扑热息痛分子印迹膜电化学传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扑热息痛(Paracetamol,PR)是世界上使用最广泛的非处方药品之一,具有解热镇痛的作用,过量使用该药则会引起不良反应和严重肝损害等后果。本文将分子印迹技术与电化学检测技术相结合,成功制备了三种扑热息痛分子印迹电化学传感器。本论文主要工作如下:
     ①分子印迹膜电化学聚合法的优点在于传质较快、膜厚度易控制及成膜均匀等。本实验以扑热息痛为模板分子,邻苯二胺为功能单体,采用电聚合法制备了一种新型的扑热息痛分子印迹电化学传感器。实验中以铁氰化钾为分子探针,采用方波伏安法对扑热息痛进行了检测,结果表明该传感器对扑热息痛具有良好的选择性和灵敏度。扑热息痛的浓度与K_3[Fe(CN)_6]的相对峰电流在2.0×10~(-6)~8.0×10~(-5)mol/L范围内成线性关系,检出限为2.0×10~(-8)mol/L。将此传感器用于药物中扑热息痛含量的检测,可取得良好的结果。
     ②以扑热息痛为模板分子,等摩尔的间苯二酚与邻苯二胺为功能单体,采用循环伏安法合成了稳定的扑热息痛分子印迹膜。在含5mmol/L K_3Fe(CN)_6和0.5 mol/L KCl的支持电解质溶液中,用循环伏安法和交流阻抗法对此双功能单体所制备的分子印迹膜进行了表征,结果表明该印迹膜具有一定的绝缘性。研究了不同印迹电极对同一浓度扑热息痛溶液的响应性能,结果发现采用双功能单体所制备的印迹电极比采用单一功能单体时制备的电极响应信号更强。采用方波伏安法直接检测扑热息痛在此传感器上的电流响应,扑热息痛的氧化峰电流与其浓度在5.0×10~(-7)~3.0×10~(-50mol/L范围内成线性关系,检出限为2.0×10~(-8)mol/L。
     ③基于多壁碳纳米管(MWNTs)的高电催化活性及分子印迹聚合物(MIPs)的特异识别性,本实验以扑热息痛分子为模板,邻苯二胺为单体,在多壁碳纳米管修饰玻碳电极(MWNTs/GCE)上合成了扑热息痛分子印迹膜,以此构建了一种基于分子印迹-多壁碳纳米管的扑热息痛电化学传感器。通过比较复合膜电极(MIP/MWNTs/GCE)与印迹膜电极(MIP/GCE)对相同浓度扑热息痛溶液的电流响应,发现MWNTs的加入确实有效地提高了传感器的灵敏度。扑热息痛的浓度与其在该传感器上的方波伏安响应在2.0×10~(-6)~8.0×10~(-5)mol/L范围内具有良好线性关系(R~2=0.9993),检测限可达1.0×10~(-8) mol/L。该传感器的响应时间为5min,具有良好的稳定性及重现性。
Paracetamol(PR) is one of the world’s most widely used nonprescription medicines, due to its analgesic’s and antipyretic’s properties. However, overdoses of PR cause adverse reaction and liver damage. In this study, three kinds of PR electrochemical sensors were constructed based on molecular imprinting technology and electrochemistry analysis technology. The main work of this thesis is as follows:
     ①A new molecularly imprinted polymer(MIP) sensor for PR was fabricated by electropolymerization in this work, with PR as template molecule and o-phenylenediamine(o-PD) as monomer. The K_3Fe(CN)_6 was used as a molecular probe, and the sensor exhibited good selectivity and sensitivity to PR. The square wave voltammetry response of potassium ferricyanide was linear to the concentration of PR in the range of 2.0×10~(-6)~8.0×10~(-5)mol/L, with a detection limit of 2.0×10~(-8)mol/L. The proposed sensor was applied to determination of PR in different tablets and the obtained results were satisfactory.
     ②Molecularly imprinted polymer modified glassy carbon electrode(MIP/GCE) was prepared by electropolymerization of equimolar resorcinol and o-PD on glassy carbon electrode in the presence of PR as the template. The property of MIP/GCE is investigated by cyclic voltammetry and AC impedance. And the response properties of different electrode in the same concentration of PR is investigated by cyclic voltammetry, it was found that the response current of the MIP/GCE prepared by dual-monomer is larger than which prepared by a single monomer. Square wave voltammetry was used to the direct detection of PR on the MIP/GCE.
     ③A novel MIP sensor was constructed for detection of PR. The sensitive layer was synthesized on the multiwall carbon nanotubes modified glassy carbon electrode (MWNTs/GCE) with PR molecule as a template and o-PD as monomer. The results showed that MIP/MWNTs/GCE had an obvious electrocatalytic effect on PR. The square wave voltammetry response of PR was linear to its concentration in the range from 2.0×10~(-6) to 8.0×10~(-5)mol/L (R2=0.9993), with a detection limit of 1.0×10~(-8)mol/L. The sensor exhibited a good stability and reproducibility.
引文
[1] Helmut Buschmann, Thomas Christoph, Elmar Friderichs, et al. Analgesics: from chemistry and pharmacology to clinical application[M]. Germany: Wiley-VCH, 2002:94.
    [2] Donald S. Davies.Paracetamol toxicity: A 40 year odyssey[J].Toxicology,2007, 240(3):149-150.
    [3] Groudine S, Fossum S. Use of intravenous acetaminophen in the treatment of postoperative pain[J]. Journal of Peri Anesthesia Nursing. 2011:26(2):74-80.
    [4] J. S. Thomson, L. F. Prescott. Liver damage and impaired glucose tolerance after paracetamol overdosage[J]. British Medical Journal. 1966, 2(5512): 506–507.
    [5] Hamish F, Julian C, Edwin A. The acetaminophen and asthma hypothesis 10 years on: A case to answer[J]. Journal of Allergy and Clinical Immunology, 2009, 124(4): 649-651.
    [6] Lowe A, Abramson M, Dharmage S, et al. Paracetamol as a risk factor for allergic disorders[J]. The Lancet, 2009, 373: 120.
    [7] Kasner SE. Paracetamol for stroke: easy in practice, but not in trials [J]. Lancet Neurol, 2009, 8(5):415-416.
    [8] P. Nagaraja, K.C. Srinivasa Murthy, K.S. Rangappa. Spectrophotometric method for the determination of paracetamol and phenacetin[J]. Journal of Pharmaceutical and Biomedical Analysis, 1998,17: 501–506.
    [9] Sirajuddin, Abdul Rauf Khaskheli, Afzal Shah, et al. Simpler spectrophotometric assay of paracetamol in tablets and urine samples[J]. Spectrochimica Acta Part A, 2007,68: 747–751.
    [10] Zeid A. ALOthman, Mohamed A. Abdalla. Oxidative coupling for the spectrophotometric determination of certain cephalosporins and acetaminophen in drug formulations[J]. Arabian Journal of Chemistry, 2011, 4: 239–242.
    [11] Hisham E. Abdellatef, Magda M. Ayad, Suzan M. Soliman. Spectrophotometric and spectrodensitometric determination of paracetamol and drotaverine HCl in combination[J]. Spectrochimica Acta Part A, 2007,66: 1147–1151.
    [12]吴宁生,顾光华编.高速液相色谱[M].合肥:中国科学技术大学出版社, 1989.
    [13]张雪峰,徐岳鑫,董赛文.高效液相色谱法测定感冒灵颗粒中对乙酰氨基酚含量[J].药物鉴定,2010,19(6):30-31.
    [14] A.K. Hewavitharana, S. Lee, P.A. Dawson, D. Markovich, P.N. Shaw. Development of an HPLC–MS/MS method for the selective determination of paracetamol metabolites in mouse urine[J]. Analytical Biochemistry, 2008, 374: 106–111.
    [15] Ghada M. Hadad, Samy Emara,Waleed M.M. Mahmoud. Development and validation of a stability-indicating RP-HPLC method for the determination of paracetamol with dantrolene or/and cetirizine and pseudoephedrine in two pharmaceutical dosage forms[J]. Talanta, 2009,79: 1360–1367.
    [16]刘峻,周伟红,吴明嘉等.毛细管电泳安培检测扑热息痛及其水解物[J].分析化学,1995,23(11):1256-1260.
    [17] S. Azhagvuel, R. Sekar. Method development and validation for the simultaneous determination of cetirizine dihydrochloride, paracetamol, and phenylpropanolamine hydrochloride in tablets by capillary zone electrophoresis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43: 873–878.
    [18] D. Easwaramoorthy, Yueh-Chuan Yu, Hsuan-Jung Huang. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction[J]. Analytica Chimica Acta, 2001, 439: 95–100.
    [19]陈华,章竹君,付志锋.流动注射化学发光法测定扑热息痛[J].分析化学研究简报, 2002, 30 (11): 1344-1347.
    [20] Wirat Ruengsitagoon, Saisunee Liawruangrath, Alan Townshend. Flow injection chemiluminescence determination of paracetamol[J]. Talanta, 2006, 69: 976–983.
    [21]曹晓霞,陈恒武,何巧红.扑热息痛的光化学荧光特性及其分析应用[J].分析化学,2000,28(4):491-493.
    [22] Altair B. Moreira, Hueder P.M. Oliveira, Teresa D.Z. Atvars, et al. Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy[J]. Analytica Chimica Acta, 2005, 539: 257–261.
    [23] Mohamed I. Walash, Amina M. E1-Brashy, Maha A. Sultan. Polarographic Behaviour and Determination of Paracetamol and Salicylamide After Treatment with Nitrous Acid[J]. Mikrochimica Acta,1994,113:113-124.
    [24]孟召辉,王素红.单扫描示波极谱法测定扑热息痛[J].分析试验室.2003,22(2):42-44.
    [25]冯颖铎,汪缓,徐圆.库仑测定法测定对乙酰氨基酚[J].分析化学,1997,25(8):989.
    [26]王征帆.库仑法快速测定扑热息痛片剂中对乙酰氨基酚含量[J].分析仪器.2008,4:49-51.
    [27] Katie Waterston, Jenny Weijun Wang, Dorin Bejan, et al. Bunce .Electrochemical waste water treatment: Electrooxidation of acetaminophen[J]. Journal of Applied Electrochemistry, 2006, 36:227–232.
    [28]詹国庆,王炎英,吴宗晓等.溴代十六烷基吡啶增敏测定扑热息痛[J].化学与生物工程,2007,24(8):69-71.
    [29]毕淑云,王桂芬,朴元哲等.对乙酰氨基酚在玻碳电极上的伏安法测定[J].延边大学学报(自然科学版),2000,26(2):110-112.
    [30]谭宝玉,廖钫,何晓英等.对乙酰氨基酚在活化玻碳电极上的电化学行为及测定[J].电化学,2008,14(4):441-444.
    [31]王正国.聚L-丝氨酸修饰电极伏安法测定对乙酰氨基酚[J].化学研究与应用, 2006, 18 (9):1095-1098.
    [32] Qijin Wan, Xiuwen Wang, Fen Yu, et al. Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen[J]. Journal of Applied Electrochemistry, 2009, 39:1145–1151.
    [33] Huayu Xiong, Hui Xu , Lu Wang , Shengfu Wang.Characterization and sensing properties of a carbon nanotube paste electrode for acetaminophen[J]. Microchimica Acta, 2009, 167:129–133.
    [34] Xiaodong ShangGuan, Hongfang Zhang, Jianbin Zheng. Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode[J]. Analytical and Bioanalytical Chemistry, 2008, 391:1049–1055.
    [35] Rajendra N. Goyal, Sudhanshu P. Singh. Voltammetric determination of paracetamol at C60-modified glassy carbon electrode[J]. Electrochimica Acta, 2006, 51: 3008–3012.
    [36] Biuck Habibi, Mojtaba Jahanbakhshi, Mohammad Hossein Pournaghi-Azar. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry[J]. Electrochimica Acta, 2011,56: 2888–2894
    [37] Santhosh S. Nair, S. Abraham John, Takamasa Sagara. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode[J]. Electrochimica Acta, 2009, 54 : 6837–6843.
    [38] Jyh-Myng Zen, Yuan-Shih Ting. Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode[J]. Analytica Chimica Acta, 1997, 342: 175-180.
    [39] Bruna Cláudia Lourenc, Roberta Antigo Medeiros, Romeu C. Rocha-Filho,et al. Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode[J].Talanta, 2009,78: 748–752.
    [40] Li Jia, X.-H. Zhang, Q. Li, et al. Determination of acetaminophen by square wave voltammetry at a gold electrode modified by 4-amino-2-mercaptopyrimidine self-assembled[J]. Monolayers Journal of Analytical Chemistry, 2007, 62(3):266–269.
    [41] Dong Sun, Huajie Zhang. Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film[J].Microchimica Acta, 2007, 158: 131–136.
    [42]康信煌,杨琳,麦智彬等.碳纳米管修饰玻碳电极方波伏安法对乙酰氨基酚的测定[J].中山大学学报(自然科学版),2007,46(4):55-58.
    [43]马玉哲,李红霞.分子印迹技术的应用进展[J].化工技术与开发,2009,38(4):20-22,46.
    [44]姜忠义.分子印迹技术[J].化学通报,2002,65:1-5.
    [45] Pauling L. A theory of the structure and process of formation of antibodies[J]. Journal of the American Chemical Society,1940,62:2643~2657.
    [46] Frank H. Dickey. The preparation of specific adsorbents[J]. PNAS, 1949, 35 :227~229.
    [47] Wulff G,Sarhan A.Use of polymers with enzyme-analogous structures for the resolution of racemates[J].Angewandte Chemie Internet Edition in English,1972,11:341-344.
    [48] George Vlatakis, Lars I. Andersson, Ralf Müller, Klaus Mosbach. Drug assay using antibody mimics made by molecular imprinting[J].Nature,1993, 361: 645-647.
    [49] Tabushi I,Kurihara K,Naka K,Yamamura K,Hatakeyama H. Supramoleular sensor based on SnO2 electrode modified with octadeeylsilyl monolayer having molecular binding sites[J].Tetrahedron Letters,1987,28(37):4299-4302
    [50] G. Wulff, R. Grobe-Einsler, W. Vesper, et al. Enzyme-analogue built polymers,5. On the specificity distribution of chiral cavities prepared in synthetic polymers[J].Die Makromolekulare Chemie,1977,178:2817-2825
    [51] Ching-Chiang Hwang, Wen-Chien Lee. Chromatographic characteristics of cholesterol- imprinted polymers prepared by covalent and non-covalent imprinting methods[J]. Journal of Chromatography A, 2002,962:69–78.
    [52] Wulff G, Laucer M, Bohnke H. Rapid roton transfer as cause of an unusually large neighboring group effect[J].Angew.Chem.Int.Ed.Engl.1984,23(9):741-742.
    [53] B. Sellergren, M. Lepist?, K. Mosbach. Highly Enantioselective and Substrate-Selective Polymers Obtained by Molecular Imprinting Utilizing Noncovalent Interactions. NMR and Chromatographic Studies on the Nature of Recognition[J]. JACS, 1988,110: 5853-5860.
    [54] Maria Kempe, Klaus Mosbach. Molecular imprinting used for chiral separations[J]. Journal of Chromatography A, 1995, 694:3-13.
    [55] Whitcombe MJ, Rodriguez ME, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting—synthesis and characterization of polymeric receptors for cholesterol[J]. JACS, 1995, 117:7105–7111.
    [56] Ester Caro, Núria Masqué, Rosa M. Marcé,et al. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples[J]. Journal of Chromatography A, 2002, 963:169-178.
    [57] Elijan Amut,Qiang Fu, Qi Fang,et al. In situ polymerization preparation of chiral molecular imprinting polymers monolithic column for amlodipine and its recognition properties study[J]. Journal of Polymer Research, 2010, 17:401–409.
    [58]刘晓芳,姚冰,刘国艳等.检测猪肉中地西泮的分子印迹仿生传感器的研制[J].分析化学, 2010,38(5):683~687.
    [59]彭晓霞,迟栋,龚来觐.分子印迹复合膜在中草药及天然药物提取分离中的应用概述[J].中国药事, 2009, 23(10):1011-1014.
    [60] Takaomi Kobayashi, Hong Ying Wang, Nobuyuki Fujii. Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments[J]. Analytica Chimica Acta,1998, 365:81-88.
    [61] Hong Ying Wang, Shao Ling Xia, Hong Sun, et al. Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding[J]. Journal of Chromatography B, 2004, 804: 127–134.
    [62]李永,周文辉,杨黄浩等.表面分子印迹高分子膜修饰硅胶用于血清中茶碱的固相萃取[J].应用化学, 2010,27(1):102-106.
    [63] Zhiliang Cheng, Erkang Wang, Xiurong Yang. Capacitive detection of glucose using molecularly imprinted polymers[J]. Biosensors and Bioelectronics, 2001,16: 179–185.
    [64]刘志航,宦双燕,沈国励等.以分子印迹聚合膜为仿生受体检测辛可宁[J].高等学校化学学报.2005,26(6):1049-1051.
    [65]谢成根,李淮芬,谢春艳等.水杨酸分子印迹膜电化学传感器的制备[J].分析化学, 2009,37(7):1045-1048.
    [66] Liang Feng, Yongjun Liu, Yiyong Tan, et al. Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers [J]. Biosensors and Bioelectronics, 2004,19: 1513–1519.
    [67]赵钧,李建平,蒋复阳.异丙隆分子印迹敏感膜传感器[J].分析化学,2009,37(8):1219-1222.
    [68]张丽君,陆天虹,李时银等.氯霉素分子印迹聚合膜电极的制备及氯霉素检测[J].应用化学,2011,28(3):338-342.
    [69]王雪琳,杨秋霞等.电聚合邻苯二胺薄膜的研究[J].山东建材学院学报,1996,10(4):19-24
    [70] Tatiana L. Panasyuk, Vladimir M. Mirsky, Sergey A. Piletsky, et al. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors[J]. Anal. Chem. 1999, 71: 4609-4613
    [71]刘有芹,颜芸,陈明洁等.聚邻苯二胺修饰玻碳电极的制备及电催化性能[J].化学研究与应用, 2008, 20(11):1430-1435.
    [72]杜艳芳.导电聚合物的制备及其电化学行为的研究[D].上海:华东师范大学化学系, 2004.
    [73] Vivek Babu Kandimalla,Hunagxian Ju. Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry[J]. Analytical and Bioanalytical Chemistry, 2004, 380: 587-605.
    [74]迟大民,苏立强,邓茜珊等.分子印迹功能单体选择方法研究进展[J].化工时刊, 2009, 23, 12:55-57.
    [75] Zhihua Wang, Jingwan Kang, Xiaoyu Liu.Voltammetric response of 2,4-D-molecularly imprinted film modified glassy carbon electrode[J]. India National Science Academy, 2006,45(8):1848-1851.
    [76] Sumio lijima. Helical microtubules of graphitic carbon[J]. Nature, 354: 56-58.
    [77] P.J.Britto, K.S.V.Santhanam, P.M.Ajayan. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochemistry and Bioenergetics, 1996, 41:121-125.
    [78]杨绍明,魏志鹏,胡光辉等.碳纳米管修饰电极同时测定邻苯二酚和对苯二酚[J].高等学校化学学报,2010,31(2):264-268.
    [79] Jessica E. Weber, Shreekumar Pillai, Manoj Kumar Ram. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode[J]. Materials Science and Engineering C, 2011:1-5.
    [80]任祥忠,赵祺,刘剑洪等.聚吡咯/多壁碳纳米管的合成及电化学行为[J].高分子材料科学与工程,2008,24(10):29-32.
    [81] Xiu-Hua Zhang, Shi-MinWang, Li Jia, et al. Electrochemical properties of colchicine on the PoPD/SWNTs composite-modified glassy carbon electrode[J]. Sensors and Actuators B, 2008,134 : 477-482.
    [82]刘蓓,逯岭松,刘成桂等.基于PoPD-MWCNTs-离子液体/纳米金的髓过氧化物酶免疫传感器[J].化学学报,2011,69 (4):438-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700