueous microemulsions.Chem.Lett.,2005,34(5):730-731.
    [92]Cao M H,Hu C W,Wang E B,The First Fluoride One-Dimensional Nanostructures:Microemulsion-Mediated Hydrothermal Synthesis of BaF_2 Whiskers.J.Am.Chem.Sot.,2003,125:11196-11197
    [93]张朝平,邓伟,胡林等.微乳液法制备超细NI-Fe复合物微粒.无机材料学报,2001,16:481-485
    [94]张祖德,胡振波,刘清亮.EXAFS谱在生物无机化学中的应用.化学进展,1996,8:213-219
    [95]Sandra R,Whaley,English D S et al.Selection of Peptides with Semiconductor Binding Specificity for Directed Nanocrystals Assembling.Nature,2000,405:665-668
    [96]林德娟,沈水发,潘海波等.纳米复合固体超强酸SO_4~(2-)/CoFe_2O_4的制备和表征.无机化学学报,2000,16:757-762
    [97]余家国,赵修建,林立等.超亲水TiO_2/SiO_2复合薄膜的制备与表征.无机材料学报,2001,16:529-534
    [98]郭立信,于娟娟,李蕴才等.PNBA分子在银纳米粒子表面的吸附取向.科学通报,2000,45:571-574
    [99]张引,林春,黄景琴等.稀土Eu(Ⅲ)双酞菁衍生物LB膜的荧光性.无机化学学报,2000,16:561-566
    [100]Stornaff J J,Lazarides A A,Mucic R C et al.What Controls the Optical Properties of DNA-Linked Gold Nanoparticles Assemblies? J.Am.Chem.Soc.,2000,122:4640-4650
    [101]Zhu Huaiyong,Zheng Zhanfeng,Gao Xueping,et al.Structural Evolutionina Hydrothermal Reaction between Nb_2O_5 and NaOH Solution:From Nb_2O_5 Grainsto Microporous Na_2Nb_2O_6·2/3H_2O Fibers and NaNbO_3 Cubes.J.Am.Chem.Soc.,128(7):2373-2384,2006
    [102]黄银松,章俞之,胡行方.射频反应溅射氧化妮薄膜的电致变色性能研究.无机材料学报,2002,17(3):632-636
    [103]Robert L Karlinsey,Anderson T Hara,Keewook Yi,et al.Biomed.Mater.,2006,1:16-23
    [104]Chambon L,Pauly A,Germain J P,et al.A model for the responses of Nb_2O_5 sensors to CO and NH_3 gases.Sensors and Actuators B,1997,43:60-64
    [105]Takeo Hyodo,Junji Ohoka,Yasuhiro Shimizu,et al.Design of anodically oxidized Nb_2O_5 films as adiode-type H_2 sensing material.Sensors and Actuators B,2006,117:359-366
    [106]Rosenfeld D,Schmid P E,Szeles S,et al.Electrical transport properties of thin-film metal-oxide-metal Nb_2O_5 oxygen sensors.Sensors and Actuators B,1996,37:83-89
    [107]Feldmann C,Jungk H O,Polyol-Mediated Preparation of Nanoscale Oxide Particles. Angew. Chem. Int. Ed., 2001,40: 359-362
    [108] Pinna N, Antonietti M and Niederberger M, A novel nonaqueous route to V_2O_3 and Nb_2O_5 nanocrystals.Colloids Surf. A., 2004,250:211-213
    
    [109] Uekawa N, Kudo T, Mori F,et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol.J. Colloid Interface Sci., 2003,264:378-384
    
    [110] a) Mozetic M, Cvelbar U, Sunkara M K, et al. A method for the rapid synthesis of large quantities of metal oxide nanowires at lowtemperatures .Adv.Mater.,2005,17:2138-2142.
    
     b)Dacosta E, Avellaneda C O, Pawlicka A,Alternative Nb_2O_5-TiO_2 thin films for electrochromic devices. Journal of Materials Science, 2001,36:1407-1410
    
    [111] Wang H Y , Xu P and Wang T M, The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO_3 thin films.Materials and Design,2002,23:331-336
    
    [112] Yoon K H , Seo D K, Cho Y S , et al. Effect of Pt layers on the photoelectrochemical properties of a WO_3/p-Si electrode.J.Appl.Phys., 1998,84(7) :3954-3957
    
    [113] Qi H , Wang C Y , Liu ,Artificial lamellar mesostructures to WS_2 nanotubes.J. Adv .Mater.,2003,15(5) :411-413
    [114] Li X L , Liu J F and Li Y D, Large-Scale Synthesis of Tungsten Oxide Nanowires with High Aspect Ratio .Inorg.Chem., 2003, 42(3) :921-924
    [115] Lee K, Seo W, Park J T,Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods.J.Am.Chem., 2003, 125:3408.
    [116] Liu J G, Zhao Y and Zhang Z J, Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods.J. Phys.:Condens.Mater.2003,15:,L453-L461
    [117] Liu Z W, Bando Y and Tang C C, Synthesis of tungsten oxide nanowires. Chem.phys.Lett., 2003,372:179-182
    [118] LeeK,Seo W S,Park J T,Synthesis and Optical Properties of colloidal tungsten oxide nanorods.J.Am.Chem.Soc., 2003,125:3408
    [119] Hu J, Odom T and Leiber C M , Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes.Acc. Chem. Res.,1999,32:435-445
    [120] Pan Z W, Dai Z R and Wang Z L, Nanobelts of Semiconducting Oxides.Science, 2001,291:1947-1949
    [121] Zhu Y Q, Hu W B, Hsu W K, et al. Tungsten oxide tree-like structures Chem.Phys.,Lett.1999,309: 327-334
    [122] Zhao Y M, Li Y H, Ma R Z, et al. Growth and Characterization of Iron Oxide Nanorods/Nanobelts Prepared by a Simple Iron-Water Reaction.Small,2006,2:422-427
    
    [123] Miyazaki T, Kim H M, Kokubo T, et al.J. Ceramic. Soc. Jpn, 2001,109:929
    [124] Halbritter J, On the oxidation and on the superconductivity of niobium.Appl Phys A,1987,43:1-28
    [125] Velten D, Eisenbarrh E, Schanne N,et al. Biocompatible Nb_2O_5 thin films prepared by means of the sol-gel process. J. Mat. Sci.:Mat. Med., 2004,15:457-461
    [126] Robert L Karlinsey, Anderson T Hara, Keewook Yi, et al. Bioactivity of novel self-assembled crystalline Nb_2O_5 microstructures in simulated and human salivas .Biomed. Mater.,2006,1:16-23
    [127] Feldmann C, JungkH O J, Polyol-Mediated Preparation of Nanoscale Oxide Particles. Angew. Chem. Int. Ed. ,2001,40: 359-362
    [128] Pinna N, Antonietti M and Niederberger M, A novel nonaqueous route to V_2O_3 and Nb_2O_5 nanocrystals.Colloids Surf. A., 2004,250:211-213
    [129] Dacosta E, Avellaneda C O, Pawlicka A,Alternative Nb_2O_5-TiO_2 thin films for electrochromic devices.Journal of Materials Science ,2001,36:1407-1410
    [130] Hu J, Odom T and Leiber C M , Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes.Acc. Chem. Res., 1999,32,435-445
    [131] Zhao Y M, Li Y H, Ma R Z,et al. Growth and Characterization of Iron Oxide Nanorods/Nanobelts Prepared by a Simple Iron-Water Reaction.Small,2006, 2:422-427
    [132] Homyonfer M, Alperson B, Rosenberg Y, et al.Intercalation of Inorganic Fullerene-like Structures Yields Photosensitive Films and New Tips for Scanning Probe Microscopy J. Am. Chem. Soc., 1997,119:2693-2698
    
    [133] Markali J,Raleigh N C, Der Mechanismus der Titan-Getter-und Titan-Evaporpumpen.Mech. Properties Eng. Ceramics, Proc. Conf., 1960,93
    
    [134] Magrez A, Vasco E, Seo J W, et al. Growth of Single-Crystalline KNbO_3 Nanostructures. J. Phys.Chem. B, 2006,11:58-61
    [135] Jin Y Z, Hsu W K, Chueh Y L, et al. Large-scale production of NbS_2 nanowires and their performance in electronic field emission.Angew. Chem. Int. Ed.,2004,43:5670-5674
    
    [136] Edwards H K, Salyer P A, Roe M J, et al. Metallic Nanowires of Nb_3Te_4: A Nanostructured Chalcogenide.Angew. Chem. Int. Ed., 2005,44:3555-3558
    
    [137] Nath M,Rao C N R, New metal disulfide nanotubes.J. Am. Chem. Soc., 2001,123:4841-4842
    [138] Zhu Y Q, Hsu W K, Kroto H W et al. Carbon nanotube template promoted growth of NbS_2 nanotubes/nanorods.Chem. Comm., 2001,2184
    [139] Luo S, Zhou W, Zhang Z, et al., Conformal conversion from helical hexagonal InN microtubes to In_2O_3 counterparts.Appl. Phys. Lett., 2006,89: 093112
    [140] Li Y H, Zhao Y M, Ma R Z,et al. Novel Route to WO_x Nanorods and WS_2 Nanotubes from WS_2 Inorganic Fullerenes .J. Phys. Chem. B., 2006,110:18191-18195
    [141] Sim H, Choi D, Lee D,et al. Reproducible resistance switching characteristics of pulsed laserdeposited polycrystalline Nb_2O_5.Microelect Eng .,2005,80: 260-263
    [142] Ristic M, Popovic S and Music S, Sol-gel synthesis and characterization of Nb_2O_5 powders.Mat Lett., 2004,58: 2658-2663
    [143] Orel B, Krasovec U O, Macek M, et al. Comparative studies of "all sol-gel" electrochromic devices with optically passive counter-electrode films, ormolyte Li~+ ion-conductor and WO3_ or Nb_2O_5 electrochromic films .Solar Energy Mater & Solar Cells, 1999,56: 343-373
    [144] Choosuwan H, Guo R and Bhalla A S, Dielectric behaviors of Nb2O5(0.95):0.05TiO_2 ceramic and single crystal.Mat Lett. ,2002,54: 269-272
    [145] Velten D, Eisenbarth E, Schanne N,et al. Biocompatible Nb_2O_5 thin films prepared by means of the sol-gel process. J Mat Sci.Mat Med ., 2004,15: 457-461
    [146] Uchida M, Kim H M, Kokubo T, et al. Structural dependence of apatite formation on titania gels in a simulated body fluid.J Biomed Mat Res A, 2003,64:164-170
    [147] Cai Q, Paulose M, Varghese O K,et al The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation.J.Mat. Res., 2005,20: 230-236
    [148] Macak J M, Sirotona K and Schmuki P, Self-organized porous titanium oxide prepared in Na_2SO_4/NaF electrolytes.Electrochimica Acta., 2005,50: 3679-3684
    [149] Gong D, Grimes C A, Varghese O K,et al. Titanium oxide nanotube arrays prepared by anodic oxidation J Mat Res., 2001,16: 3331-3334
    [150] Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays .Nano Lett., 2005,5:191-195
    [151] Keller F, Hunter M S and Robinson D L , Structural Features of Oxide Coatings on Aluminum J. Electrochem. Soc., 1953,100:411-419
    [152] Brock A J, Wood G C, Hydroxyl ion and proton mobility during anodic oxidation of aluminium .Electrochimica Acta., 1967,12: 395-412
    [153]Li A P,Muller F,Bimer A,et al.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic aluminaJ.Appl.Phys.,1998,84:6023-6026
    [154]Popat K C,Mor G,Grimes C A,et al.Surface Modification of Nanoporous Alumina Surfaces with Poly(ethylene glycol).Langrnuir,2004,20:8035-8041
    [155]Halbritter J,On the oxidation and on the superconductivity of niobium.Appl Phys A,1987,43:1-28
    [156]Zwilling V,Darque Ceretti E,Boutry Forveille A,et al.Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy.Surf Interface Anal.,1999,27,629-637
    [157]Miyazaki T,Kim H M,Kokubo T,et al.Apatite forming ability of niobium oxide gels in a simulated body fluid.J Ceramic Soc Jpn.,2001,109:929
    [158]Hu W B,Zhao Y M,Liu Z L,et al.NbS_2/Nb_2O_5 nanocables.Nanotechnology,2007,18:095605
    [159]Zhao Y M,Hu W B,Li Y H,et al.Two-dimensional tungsten oxide nanowire networks.Applied Physics Letters,2006,89:133116
    [160]Zhou J,Gong L,Deng S Z,et al.Growth and field-emission property of tungsten oxide nanotip arrays.Appl.Phys.Lett.,2005,87:223108-223110
    [161]Yeh C L,Chuang H C,Experimental studies on self-propagating combustion synthesis of niobium nitride.Ceramics International,2004,30:733-743
    [162]Toth L E,Transition Metal Carbite and Nitrides.Academic Press,New York,1971.
    [163]李永良,宋教花,张涛.NbN沉积膜的抗腐蚀研究.真空科学技术,2002,22(5),395-398
    [164]Tessier F,Assabaa R,Marchand R.Mixed valent niobium nitrides and oxynitrides resulting from ammonolysis of alkaline niobates.J Alloys and Comp,1997,262-263:512-515
    [165]Angelkort C,Lewalter H,Warbichler P,et al.Formation of niobium nitride by rapid thermal processing.Spectroehimiem Acta Part A,2001,57:2077-2089
    [166]李耀刚,高濂,朱美芳.氨解法制备立方相氮化铌纳米粉体.华东大学学报,2005,31(1):1-4
    [167]Torche M,Schmerber G,Guemmaz M,et al.Non-stoichiometric niobium nitrides:structure and properties.Thin Solid Films,2003,436:208-212
    [168]Ma Jianhua,Dua Yihong,Qian Yitai,Low-temperature synthesis of nanocrystalline niobium nitride via a benzene-thermal route Journal of Alloys and Compounds,2005,296-298
    [169]Homyonfer M,Alperson B,Rosenberg Y,Sapir L,Cohen S R,Hodes G and Tenne R,J.Am.Chem.Soc.,1997,119:2693
    [170]Magrez A,Vasco E,Seo J W,et al.Growth of Single-Crystalline KNbO_3Nanostructures.J.Phys.Chem.B,2006,110:58-61
    [171]Nath M,Rao C N R,New metal disulfide nanotubes.J.Am.Chem.Soc.,2001,123:4841-4842
    [172]Zhu Y Q,Hsu W K,Kroto H W et al.Carbon nanotube template promoted growth of NbS_2 nanotubes/nanorods.Chem.Comm.,2001,7:2184-2185
    [173]Luo S,Zhou W,Zhang Z,et al.Conformal conversion from helical hexagonal InN microtubes to In_2O_3 counterparts.Appl.Phys.Lett.,2006,89:093112-093114
    [174]Li Y H,Zhao Y M,Ma R Z,et al.Novel Route to WO_x Nanorods and WS_2Nanotubes from WS_2 Inorganic Fullerenes.J.Phys.Chem.B.,2006,110:18191-18195
    [175]Qian F,Gradecak S,Li Y,Wen C Y,et al.Core/multishell nanowire heterostructures as multicolor,high-efficiency light-emitting diodes.Nano Lett.,2005,5(11):2287-2291
    [176]Milliron D J,Hughes S M,Cui Y,et al.Colloidal nanocrystal heterostructures with linear and branched topology.Nature,2004,430(6996):190-195
    [177]Bayer M,Hawrylak P,Hinzer K,et al.Coupling and Entangling of Quantum States in Quantum Dot Molecules.Science,2001,291(5503):451-453
    [178]Griffith W P,Raman studies on rock-forming minerals.Part Ⅱ.Minerals containing MO_3,MO_4,and MO_6 groups.J.Chem.Soc.A,1970,286-291
    [179]Frost Ray L,Weier Matt,Raman microscopy of autunite minerals at liquid nitrogen temperature.Spectrochimica Acta Part A,2004,60(10):2399-2409
    [180]王玉明,季寿元,丘第荣.黑钨矿类质同象系列的红外光谱研究.岩石矿物学杂志,1989,8(2):155-163
    [181]a) Feng M,Pan A L,Zhang H R,et al.Appl.Phys.Lett.,2005,86:141901.
    b) Lee K,Seo W S and Park J T,Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods J.Am.Chem.Soc.,2003,125:3408-3409
    [182]Dresdner H,Escobar C,Zeitschrift fur Kristallographie,Bd.,1968,127 S:61-67
    [183]Matres E G,Stusser N,Hofmann M,et al.Magnetic phases in Mn_(1-x)Fe_xWO_4 studied by neutron powder diffraction.Eur.J.Phy.B.,2003,32:35-42
    [184]Obermayer H A,Dachs H and Schr(o|¨)cke H,Investigations concerning the coexistence of two magnetic phases in mixed crystals(Fe,Mn)WO_4.Solid State Commun.,1973,12:779-784
    [185]Lang X Y,Zheng W T and Jiang Q,Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures.Phys.Rev.B,2006,73:224444
    [186]ZhaoY M,Dunnill C W,Zhu Y Q,et al.Low-Temperature Magnetic Properties of Hematite Nanorods.Chem.Mater.2007,19:916-921
    [187]Zheng X G,Xu C N,Nishikubo K,et al.Finite-size effect on Neel temperature in antiferromagnetic nanoparticles.Phys.Rev.B,2005,72:014462
    [188]Zhang Y C,Xing R and Hu X Y,A green hydrothermal route to copper nanocrystallites,Journal of Crystal Growth,2004,273:280-284
    [189]Choi H G,Jung Y H and D K Kim,Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet.J.Am.Ceram.Soc.,2005,88:1684-1686
    [190]Seo J W,Jun Y W,Ko S J,et al.In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B.,2005,109:5389-5391
    [191] Gu Z, Zhai T, Gao B, et al. Controllable Assembly of WO_3 Nanorods/Nanowires into Hierarchical Nanostructures.J. Phys. Chem. B. ,2006,110: 23829-23836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700