改性ZSM-5和丝光沸石催化剂上2-甲基萘择形甲基化和异丙基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线性多环芳烃(如2,6-二烷基萘)是重要的化工原料,其氧化后生成相应的羧酸是热致性液晶、耐热材料、人造纤维以及高性能工程塑料等聚合物的重要单体。在β,β’-位取代的2-甲基萘中,甲基取代的2-甲基萘由于在进一步氧化时条件温和,且没有碳损失,受到了越来越多的关注。而异丙基取代的2-甲基萘由于异丙基基团的空间位阻效应,可以获得较高的选择性。
     本论文对沸石分子筛催化2-甲基萘甲基化合成2,6-二甲基萘(2,6-DMN)进行了系统研究。发现ZSM-5分子筛是较为理想的催化剂,最佳反应条件为反应温度360℃、质量空速2 h-1、常压。提高反应压力降低了2,6-DMN选择性及2,6-/2,7-DMN比值。论文还对沸石分子筛催化2-甲基萘异丙基化合成2-甲基-6-异丙基萘(2,6-MIPN)进行了研究。发现HM分子筛是较为理想的催化剂,合适的反应条件为反应温度200℃、反应压力2.0MPa、物料配比2-甲基萘:异丙醇:环己烷=1:3:70。
     为了提高HZSM-5分子筛催化剂的稳定性,采用水热处理结合酸洗的方法对母体催化剂进行脱铝处理,发现550℃水热处理的催化剂,其稳定性显著提高。水热处理后的催化剂生成了较多的介孔,原料及产物分子在孔道内的扩散速率加快,导致2,6-DMN的产率增加;同时,催化剂酸强度有所降低、强酸中心数目有所减少,即减少了非择形催化反应的发生,提高了2,6-DMN的选择性;另外,强酸中心数目的减少也减少了积炭的生成,减少了原料异构化及产物间异构化反应,提高了2,6-/2,7-DMN比值。反应8 h后,2-甲基萘的转化率仍保持在13.4%,2,6-DMN选择性可达59.1%,在8 h的反应期内,2,6-DMN最高产率达到7.1%。采用NH4F和Pt复合改性的修饰方法对母体催化剂进行处理,一方面Pt的氢溢流效应可以减缓积炭生成,另一方面NH4F的脱铝作用可以降低催化剂酸强度和酸量,催化剂的稳定性和活性也得到改善。之后考察了HM催化剂上2-甲基萘甲基化的反应性能,发现提高反应压力、使用氢气做载气可以延缓催化剂积炭失活速率,MgO和CeO2复合改性可以提高催化剂选择性。
     在HM催化剂上考察了2-甲基萘异丙基化反应,由于异丙基基团的空间位阻效应,在母体催化剂上即获得了较高的2,6-MIPN选择性。对催化剂进行复合改性,发现CeO2主要覆盖催化剂外表面酸中心,抑制副反应发生,提高催化剂的择形性;MgO可以进入沸石孔道,降低催化剂内表面的酸强度,同时窄化了孔口,进一步提高催化剂的选择性,反应8 h后,3%MgO/20%CeO2/HM催化剂上,2,6-MIPN选择性高达89.5%。
Linear polynuclear aromatic hydrocarbons, such as 2,6-dialkylnaphthalene(2,6-DAN) are raw materials of advanced polymer materials. The corresponding acid produced by their oxidation is an important precursor used for thermotropic liquid crystal polymers, heat-resistant polymers, synthetic fibers and engineering plastics with superior properties. Amongβ,β'-alkylated isomers, the methylated 2-methylnaphthalene(2-MN) has attracted more and more attention because its oxidation to the corresponding carboxylic acid proceeds under mild conditions and without carbon loss. Because of the steric hindrance, the isopropylated 2-MN can gain higher 2,6-selectivity than the methylated one.
     In this paper, the methylation of 2-MN to 2,6-dimethylnaphthalene(2,6-DMN) over zeolite catalysts was studied. It was found that HZSM-5 was the appropriate catalyst for this reaction. Reaction temperature of 360℃, WHSV 2 h-1, atmospheric pressure were the optimal reaction conditions. With increasing reaction pressure, the selectivity of 2,6-DMN and 2,6-/2, 7-DMN ratio reduced. Here, the isopropylation of 2-MN to 2-methyl-6-isopropylnaphthalene (2,6-MIPN) over zeolite catalysts was also studied. It was found that HM was the appropriate catalyst for this reaction. The optimal reaction conditions were reaction temperature 200℃, reaction pressure 2.0MPa,2-methylnaphthalene:isopropanol:cyclohexane= 1:3:70.
     In order to improve the catalytic stability of HZSM-5 catalyst, the parent catalyst was firstly modified by hydrothermal treatment with acid leaching, it was found that the catalytic stability was improved with 550℃hydrothermal treated catalyst. It can be concluded that pore structure of HZSM-5 catalyst was modified by hydrothermal treatment, the increased mesopore volume enhanced diffusion of molecules, so that more 2,6-DMN emerged; at the same time, the acid strength and the number of strong acid sites of HZSM-5 catalyst were both reduced by hydrothermal treatment, especially for the reduction of non-shape-selective, the selectivity to 2,6-DMN increased; furthermore, as the reduction of the number of strong acid sites, the coke formation and the isomerization of 2-MN and DMNs were both decreased. After 8 h, the conversion of 2-MN was still 13.4%,2,6-DMN can reach 59.1%, among the 8 h, the maximum of 2,6-DMN was 7.1%. Secondly, the parent catalyst was modified by NH4F and Pt. On one hand, the coke formation was restrained through hydrogen overfall of Pt, On the other hand, the acid strength and the number of strong acid sites of HZSM-5 catalyst were reduced by NH4F, so that the catalytic activity and stability were improved. Thirdly, It can be seen that coke formation was restrained by enhancing reaction pressure and using H2 as carrier gas, MgO and CeO2 modified HM catalyst can improve the selectivity of 2,6-DMN.
     The isopropylation of 2-MN was studied on the HM catalyst, due to the steric hindrance, the selectivity of 2,6-MIPN was better over the parent catalyst. The external acid sites of HM catalyst was mainly deactivated by CeO2, MgO can enter into the inside of catalyst, modify the internal acid sites, and narrow the pore dimension, enhance the selectivity of 2,6-MIPN. After 8 h, the 2,6-MIPN selectivity can reach 89.5% over 3%MgO/20%CeO2/HM catalyst.
引文
[1]宋厚春,陆军.聚萘二甲酸乙二醇酯(PEN)的研究与发展[J].合成技术与应用,2003,18(6):17-20.
    [2]何慧,沈家瑞.新型高效包装用高分子材料-聚萘二甲酸乙二醇酯(PEN)[J].化工新材料,1998,26(1): 26-28.
    [3]McMahon R F, Greene J D, Peterson D A. Process for Preparing 2,6-Naphthalenedicarboxylic Acid[P]. US 61145575,2000.
    [4]Chen D, Zachmann H G. Glass-transition temperature of copolyesters of PET, PEN and PHB as determined by dynamic mechanical analysis [J]. Polymer,1991,32(9):1612-1621.
    [5]Lillwitz L D. Production of dimethyl 2,6-naphthalene dicerboxylate:precursor of polyethylene naphthalene [J]. Appl. Catal. A:Gen.,2001,221(1-2):337-358.
    [6]徐兆瑜.21世纪的新型高分子材料-聚荼二甲酸乙二醇酯(PEN)[J].化学推进剂与高分子材料,2002,(2):11-15.
    [7]何志荣,张俐霞,朱凌皓.2,6-萘二甲酸及其酯的制备和应用[J].煤化工,2001,29(1):51-56.
    [8]Argauer R J, Landolt G R. Synthesis of Zeolite ZSM-5[P].US 3702866,1972.
    [9]Kokotailo G T, Lawton S L, Olson D H et al. Structure of Synthetic Zeolite ZSM-5 [J]. Nature,1978,272:437-438.
    [10]王桂茹,王安杰,刘靖等.催化剂与催化作用[M].大连:大连理工大学出版社,2004.
    [11]李晓峰,吕志平,李玉平.丝光沸石应用研究现状与前景[J].太原科技,2004(3):73-77.
    [12]Weisz P B, Frilette V J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts [J].J. Phys. Chem.,1960,64(3):382-382.
    [13]Derouane E G, Gabelica Z. A novel effect of shape selectivity:molecular traffic control in zeolite ZSM-5 [J].J. Catal.,1980,65(2):486-489.
    [14]殷伟山.2-甲基萘择形烷基化合成2,6-二甲基萘的研究[D].大连:大连理工大学化工学院,2004.
    [15]白雪峰,吴伟,胡浩权.2,6-二甲基萘的制备方法[J].现代化工,2003,9(10):13-16.
    [16]2,6-二甲基萘生产技术及市场.中国化工信息网.2008.07.28.
    [17]Takagawa M. Process for producing 2,6-dimethylnaphthalene. US 5068480,1991.
    [18]Inamasa K, Fushimi N, Takagawa M. Process for producing 2,6-dimethyl naphthalene.US 5321178.1994.
    [19]Bergstroem C. Process for preparing 2,6-dimethylnaphthalene. WO 0034212,2000.
    [20]Sikkenga D L, Lamb J D. Preparation of Dimethylnaphthalene.US 5073630,1990.
    [21]Ozawa S, Takagawa M, Fujimori T. Process for producing of Dimethylnaphthalene.US 5446226,1995.
    [22]Vahteristo K, Halme E. Manufacturing of 2,6-Dimethylnaphthalene. US 5952534,1999.
    [23]日本三菱瓦斯化学公司拟投资建间二甲苯装置.化工世界网.2007.10.09.
    [24]国际聚萘二甲酸乙二酯市场发展.中华商务网.2001.08.14.
    [25]殷伟山,郭新闻,王祥生.择形催化合成2,6-二甲基萘的研究进展[J].石油化工,2003,32(11):1007-1011.
    [26]Fraenkel D, Cherniavsky M, Ittah B. Shape-selective alkylation of naphthalene and methylnaphthalene with methanol over H-ZSM-5 zeolite catalysts [J]. J. Catal.,1986,101 (2): 273-283.
    [27]高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石化出版社,1999,12-13.
    [28]Kuehne M A, Babitz S M, Kung H H, et al. Effect of framework Al content on HY acidity and cracking activity[J]. Appl. Catal. A:Gen.,1998,166(1):293-299.
    [29]Niwa M, Sawa M, Murakami Y. In:Proceedings of the ninth International congress on Catalysis[C]. Ottawa:1998.
    [30]Skeels G W, Breck D W, In:Proceedings of the sixth International Zeolite Conference[C].Guildford, U. K.:1984.
    [31]项寿鹤,任大立,王敬中等.HZSM-20沸石分子筛的水蒸气改性[J].催化学报,1994,15(3):217-220
    [32]杨平,于网林,奚正楷等.硅改性ZSM-5沸石分子筛的酸性、孔径和择形催化性能的研究[J].燃料化学学报,1995,22(1):48-52.
    [33]李邦银,高滋.丝光沸石的液固相类质同取代[J].催化学报,1990,11(6):454-460.
    [34]Park J N. Methylation of Naphthalene with Methanol over Beta, Mordernite, ZSM-12 and MCM-22 Zeolite Catalysts[J]. Korean Chem. Soc.,2002,23(7):1001-1006.
    [35]Matsuda T, Yogo K, Mogi Y, et al. Chemistry Letters,1990, (7):1085-1092.
    [36]沈剑平,闵恩泽.β—甲基萘歧化反应中HZSM—5择形性[J].高等学校化学学报,1993,14(6):845-848.
    [37]Mifuji Y Y, et al. Preparation of Diakylnaphthalene[P]. JP:04266834,1992-09-22.
    [38]Komatsu T, Yashima T, et al. Selective formation of 2,6-dimethylnaphthalene from 2-methylnaphthalene on ZSM-5 and metallosilicates with MFI structure [J]. Stud. Surf. Sci. Catal.,1994,84:1821-1828.
    [39]Tsutsui T K. Preparation for Producing Dimethylnaphthalene and Alkynaphthalene with Methallosilicate Catalyst[P]. US 6414208,2002.
    [40]Lillwitz L D, Song C S, Shen J P, et al. Selective Methylation Catalyst,Method of Catalyst Manufacture and Methylation Process[P]. WO 02060581,2002.
    [41]栗同林,刘希尧,王祥生.H β-沸石的氧化物改性对由β-甲基萘选择性合成2,6-二甲基萘反应的影响分子催化[J].催化学报,1997,11(5):383-386.
    [42]Weitkamp J, Neuber M. Shape selective reactions of alkylnaphthalenes in zeolite catalysts[J]. Stud. Surf. Sci. Catal.,1991,60:291-296.
    [43]Takagawa M, Shigematsu R, et al. Mehtod for Isomerizing Dimethylnaphthalene [P].US 5481055,1996.
    [44]Tanabe K, Holderich W F. Industrial application of solid acid-base catalyst[J]. Appl. Catal. A:Gen.,1999,181(2):399-434.
    [45]Katayama A, Toba M, Takeuchi G, et al. Shape-selective synthesis of 2,6-diisopro pylnaphthalene over H-mordenite catalyst[J]. J. Chem. Soc., Chem. Commun.,1991, (1):39-40.
    [46]Toba M, Mizukami F, Niwa S, et al. Isopropylation of naphthalene over solid acid catalysts. Symposium on shape selective catalysis in hydrocarbon processing and chemicals synthesis[J]. Presented before the division of petroleum chemistry, Inc.215th National Meeting, Am. Chem. Soc., Dallas, TX, March 29-April 3,1998,278-279.
    [47]Kim J H, Sugi Y, Matsuzaki T, et al. Effect of SiO2/A12O3 ratio of H-mordenite on the isopropylation of naphthalene with propylene[J]. Micropor. Mater.,1995,5:113-121.
    [48]Sugi Y, Tu X, Kim J H, et al. Coke deposition and Shape-selectivity in the alkylation of biphenyl and naphthalene over H-mordenite-effect of dealumination[A].Symposium on general papers and poster session presented before the division of petroleum chemistry, Inc.210th National Meeting, American Chemical Society Chicago, IL, August 20-25,1995.
    [49]Kim J H, Namba S, Yashima T. Para-selectivity of metallosilicates with MFI zeolite structure [J]. Zeolites,1991,11(1):59-63.
    [50]Kim J H, Sugi Y, Matsuzaki T, et al. Cerium impregnated H-mordenite as a catalyst for shape-selective isopropylation of naphthalene. Selective deactivation of acid sites on the external surface[J]. Appl. Catal. A:Gen.,1995,131:15-32.
    [51]Guisnet M, Magnoux P. Coking and deactivation of zeolites:influence of the pore structure[J]. Appl. Catal. A:Gen.,1989,54(1):1-27.
    [52]Song C S. Shape-selective isopropylation of naphthalene over H-mordenite catalysts for environmentally friendly synthesis of 2,6-dialkylnaphthalene [J]. C. R. Acad. Sci. Paris, Serie IIc,2000,3(6):477-496.
    [53]Song C S, Kirby S. Shape-selective alkylation of naphthalene over molecular sieve catalysts[J]. Am. Chem. Soc., Div. Pet. Chem.,1993,38 (4):784-787.
    [54]Song C S, Kirby S. Shape-selective alkylation of naphthalene with isopropanol over mordenite catalysts[J]. Micropor. Mater.,1994,2(5):467-476.
    [55]Horsley J A, Fellmann J D, Derouane E G, et al. Computer-assisted screening of zeolite catalysts for the selective isopropylation of naphthalene[J]. J. Catal.,1994,147(1): 231-240.
    [56]Schmitz A D, Song C S. Regioselective isopropylation of dinuclear aromatics over dealuminated mordenites catalysts [J]. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.,1995,40(4): 918-924.
    [57]Schmitz A D, Song C S. Shape-selective isopropylation of naphthalene. Reactivity of 2,6-diisopropylnaphthalene on dealuminated mordenites[J]. Catal. Today,1996,31:19-25.
    [58]Schmitz A D, Song C S. Shape-selective isopropylation of naphthalene over dealmuinated mordenites. Increasing β-substitution selectivity by adding water[J]. Catal. Lett.,1996, 40:59-65.
    [59]Brzozowski R, Skupinski W. Zeolite pore entrance effect on shape selectivity in naphthalene isopropylation[J].J. Catal.,2002,210(2):313-318.
    [60]Chu S J, Chen Y W. Shape-selective alkylation of naphthalene with isopropanol over large pore zeolites[J]. Appl. Catal. A:Gen.,1995,123:51-58.
    [61]张铭金,陈诵英,沈士德等.沸石分子筛催化剂上萘的择形异丙基化反应性能[J].催化学报,2000,21(2):143-146.
    [62]Zhang M, Zheng A M, Deng F, et al. Surface chemical modification of zeolites and their catalytic performance for naphthalene alkylation[J]. Science in China(Series B),2003, 46(2):216-223.
    [63]Armengol E, Corma A, Garcia H, et al. Acid zeolites catalysts in organic reactions. tert-Butylation of anthracene, naphthalene and thianthrene[J]. Appl. Catal. A: Gen.,1997,149:411-423.
    [64]Colon G, Ferino I, Rombi E, et al. Liquid — Phase alkylation of naphthalene by Isoporpanol over zeolites. Part 1:HY zeolites[J]. Appl. Catal. A:Gen.,1998,168(1):81-92.
    [65]Colon G, Ferino I, Rombi E, et al. Evidence of transalkylation during liquid — Phase isopropylation of naphthalene [J]. Reaction Kinetics and Catalysis Lettes,1998,63(1):3-8.
    [66]Brzozowski R, Dobrowolski J C, Jamroz M H, et al. Studies on Diisopropylnaphthalene substitutional isomerism[J]. J.Mol. Catal. A:Chem.,2001,170(1-2):95-99.
    [67]Glaser R, WeitkamP J. Supercritical carbon dioxide as a reaction medium for the zeolite-catalyzed alkylation of naphthalene [J]. Ind. Eng. Chem. Res.,2003,42(25):6294-6302.
    [68]Anand R, Maheswari R, Gore K U, et al. Isopropylation of naphthalene over modified faujasites:effect of steaming temperature on activity and selectivity[J]. Appl. Catal. A:Gen .,2003,249(2):265-272.
    [69]喻顺祥,王祥生.β沸石在萘烷基化反应中的形状选择性[J].催化学报,1998,19(3):271-272.
    [70]Ferino I, Monaci R, Rombi E, et al. Liquid-phase alkylation of naphthalene by isopropanol over zeolites Part II:Beta zeolites[J]. Appl. Catal. A:Gen.,1999,183:303-316.
    [71]Zhao X S, Lu G Q, Song C S. Mesoporous silica-immobilized aluminium chloride as a new catalyst system for the isopropylation of naphthalene [J]. Chem. Commun.,2001 (22):2306-2307.
    [72]Zhao X S, Lu Max G Q, Song C S. Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene[J]. J. Mol. Catal. A:Chem., 2003,191(1):67-74.
    [73]Cusumano J A. New technology and the environment[J]. CHEMTECH,1992,22(8):289-482.
    [74]Wang J, Park J N, Park Y K, et al. Isopropylation of naphthalene by isopropyl alcohol over USY catalyst:an investigation in the high-pressure fixed-bed flow reactor[J]. J. Catal.,2003,220(2):265-272.
    [75]Camblor M A, Corell C, Corma A, et al. Anew microporous polymorph of silica isomorphous to zeolite MCM-22[J]. Chem. Mater.,1996,8(10):2415-2417.
    [76]Kamalakar G, Kulkarni S J, Raghavan K V, et al. Isopropylation of naphthalene over modified HMCM-41, HY and SAPO-5 catalysts[J]. J. Mol. Catal. A:Chem.,1999,149:283-288.
    [77]Kamalakar G, Prasad M R, Kulkarni S J, et al. Vapor phase tert-butylation of naph thalene over molecular sieve catalysts[J]. Micorpor. Mesopor. Mater.,2002,52(3):151-158.
    [78]Loktev A S, Chekriy P S. Alkylation of binuclear aromatics with zeolite catalysts[J]. Stud. Surf. Sci. Catal.,1994,84:1845-1851.
    [79]袁冰,董伟峰,靳焜等.2-甲基-6-异丙基萘的分子筛催化合成、分离提纯和结构表征[J].分析测试学报,2006,25(1):6-11.
    [80]袁冰,董伟峰,李宗石等.改性HUSY沸石上β-甲基萘异丙基化反应性能研究[J].大连理工大学学报,2006,46(6):797-802.
    [81]Derouane E G, Andre J M, Lucas A A. Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves[J]. J. Catal.,1988,110(1):58-73.
    [82]Song C S, Ma X L, Schmitz A D, et al. Shape-selective isopropylation of naphthalene over mordenite catalysts-computational analysis using MOPAC. Symposium on shape selective catalysis in hydrocarbon processing and chemicals synthesis[M]. Presented before the division of petroleum chemistry, Inc.215th National Meeting, American Chemical Society, Dallas, TX, March 29-April 3,1998.280-284.
    [83]Song C S, Ma X L, Schmitz A D, et al. Shape-selective isopropylation of naphthalene over mordenite catalysts Computational analysis using MOAPC[J]. Appl. Catal. A:Gen.,1999, 182:175-181.
    [84]Tasi G, Mizukami F, Paliko I, et al. Positional isomerization of dialkynaphthalenes :A comprehensive interpretation of the selective formation of 2,6-DIPN over HM zeolite [J]. J. Phys. Chem. A,2001,105 (26):6513-6518.
    [85]刘毅,高滋.分子尺寸与沸石分子筛择形选择性[J].石油学报(石油加工),1996,12(3)35-39.
    [86]陈标华,林世雄.Y沸石催化剂上二异丙苯与苯反应机理及催化剂失活[J].石油学报(石油加工),1998,14(3):10-16.
    [87]喻顺祥,李光岩,李桂民.稀土浸渍处理对β沸石结构、酸性和催化性能的影响[J].石油学报(石油加工),1998,14(4):30-34.
    [88]Song C S, Shen J P, Reddy K M, et al. Shape-selective Fe-MFI catalyst for synthesis of 2,6-dimethylnaphthalene by methylation with mathanol[J]. Stud. Surf. Sci. Catal.,2007, 170:1275-1282.
    [89]郭新闻,王祥生,沈剑平等.4-甲基联苯与甲醇择形甲基化合成4,4’-二甲基联苯Ⅰ.氧化镁改性的与水热处理的HZSM-5催化剂的性能比较[J].石油学报(石油加工),2004,20(1):6-11.
    [90]Zhang C, Guo X W, Wang Y N, et al. Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO[J]. Chinese Chem. Lett., 2007,18(10):1281-1284.
    [91]Zhao L, Wang H B, Liu M, et al. Shape-selective methylation of 2-methylnaphthalene with methanol over hydrothermal treated HZSM-5 zeolite catalysts[J]. Chem. Eng.Sci. 2008,63 (21):5298-5303.
    [92]Bai X F, Sun K Y, Wu W, et al. Methylation of naphthalene to prepare 2,6-dimethyl Naphthalene over acid-dealuminated HZSM-12 zeblites[J]. J. Mol. Catal. A:Chem.,2009,314(1--2):81-87.
    [93]Ogura M, Shinomiya S, Tateno J, et al. Alkali-treatment technique-new method for Modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl. Catal. A:Gen.,2001,219(1-2):33-43.
    [94]Jin L J, Zhou X J, Hu H Q, et al. Synthesis of 2,6-dimethylnaphthalene by methylation Of 2-methylnaphthalene on mesoporous ZSM-5 by desilication[J]. Catal. Commun.,2008,10(3): 336-340.
    [95]Zhang W P, Han X W, Liu X M, et al. The stability of nanosized HZSM-5 zeolite:a high-resolution solid-state NMR study[J].Micropor. Mesopor. Mater.,2001,50(1):13-23.
    [96]Kowalak S, Khodakov A Y, Kustov L M, et al. IR spectroscopic study of acid sites in mordenites fluorinated under mild conditions[J]. J. Chem. Soc., Farady Trans.,1995,91(2): 385-388.
    [97]Borade R B, Clearfleld A. Effect of fluoride ions on the acidic and catalytic properties of beta zeolites[J]. J. Chem. Soc., Farady Trans.,1995,91(3):539-547.
    [98]Becker K A, Kowalak S. Catalytic properties of H Mordenite modified with fluorine [J]. J. Chem. Soc., Farady Trans.1,1985,81:1161-1166.
    [99]Mao R L, Le T S, Fairbairn M et al. ZSM-5 zeolite with enhanced acidic properties [J]. Appl. Catal. A:Gen.,1999,185:41-52.
    [100]Park J N, Wang J, Hong S I, et al. Effect of dealumination of zeolite catalysts on Methylation of 2-methylnaphthalene in a high-pressure fixed-bed flow reactor[J]. Appl. Catal. A:Gen.,2005,292:68-75.
    [101]Walsh D E, Rollmann L D. Radiotracer experiments on carbon formation in zeolites[J]. J. Catal.,1977,49:369-375.
    [102]Rollmann L D, Walsh D E. Shape selectivity and carbon formation in zeolites[J]. J.Catal.,1979,56:139-140.
    [103]赵桂利,田正华,王沛等.氢氛下萘异丙基化提高催化剂的活性[J].化工学报,2005,56(9):1694-1698.
    [104]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Appl. Chem.,1985,57(4):603-619.
    [105]Sing K. The use of nitrogen adsorption for the characterization of porous materials[J]. Coll. and Surf. A:Physico. and Eng. Asp.,2001,187-188:3-9.
    [106]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. J. Am. Chem. Soc.,1938,60 (2):309-319.
    [107]Xu M C, Wang W, Seiler M, et al. Improved Br(?)nsted acidity of mesoporous [Al]MCM-41 material treated with ammonium fluoride[J]. J. Phys. Chem.B.,2002,106(12):3202-3208.
    [108]Todorova S, Su B L. Propane as alkylating agent for benzene alkylation on bimetal Ga and Pt modified H-ZSM-5 catalysts:FTIR study of effect of pre-treatment conditions and the benzene adsorption[J]. J.Mol. Catal. A:Chem.,2003,201(1-2):223-235.
    [109]Lukyanov D B, Vazhnova T. Highly selective and stable alkylation of benzene with ethane into ethylbenzene over bifunctional PtH-MFI catalysts[J]. J. Mol. Catal. A:Chem.,2008, 279(1):128-132.
    [110]Lukyanov D B, Vazhnova T. A kinetic study of benzene alkylation with ethane into ethylbenzene over bifunctional PtH-MFI catalyst[J]. J. Catal.,2008,257(2):382-389.
    [111]Choudhary V R, Sivadinarayana C, Devadas P, et al. Characterization of coke on H-gallosilicate(MFI)propane aromatization catalyst Influence of coking conditions on nature and removal of coke[J]. Micropor.Mesopor. Mater.,1998,21(1-3):91-101.
    [112]Karge H G, Nie β en W, Bludau H. In-situ FTIR measurements of diffusion in coking zeolite catalysts[J]. Appl. Catal. A:Gen.,1996,146(2):339-349.
    [113]Tawada S, Sugi Y, Kubota Y, et al. Ceria-modification of H-mordenites:The deactivation of external acid sites in the isopropylation of biphenyl and the isomerization of 4,4'-diisopropylbiphenyl[J]. Catal. Today,2000,60(3-4):243-253.
    [114]Sugi Y, Nakajima K, Tawada S, et al. Effects of ceria-modification of H-mordenite on the isopropylation of naphthalene and biphenyl [J]. Stud. Surf. Sci. Catal.,1999,125:359-366.
    [115]Sugi Y, Kim J H, Matsuzaki T, et al. The isopropylation of naphthalene over cerium-modified H-mordenite[J]. Stud. Surf.Sci. Catal.,1994,84:1837-1844.
    [116]Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distribution in porous substances:The computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73 (1):373-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700