抗SOX、NOX中毒Pt_nMo_m体系的DFT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池作为清洁能源转换装置,是人类解决目前面临环境污染和能源短缺问题有效手段之一。目前燃料电池阴极氧还原催化剂主要是Pt/C,但这类催化剂容易受空气中的杂质气体中毒,如SO2、H2S、NO、NO2的影响,使催化剂的活性和稳定性大为下降。为了增强催化剂的抗毒性并降低成本,本文通过理论研究比较Pt和PtMo合金上抗毒性能,分析毒性物种使催化剂失活的本质原因,探索催化剂抗毒性-催化剂构型间的制约关系。
     论文通过理论计算揭示PtMo催化剂具有良好的抗SO2、H2S、NO、NO2气体中毒的性质以及氧还原活性。采用密度泛函理论计算掺杂Mo原子对Pt催化剂抗杂质气体毒性的影响以及造成该影响的原因。首先,分别计算SO2、SO2离解物种S、SO3,以及H2S、NO、NO2在Pt(111)和Pt:Mo=8:1的PtMo(111)表面的吸附构型,并获得各物种的几何、电子构型。然后,通过比较各吸附物种在Pt(111)和PtMo(111)面的吸附能、键长、键角变化,分析吸附前后Pt(111)和PtMo(111)面净电荷数、分态密度、d带中心以及差分电子密度的变化。最后,计算不同掺杂比例的PtnMom (n=7,m=2; n=2,m=1; n=5,m=4; n=4,m=5; n=1,m=2)合金,比较各物种在表面的吸附强度和在表面反应活性的关系。
     主要结论如下:首先,Mo的掺杂明显减弱了Pt-S间的相互作用,消弱SO2、S、SO3在PtMo(111)表面的吸附强度;Mo减弱了SO2吸附对PtMo(111)体系电子构型的影响,使催化剂尽量保持原有的电子构型及活性;Mo原子使S的吸附有选择性在靠近Mo的hcp位成键,并增强了Mo-Pt间的相互作用。因此,Mo掺杂不仅有效提高了PtMo的抗SO2中毒性,还提高了PtMo催化剂的稳定性;其次,H2S分子无论在Pt或是在PtMo体系上作用主要以平铺位置方式吸附,而且不容易发生脱附和H-S离解。与SO2的PDOS相比,H2S对催化剂表面d带态密度的影响更大,但PtMo体系可显著减小对H2S的吸附作用;再次,由于Mo的作用,NO和NO2在催化剂表面的吸附作用减小,而且使得NO在表面的吸附强度受吸附位的影响较大,且N原子转移的电子数也与吸附位有关。
     最后,研究不同掺杂原子比的PtnMom合金上杂质气体的吸附发现:Mo掺杂改善了表层原子HOMO的空间尺寸,和与杂质气体LUMO的重叠程度,从而降低了杂质气体在PtMo(111)表面的吸附强度。根据气体吸附强度同掺杂比关系,Pt:Mo原子比在7:2和4:5和5:4时,显示了很好的抗中毒性。对O2离解还原研究,根据轨道的重叠程度和O2分子在PtMo表面吸附键长的变化分析,Mo的掺杂改善了PtMoHOMO与氧气LUMO轨道重叠程度,利于O2发生离解反应;其中以PtMo原子的比值4:5和5:4时活性提高最为显著。
Fuel cell as a clean energy transform device is one of effective measurements for energy shortage and environment pollution caused by fossil fuel direct combustion. Currently, Pt/C catalysts are in the dominant position for oxygen reduction reaction (ORR). However, Pt/C catalysts are susceptible to poison of the impurity gases in the air, such as SO2, H2S, NO2, NO, and the activity and stability of Pt catalysts would be exacerbated markedly.
     In this work, the effect of contamination (NOX, SOX) on the performance of Pt and Mo-Doped Pt was studied. The results show that Mo-Doped Pt shows better catalysis for the ORR, anti-poisoning capability and the stability. Density function theory (DFT) was used to elucidate relationship between the anti-poisoning capability and structure of catalyst PtMo. At first, the adsorption geometry and electronic structure of contamination gases SO2, S, SO3, H2S, NO, and NO2 were calculated on the pure Pt (111) and Mo-Doped Pt(111) with the atomic ratio 8:1 of Pt to Mo (PtMo(111)). And then, the adsorption energy, bond length and bond angle of adsorb species, and the change of net charge, partial density of state, d-band center and deformation density of Pt(111) and PtMo(111) were calculated and analyzed. In the end, the adsorption geometry and electronic structure of contamination gases SO2, S, SO3, H2S, NO, and NO2 were calculated on PtnMom with the different atomic ratio of Pt to Mo (n=7, m=2; n=2,m=1; n=5, m=4; n=4, m=5; n=1, m=2).
     The following conclusions have been figured out. Firstly, doped Mo atom weakens the bonding strength between S and Pt catalysts, thus reduces the adsorption energy of SO2, S and SO3 on PtMo (111). Secondly, doped Mo atom weakens the effects of SO2 on electronic structure of PtMo (111), maintains the original electronic structure and activity of PtMo (111) after SO2 adsorption. Thirdly, doped Mo atom makes the S adsorbed on the hcp site near Mo atom, and enhances the interaction between Pt and Mo. Furthermore, different from the situation of SO2, H2S adsorption takes place mainly in the way of spreading on the metal plane regardless of on Pt or PtMo. H2S is not easily dissociation and dehydrogenated. H2S is a more serious poison to compare with SO2. Fortunately, the presence of Mo atom appears to have high H2S tolerance. The adsorption of NO, and NO2 on Pt can also be weakened by Mo introduction. The absorption energy and electron transfer number from p orbital of N atom depend deeply on the adsorption sites.
     At last, the relationship between the electronic structure of PtnMom (111) and adsorption of contamination gases shows that: Comparied with Pt(111), doped Mo atom decrease the spatial size and orbital energy of HOMO of PtMo(111), which inhibit the overlap between the electron donor (catalysts) and the electron acceptor (SOX, NOX molecule). The PtnMom (111) with ratio of Pt/Mo 7:2 and 4:5和5:4 has best anti-poisoning capability, and the catalystic activity of PtnMom (111) for ORR also increased as the ratio of Pt/Mo is 4:5和5:4. The addition of Mo to Pt improves the overlap degree between PtMo HOMO and the O2 LUMO. Therefore the addition of Mo to Pt not only increases the anti- poisoning capability but also enhances the catalysis to the ORR.
引文
[1]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化工出版社,2000.56 -57.
    [2]衣宝廉,韩明,张恩俊,等.千瓦级质子交换膜燃料电池[J].电源技术,1999,23(9):120-125.
    [3]刘志祥,毛宗强,王诚.质子交换膜燃料电池模型研究现状[J].电池,2004,34(1):56-58 .
    [4]陆天虹,孙公权.我国燃料电池发展概况[J].电源技术,1998,22(4):182-184.
    [5]郑重德,王丰.质子交换膜燃料电池研究进展[J].电源技术,1998,22(3):133-135.
    [6]刘凤君.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2006.
    [7] O.J. Murphy,D.Hichensg,D.J.Manko.High power density proton exchange membrane fuel cells[J].J Power Sources,1994,47:353- 368.
    [8] TH.Frey, M.Linaedi..Effects of membrane electrode assem blypreparation on the polymer electrolyte membrane fuel cell performance[J].Electrochimica Acta,2004,50:99- 100.
    [9] S.P.Gogttesfeld. A new approach to the problem of carbon mono-oxide poisoning in fuel cells operating at low temperatures [J] . J Elec-trochem Soc, 1998, 135 (2):651 -653.
    [10] S.Gottesfeld. Preventing CO poisoning in fuel cells [P]. USP: 4910099.
    [11] V.M. Schmidt , H.F.Oetjen, J.Divisek. Performance improvement of a PEMFC using fuels with coby addition of oxygen-devolving compounds [J]. J Electrochem Soc, 1997, 144 :37 -240.
    [12] R.J.Bellows, S.E.Marucchi.R.P.Reynolds. The mechanism of vomitigation in proton exchange membrane fuel cells using dilute H2O2 in the humidifier [J]. Electrochemical and Solid-State Letters, 1998, 1:69 -73.
    [13] T.V. Choudhary , D.W. Goodman. Stepwise methane stream reforming : a route to CO2 free hydrogen[J] . Catalysis Letters, 1999, 59 :93 -95.
    [14] L.Yu ming , L.Guo lin , R. Min hon. An integrated purification and production of hdyrogen with a palladium membrance-catalytic reactor [J]. Catalysis Today, 1998, 44:343 -345.
    [15] H. Igarashi, H.Uchida , KI.M. Suzu . Removal of carbon monoxide from hydrogen rich fuels by selective oxidation over platinumcatalyst supported on zeolite [J]. Applied Catalysis A: General, 1997, 159:159 -162.
    [16] N.P.Siswana, D.L.Trimm. Metal-support interactions in the catalytic oxidation of catbon monoxide [J]. Catalysis Letters, 1997, 46:27 -29.
    [17] K.Park, D.Han, Y.Sung, PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells [J], J. Power Sources, 2006, 163: 82.
    [18] E.Antolini, T.Lopes, E.R.Gonzalez. An overview of platinum-based catalysts asmethanol-resistant oxygen reduction materials for direct methanol fuel cells [J]. Journal of Alloys and Compounds, 2008, 461:253–262.
    [19] Y.Eunjoo,O.Tatsuhiro,T. Kizuka, J.Nakamura.Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells [J]. Journal of Power Sources, 2008,180:221–226.
    [20] H.Siwek,W.Tokarz, P. Piela,A.Czerwi′nski. Electrochemical behavior of CO, CO2 and methanol adsorption products formed on Pt–Rh alloys of various surface compositions[J]. Journal of Power Sources, 2008, 181: 24–30.
    [21] O.Skoplyak,C.A.Menning,M.A.Barteau, G. Jingguang.Experimental and theoretical study of reactivity trends for methanol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces [J]. THE JOURNAL OF CHEMICAL PHYSICS, 2007, 127:114707.
    [22] G.Samjeske, H.Wang, T.Loffler, H.Baltruschat. Electrochim.Acta 2002, 47: 3681.
    [23] U.A.Paulus, A.Wokaun, G.G.Scherer. Oxygen Reduction on Carbon Supported Pt-Ni and Pt-Co Alloy Catalysts [J], J. Phys. Chem. B, 2002, 106: 4181.
    [24] M.J.Llorca, J.M.Feliu, A. Aldaz, J.Clavilier. Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes [J], J. Electroanal. Chem. 1994, 376: 151.
    [25] M.Baldauf, D.M.Kolb. Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes [J], J. Phys. Chem. 1996, 100:11375.
    [26] W.Jiajun,Y.Geping,W.Guangjin,W.Zhenbo,G.Yunzhi. A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion [J]. Electrochemistry Communications, 2008, 10: 831–834.
    [27] K. Scott, W.Yuan, H.Cheng. Feasibility of using PtFe alloys as cathodes in direct methanol fuel cells [J], J. Appl. Electrochem. 2007, 37: 21.
    [28] C.Stassi, D.Urso,V.Baglio,A.Di Blasi,V.Antonucci, A.S. Arico, A.M.Castro Luna, A. Bonesi,W.E. Triaca. Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt–M supported catalysts [J]. J. Appl. Electrochem. 2006, 36: 1143.
    [29] K.Miyazaki, H.Ishihara, K.Matsuoka, Y.Iriyama, K.Kikuchi, Y.Uchimoto, T.Abea, Z.Ogumia. Electrochemical effect of gold nanoparticles on Pt/α-Fe2O3/C for use in methanol oxidation in alkaline solution [J]. Electrochimica Acta. 2007, 52 :3582–3587.
    [30] CH.Meng, W.ZhenBo, Y. Dinga, Y.Ge Ping. Investigation of the Pt–Ni–Pb/C ternary alloy catalysts for methanol electrooxidation [J]. Electrochemistry Communications, 2008, 10 :443–446.
    [31] J.Fenning, H.Ming, S.Weiyu, F.Jie, Y.Hongmei, M. Pingwen, Y.Baolian. The effect ofambient contamination on PEMFC performance [J]. Journal of Power Sources 2007,166 :172–176.
    [32]李金兵,黄伟新,曹玉明,翟润生,包信和. NO和O在Pt(110)面上吸附的TDS和PEEM研究[J],催化学报1998, 19: 6.
    [33] J.R.Chang, S.L.Chang, T.B.Lin.γ-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation [J], Journal of Catalysis, 1997, 169: 338–346.
    [34]傅杰,侯明,俞红梅,景粉宁,邵志刚,衣宝廉.空气中SO2杂质气体对PEMFC性能的影响.电源技术研究与设计[J], 2007,11:0864-03.
    [35] S.Weiyu, Y.Baolian, H.Ming, J.Fenning, M.Pingwen. Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes [J]. Journal of Power Sources, 2007,165: 814–818.
    [36]杨代军,马建新,徐麟,邬敏忠,王海江.城市大气中NOX和CO对质子交换膜燃料电池性能的影响研究[J].环境污染与防治. 2005, 27: 6.
    [37] T.Jirsak, A.José. Rodriguez, J.Hrbek. Chemistry of SO2 on Mo(110), MoO2/Mo(110) and Cs/Mo(110) surfaces: effects of O and Cs on the formation of SO3 and SO4 species [J], Surface Science. 1999, 426: 319–335.
    [38] P.Zebisch, M.Stichler , p.Trischberger, M.Weinelt, H.P.Steinrfick. Adsorption and thermal evolution of SO2 on the Pt(l l 0) surface [J]. Surface Science. 1997, 371: 235-244.
    [39] F.Adam, K.Wilson, A.Goldoni, R.Larciprete. A fast XPS study of sulphate promoted propene decomposition over Pt{111}[J]. Surface Science, 2002, 513: 140–148.
    [40] K.Wilson, C.Hardacre, C.J.Baddeley, J.Liadecke, D.P.Woodruff, R.M.Lambert. A spectroscopic study of the chemistry and reactivity of SO2 on Pt { 111 } reactions with O2, CO and C3H6 [J]。Surface Science, 1997, 372: 279-288.
    [41] M.Pol?ik, L.Wilde, J.Haase, B.Brena, G.Comelli, G.Paolucci. High-resolution XPS and NEXAFS study of SO2 adsorption on Pt( 111 ) two surface SO2 species [J]. Surface Science, 1997, 381: L568-L572.
    [42] U.K?hler, H.W.Wassmuth. SO2 adsorption and desorption kinetics on Pt (111). Surface Science[J]. 1983, 126: 448-454.
    [43] Y.M.Sun, D.Sloan, D.J.Alberas, M.Kovar, Z.J.Sun, J.M.White. SO2 adsorption on Pt (111): HREELS, XPS and UPS study [J]. Surface Science, 1994, 319:34-44.
    [44] N.Pangher, L.Wilde, M.Polcik, J.Haase. Structure determinations of SO2 and its decomposition product SO adsorbed on Cu(100) by use of X-ray absorption fine-structure measurements [J]. Surface Science, 1997, 372:211-222.
    [45] R.Mohtadi, W.Lee, J.W.Van Zee.Assessing durability of cathodes exposed to common airimpurities [J].Journal of Power Sources,2004, l38:2l6-225.
    [46] A.Contractor, L.Hira. Two forms of chemisorbed sulfur on platinum and related studies [J] Electroanal . Chem.1979, 96:175.
    [47] R.Mohtadi, W.K.Lee , J.W.Van Zee[J]. Assessing durability of cathodes exposed to common air impurities [J], Journal of Power Sources, 2004, 138 :216~255.
    [48] R.Mohtadi, W.K.Lee ,S.Cowan, M.Murthy, J.W. Van Zee. Effects of Hydrogen Sulfide on the Performance of a PEMFC Electrochem [J]. Solid States Lett. 2003, 6:A272~A274.
    [49] F.A.Uribe, T.Q.T.Rockward. Sulfur-tolerant anode materials for solid oxide fuel cell application [P], US Patent 20060249399, 2006.
    [50]傅杰,侯明,杜超,邵志刚,衣宝廉.一种在质子交换膜燃料电池内部净化阴极反应气的方法[P]. 200810229122.2. 20081128.
    [51] H.Junbo, S.Wei, Y.Hongmei, F.Yu, ZG.Shao, BL.Yi. Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature [J]. Journal of Power Sources, 2007, 171:610-616.
    [52] Y.Yoshimura, M.Toba, T.Matsui, M.Harada, Y.Ichihashi, K.K.Bando, H.Yasuda, H.Ishihara, Y. Morita, T. Kameoka. Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment [J]. Applied Catalysis A: General, 2007, 322:152–171.
    [53] J.R.Chang, S.L.Chang, T.B.Lin.γ-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation [J]. JOURNAL OF CATALYSIS, 1997, 169: 338–346.
    [54] D.J.Fullerton, A.V.K.Westwood, R.Brydson, M.V.Twigg, J.M.Jones. Deactivation and regeneration of Pt/γ-alumina and Pt/ceria–alumina catalysts for methane combustion in the presence of H2S [J]. Catalysis Today, 2003, 81: 659–671.
    [55]白庭芳,周峻岭,安立敦,李鑫恒.铁助剂对Pd/Al2O3催化剂抗S性能的影响[J].分子催化. 1996, 10: 4.
    [56] H.Weixin, J.Zhiquan, J.Jian, T.Dali, Z.Runsheng, B.Xinhe. Decomposition of NO2 on Pt(110): formation of a new oxygen adsorption state [J]. Surface Science, 2002,506: L287–L292.
    [57] G.M.Tonetto, M.L.Ferreira, D.E.Damiani. A combined theoretical and experimental study of NO decomposition on Pd and Pd-Mo catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2003, 193:121–137.
    [58] E.Casero, C.Alonsoa, J.A.Mart Gago, F.Borgatti, R.Felici, F.Renner, T.L.Lee, J. Zegenhagen. Nitric-oxide adsorption and oxidation on Pt(111) in electrolyte solution under potential control [J]. Surface Science, 2002, 507–510: 688–694.
    [59]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984.
    [60] R.G.Parr, W.Yang. Density Functional Theory of Atoms and Molecules [M]. Oxford University press.New York,1989.
    [61] A.T.Paxton,M.Methfessel, H.M.Polatoglou. Structural energy-volum relations in first-row transition metals [J], Phys.Rev,1990,B41 (12) :8127~8138.
    [62] R.E.Cohen, W.E.Pickett, H. Krakauer. First-Principles phonon calculations for La2CuO4 [J], Phys.Rev.Lett, 1989, 62:831~834.
    [63]肖鹤鸣,陈兆旭.四唑互变异构反应的密度泛函理论(DFT)研究[J].化学学报,1999,57:1206~1212.
    [64] L.H.Thomas. The Calculation of Atomic Fields [J]. Proc Cambridge Philos Soc, 1927, 23: 542-548.
    [65] E.Fermi. Statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theories des periodischen Systems der Elemente[J].Z Phys.1928, 48:73-79.
    [66]徐克尊,陈宏芳,周子肪.近代物理学[M].高等教育出版社, 1993.
    [67] P.Hohenberg, W.Kohn. Inhomogeneous electron gas[J]. Phys Rev B, 1964, 136:864-871.
    [68] K.Capelle, G.Vignale. Nonuniqueness of the Potentials of Spin-Density-Functional Theory[J]. Phys Rev Lett, 2001, 86:5546-5549.
    [69] W.Yang, P.W.Ayers, Q.Wu. Potential Functionals: Dual to Density Functionals and Solution to the v-Representability Problem[J]. Phys Rev Lett, 2004,92:146404.
    [70] W.Kohn, L.J.Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev A, 1965, 140:1133-1138.
    [71] R.Stowasser, R.Hoffmann. What Do the Kohn-Sham Orbitals and Eigenvalues Mean[J]. J Am Chem Soc, 1999, 121:3414-3420.
    [72] J.C.Slater. The Self-Consistent Field for Molecular and Solids[M]. Quantum Theory of Molecular and Solids, New York,1974, 4.
    [73] K.Fukui, S.Kato, H.Fujimoto. Constituent analysis of the potential gradient along a reaction coordinate[J]. Method and an application to methane + tritium reaction. J Am Chem Soc, 1975, 97:1-7.
    [74] S.H.Vosko, L.Wilk, M.Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Canadian Journal of Physics, 1980, 58:1200-1211.
    [75] S.Weiyu, Y.Baolian, H.Ming, J.Fenning, Y.Hongmei, M.Pingwen. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes[J]. Journal of PowerSources, 2007,164 :272–277.
    [76] T.Toda, H.Igarashi, H.Uchida. Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni and Co[J].J Electrochem Soc,1999,146(10):3750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700