聚合物偏振电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物电致发光器件由于在平板显示和照明领域的潜在应用前景,近年来成为国际众多研究机构和企业的研究热点。聚合物的偏振电致发光现象作为新兴的研究方向,其意义在于可作为液晶显示器的背光源,从而大幅提高光能利用率和简化元件结构。本研究工作以此为出发点,在传统聚合物电致发光器件的基础上,通过定向层的作用实现发光聚合物的取向排列,最终制备出具有偏振发光特性的聚合物电致发光器件。论文立足于发光聚合物薄膜器件,深入研究了偏振发光的理论基础、薄膜的光学各向异性表征和电致发光器件的制备,并在此基础上提出了新的定向层制作技术。
     1.论文从电磁辐射理论和聚合物液晶特性两个角度对聚合物偏振发光的物理机制进行论述。前者以偶极子振荡模型为理论依据,论证了聚合物发光的偏振态与分子主轴方向的一致关系;后者从分子结构的角度,证明了聚合物刚性棒状结构以及由此产生的液晶特性对偏振发光的决定性作用。有序参数是衡量薄膜取向程度的重要参量,从有序参数的定义出发推导出了薄膜二向色性表达式。
     2.由聚合物分子定向排列引起的光学各向异性是取向薄膜的重要光学特性。本文提出了一种基于聚合物材料色散模型,通过对反射和透过光谱的拟合确定薄膜光学常数(包括折射率和消光系数)和厚度的计算方法。利用单一反射光谱拟合,测定了聚合物电致发光器件中几种常用功能薄膜的光学常数。并采用不同偏振态的线偏振光作为测试光源,计算得到了三种发光聚合物取向薄膜的光学常数各向异性,其中PFBT和PFO-BT-DBT在峰值波长处的双折射率达到0.86和0.67。
     3.利用芴基聚合物的热致液晶特性,制备了具有显著偏振特性的红、绿、蓝单色和白光偏振电致发光器件。器件结构为ITO/Alignment layer/Active layer/Cathode,以机械摩擦空穴注入层PEDOT:PSS作为定向层。其中利用芴基发光聚合物PFO-BT-DBT链内生色团之间的能量转移,首次实现了单一聚合物白光偏振电致发光。通过测试发光聚合物的液晶相转变温度和取向薄膜的吸收和光致发光偏振光谱,确定了薄膜的最佳摩擦强度和热处理条件。在最佳取向条件下,器件电致发光偏振率高达24,为目前所报道的国际较高水平。器件同时具有良好的发光亮度和颜色稳定性,白光的CIE色坐标为(0.33,0.35),非常接近完美白光。
     4.为了避免机械摩擦定向层方法对器件发光带来的不利影响,开创性地采用了微压印技术制作定向层的表面微结构。采用热固化柔性硅橡胶PDMs作为印章,经微压印使PEDOT:PSS层形成了最小周期为1.6μm的光栅微结构。以此为定向层制备的发光取向薄膜同样具有显著的光学各向异性,而且光栅分辨率越高对取向越有利。
Polymer light-emitting diodes(PLEDs) have been attracting much attention recently as a new technology for full-color displays and light sources.Polarized electroluminescence (EL) from polymer is researched in view of potential application as the backlight of liquid crystal display(LCD).The power efficiency of LCD will be significantly improved and the structure of device will be simplified if polarized PLEDs are employed.Based on the research of traditional PLEDs,polarized EL is realized from oriented light-emitting polymers on an alignment layer.With the main thread of the orientation of light-emitting polymer thin films,this thesis involves in the theory of polarized emission,the optical anisotropy characterization of oriented films and the devices fabrication,based on which a novel orientation technique is developed.
     1.The physical mechanism of polarized EL from polymers can be discussed through electromagnetic theory and liquid crystal state of polymers.The former demonstrates the consistency between the emission polarization and the direction of molecular backbone based on the dipole oscillation model.The latter indicates that the rigid rods structure plays a decisive role on the liquid crystal state of polymer,and therefore the polarized EL.An order parameter is introduced to character the orientation level of polymer films,from which the express of the dichroic ratio for oriented films is derived.
     2.The optical anisotropy caused by the aligned polymer molecular is an important characteristic for oriented films.Using the measured data of reflectance and transmittance, a photometric fitting method based on Forouhi-Bloomer dispersion model is developed to determine the anisotropic optical constants(including refractive index and extinction coefficient) and thickness of polymer thin films commonly.When the test incident light for spectra measurement is linearly polarized,the anisotropic optical constants of in-plane oriented polymer thin films can be determined.Oriented polymer films of three polyfluorene derivatives discussed in this thesis were measured.The calculated results indicate that PFBT and PFO-BT-DBT show the maximal birefringence of 0.86 and 0.67, respectively,at the peak wavelength.
     3.Four fluorene-based light-emitting polymers were used to fabricate polarized PLEDs of blue-,green-,red- and white-light emitting for their thermotropic liquid crystal characteristics.The device structure is ITO/Alignment layer/Active layer/Cathode,and the hole injecting layer poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT: PSS) is mechanically rubbed as the alignment layer.Polarized white-light EL from a single copolymer poly(9,9-dioctylfluorene-4,7-bis(2-thienyl)-2,1,3-benzothiadiazole-2,1,3-benzo-thiadiazole) (PFO-BT-DBT) can be realized for the first time through intrachain energy transfer.The optimized rubbing strength and thermal treatment are employed,by measuring the phase transition temperatures as well as the polarized absorption and photoluminescence spectra of the oriented films.With the optimized thermal treatment,an EL polarized ratio of up to 24 was achieved,which is relatively high in the world.The PLED exhibits a good stability of efficient white emission with a CIE coordinate of(0.33, 0.35),which is almost the perfect white light.
     4.In order to avoid the effect on the device performance by the mechanically rubbed alignment layer,micro-imprint was employed.An thermal cured elastic polymer film of Polydimethylsiloxane(PDMS) served as the stamp,channels with a minimal period of 1.6μm were micro-imprinted on the PEDOT:PSS layer as the alignment layer.The light-emitting layer can also be oriented and shows obviously optical anisotropic by this method, which also indicates that a higher resolution of the microstructure helps to reach a more effective orientation.
引文
1 M.Pope.H.Kallmann and P.Mangnante.Electroluminescence in organic crystals.J.Chem.Phys.1963,38:2042-2043
    2 R.H.Partridge.Radiation sources.US Patent 1976,3(995):299
    3 P.S.Vincett,W.A.Barlow,R.A.Hannet al.Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films.Thin Solid Films 1982,94:171-183
    4 C.W.Tang and S.A.VanSlyke.Organic electroluminescent diodes,Appl.Phys.Lett.1987,51:913-915
    5 J.H.Burroughes,D.D.C.Bradley,A.R.Brown et al.Light-emitting diodes based on conjugated polymers.Nature 1990,347:539-541
    6 D.Braun and A.J.Heeger.Visible light emission from semiconducting polymer diodes.Appl.Phys.Lett.1991,58(18):1982-1984
    7 G.Gustafsson,Y.Cao,G.M.Treacy et al.Flexible light-emitting diodes made from soluble conducting polymers.Nature 1992,357:477-479
    8 T.R.Hebner,C.C.Wu,D.Marcy et al.Ink-jet printing of doped polymers for organic light emitting devices.Appl.Phys.Lett.1998,72(5):519-521
    9 J.Bharathan and Y.Yang.Polymer electroluminescent devices processed by inkjet printing:I.Polymer light-emitting logo.Appl.Phys.Lett.1998,72(21):2660-2662
    10 E.Westerweele,P.Smith and A.J.Heeger.Inverted polymer light-emitting diodes on cylindrical metal substrates.Adv.Mater.1995,7(9):788-790
    11 Y.Cao,G.M.Treacy,P.Smith et al.Solution-cast films of polyaniline:Optical quality transparent electrodes,Appl.Phys.Lett.1992,60:2711-2733
    12 Y.Yang and A.J.Heeger.Polyaniline as a transparent electrode for polymer light-emtting diodes:lower operating voltage and higher efficiency.Appl.Phys.Lett.1994,64:1245-1247
    13 Q.L.Chao,Sh.A.Chen.White light emission from exciplex in a bilayer device with two blue light-emitting polymers.Appi.Phys.Lett.1998,73:426-428
    14 Y.Cao,G.Yu,C.Zhang et al.Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode.Synth.Met.1997,87:171-174
    15 L.Groenendaal,F.Jonas,D.Freitag et al.Poly(3,4-ethylenedioxythiophene) and its derivatives:past,present,and future,Adv.Mater.2000,12:481-494
    16 A.Elschner,F.Bruder,H.W.Heuer et al.PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes.Synth.Met.2000,111-112:139-143
    17 I.H.Campbell and T.W.Hagler.Direct measurement of conjugated polymer electronic excitation-energies using metal/polymer/metal structures.Phys.Rev.Lett.1996,76:1900-1903
    18 杨立功.聚合物半导体薄膜的光电特性和器件研究.博士学位论文,2005
    19 J.C.Carter,I.Grizzi,S.K.Heeks et al.Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene).Appl.Phys.Lett.1997,71(1):34-36
    20 I.H.Campbell,P.S.Davids,D.L.Smith et al.The Schottky energy barrier dependence of charge injection in organic light-emitting diodes.Appl.Phys.Lett.1998,72(15):1863-1865
    21 施敏,赵鹤鸣.半导体器件:物理与工艺.苏州:苏州大学出版社,2002
    22 I.D.Park.Carrier tunneling and device characteristics in polymer light-emitting diodes.J.Appl.Phys.1994,75:1656-1666
    23 D.Braun.Electronic injection and conduction processes for polymer devices.J.Poly.Sci.B.2003,41:2622-2629
    24 J.R.Sheats,H.Antoniadis,M.hueschen et al.Organic electroluminescent devices.Science 1996,273:884-888
    25 P.E.Burrows,S.R.Forrest.Electroluminescent from trap-limited current transport in vacuum-deposited organic light-emitting devices.Appl.Phys.Lett.1994,64:2285-2287
    26 董海星.共混聚合物发光二极管的性能研究.硕士学位论文,2006
    27 黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001
    28 章勇.聚合物发光二极管的性能研究.博士学位论文,2005
    29 N.C.Greenham,R.H.Friend,D.D.C.Bradley.Angular dependence of the emission from a conjugated polymer light-emitting diode:implication for efficiency calculations.Adv.Mater.1994,6:491-494
    30 C.F.Madigan,M.H.Lu,J.C.Sturn.Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification.Appl.Phys.Lett.2000,76:1650- 1652
    31 黄春辉,李富友,黄维.有机电致发光材料与器件导论.上海:复旦大学出版社,2005
    32 P.Dyreklev,M.Berggren,O.Inganas et ai.Polarized Electroluminescence from an Oriented Substituted Polythiophene in a Light-Emitting Diode.Adv.Mater.1995,7(1):43-45
    33 G.Lussem,F.Geffarth,A.Greiner et al.Polarized electroluminescence of light emitting liquid crystalline polymers.Liq.Cryst.1996,21(6):903-907
    34 V.Cimrova,M.Remmers,D.Neher et al.Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique.Adv.Mater.1996,8(2):146-151
    35 J.Kido,K.Hongawa,K.Okuyama et al.White Light-Emitting Organic Electroluminescent Devices Using the Poly(N-Vinylcarbazole) Emitter Layer Doped with 3 Fluorescent Dyes.Appl.Phys.Lett.1994,64(7):815-817
    36 Y.H.Yao,L.R.Kung,and C.S.Hsu.Polarized white emission from fluorene-based polymer blends.Jpn.J.Appl.Phys.,Part 1 2005,44(10):7648-7653
    37 D.D.C.Bradley,R.H.Friend,H.Lindenberger et al.Infrared Characterization of Oriented Poly(Phenylene Vinylene).Polymer 1986,27(11):1709-1713
    38 U.Lemmer,D.Vacar,D.Moses et al.Electroluminescence from poly(phenylene vinylene) in a planar metal-polymer-metal structure.Appl.Phys.Lett.1996,68(21):3007-3009
    39 N.A.J.M.Vanaerle,M.Barmentlo,and R.W.J.Hollering.Effect of Rubbing on the Molecular-Orientation within Polyimide Orienting Layers of Liquid-Crystal Displays.J.Appl.Phys.1993,74(5):3111-3120
    40 M.Hamaguchi and K.Yoshino.Rubbing-Induced Molecular-Orientation and Polarized Electroluminescence in Conjugated Polymer.Jpn.J Appl.Phys.Part 2-Letters 1995,34(6A):L712-L715
    41 M.Misaki,Y.Ueda,S.Nagamatsu et al.Highly polarized polymer light-emitting diodes utilizing friction-transferred poly(9,9-dioctylfluorene) thin films.Appl.Phys.Lett.2005,87(24):243503
    42 M.Misaki,Y.Ueda,S.Nagamatsu et al.Formation of single-crystal-like poly(9,9-dioctylfluorene)thin film by the friction-transfer technique with subsequent thermal treatments.Macromolecules 2004,37(18):6926-6931
    43 Z. Aliadib, K. Davidson, H. Nooshin et al. Magnetic Orientation of Phthalocyaninato-Polysiloxanes. Thin Solid Films 1991, 201(1): 187-195
    
    44 G. Lussem, R. Festag, A. Greiner et al. Polarized Photoluminescence of Liquid-Crystalline Polymers with Isolated Arylenevinylene Segments in the Main-Chain. Adv. Mater. 1995, 7(11): 923
    
    45 K. S. Whitehead, M. Grell, D. D. C. Bradley et al. Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2000, 76(20): 2946-2948
    
    46 S. W. Culligan, Y. H. Geng, S. H. Chen et al. Strongly polarized and efficient blue organic light-emitting diodes using monodisperse glassy nematic oligo(fluorene)s. Adv. Mater. 2003, 15(14): 1176-1180
    
    47 E.. A. A. Contoret, S. R. Farrar, P. O. Jackson et al. Polarized Electroluminescence from an Anisotropic Nematic Network on a Non-contact Photoalignment Layer. Adv. Mater. 2000, 12(13): 971-974
    
    48 D. Sainova, A. Zen, H. G. Nothofer et al. Photoaddressable alignment layers for fluorescent polymers in polarized electroluminescence devices. Adv. Funct. Mater. 2002, 12(1): 49-57
    1 Y.Yamada and H.Yanagi.Polarized blue light-emission from epitaxially oriented bis(phenyloxazolyl)benzene crystals.Appl.Phys.Lett.2000,76(23):3406-3408
    2 许世昆.可发绿色极化光之水平配向的polyfluorene薄膜之研究.硕士学位论文,2005
    3 陈军.光学电磁理论.北京:科学出版社,2006
    4 D.Neher.Substituted Rigid Rod-Like Polymers-Building Blocks for Photonic Devices.Adv.Mater.1995,7(8):691-702
    5 Z.Bao,Y.Chen,R.Cai et al.Conjugated linuid crystalline polymers:soluble and fusible poly(Phenylenevinylene) by the heck coupling reaction.Macromolecules 1993,26:5281-5286
    6 L.Yu and Z.Bao.Conjugated polymers exhibiting liquid crystallinity.Adv.Mater.1994,6:156-159
    7 J.Oberski,R.Festag,C.Schmidt et al.Synthesis and structure-property relationships of processable liquid crystalline polymers with arylenevinylene segments in the main chain for light-emitting applications.Macromolecules 1995,28:8676-8682
    8 G.Lussem,R.Festag,A.Greiner et al.Polarized photoluminescence of liquid-crystalline polymers with isolated arylenevinylene segments in the main-chain.Adv.Mater.1995,7(11):923-925
    9 周其凤,王心久.液晶高分子.北京:科学出版社,1994
    10 L.M.Landau,E.M.Lifshitz and L.P.Pitaevskii.Statistical Physics.Pt.1.3rd ed.Pergamon,Oxford,p449.1980
    11 J.J.Hermans,P.H.Hermans,D.Vermaas et al.Recl.Trav.Chim.Pays-Bas 1946,65,427
    12 S.Schwiegk,T.Vahlenkamp,Y.Z.Xu et al.Origin of Orientation Phenomena Observed in Layered Langmuir-Blodgett Structures of Hairy-Rod Polymers.Macromolecules 1992,25(9):2513-2525
    13 M.C.Gather and D.D.C.Bradley.An improved optical method for determining the order parameter in thin oriented molecular films and demonstration of a highly axial dipole moment for the lowest energy pi-pi optical transition in poly(9,9-dioctylfluorene-co-bithiophene).Adv.Funct.Mater.2007,17(3):479-485
    14 M.Grell and D.D.C.Bradley.Polarized Luminescence from Oriented Molecular Materials.Adv.Mater.1999,11:895-905
    15 T.Damerau and M.Hennecke.Determination of Orientational Order Parameters of Uniaxial Films with a Commercial 90-Degrees-Angle Fluorescence Spectrometer.J.Chem.Phys.1995,103(14):6232-6240
    1 M. Bernius, M. Inbasekaran, E. Woo et al. Light-emitting diodes based on fluorene polymers. Thin Solid Films 2000, 363(1-2): 55-57
    
    2 M. Bernius, M. Inbasekaran, E. Woo et al. Fluorene-based polymers-preparation and applications. J. Mater. Sci.-Mater. in Electron. 2000, 11(2): 111-116
    
    3 Q. Hou, Y. Xu, W. Yang et al. Novel red-emitting fluorine-based copolymer. J. Mater. Chem. 2002, 12:2887-2892
    
    4 M. Leclerc. Polyfluorenes: twenty years of progress. J. Polym. Sci. Part A: Polym. Chem. 2001, 39: 2867-2873
    
    5 G. Klaerner and R. D. Miller. Polyfluorene derivatives: Effective conjugation lengths from well-defined oligomers. Macromolecules 1998, 31(6): 2007-2009
    
    6 S. Beaupre and M. Leclerc. Fluorene-based copolymers for red light-emitting diodes. Adv. Funct. Mater. 2002, 12: 192-196
    
    7 J. Yang, C. Jiang, Y. Zhang et al. High- efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole. Macromolecules 2004, 37: 1211-1218
    
    8 C. Ego, A. C. Grimsdale, F. Uckert et al. Triphenylamine-substituted polyfluorene-a stable blue-emitter with improved charge injection for light-emitting diodes. Adv. Mater. 2002, 14: 809-811
    
    9 M. Redecker, D. D. C. Bradley, M. Inbasekaran et al. Nondispersive hole transport in an electroluminescent polyfluorene. Appl. Phys. Lett. 1998, 73(11): 1565-1567
    
    10 U. Scherf and E. J. W. List. Semiconducting polyfluorenes-Towards reliable structure- property relationships. Adv. Mater. 2002, 14(7): 477-487
    
    11 B. P. Lyons, K. S. Wong, and A. P. Monkman. Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin. .J. Chem. Phys. 2003, 118(10): 4707-4711
    
    12 Y. II. Niu, J. Huang, and Y. Cao. High-efficiency polymer light-emitting diodes with stable saturated red emission: Use of carbazole-based copolymer blends in a poly(p-phenylenevinylene) derivative. Adv. Mater. 2003, 15(10): 807-811
    
    13 K. S. Whitehead, M. Grell, D. D. C. Bradley et al. Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2000, 76(20): 2946-2948
    
    14 A. Gadisa, E. Perzon, M. R. Andersson et al. Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. Appl. Phys. Lett. 2007, 90(11): 113510
    
    15 M. Misaki, Y. Ueda, S. Nagamatsu et al. Highly polarized polymer light-emitting diodes utilizing friction-transferred poly(9,9-dioctylfluorene) thin films. Appl. Phys. Lett. 2005, 87(24): 243503
    
    16 A. E. A. Contoret, S. R. Farrar, P. O. Jackson et al. Polarized electroluminescence from an anisotropic nematic network on a non-contact photoalignment layer. Adv. Mater. 2000, 12(13): 971-974
    17 Z.Y.Ren,X.G.Zeng,X.Z.Yang et al.Molecular modeling of the H-bonds in polyurethane with multiple donors and acceptors.Polymer 2005,46(26):12337-12347
    18 Z.J.Zheng,K.H.Yim,M.S.M.Saifullah et al.Uniaxial alignment of liquid-crystalline conjugated polymers by nanoconfinement.Nano Lett.2007,7(4):987-992
    19 S.Janietz,D.D.C.Bradley,M.Grell et al.Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene).Appl.Phys.Lett.1998,73(17):2453-2455
    20 J.Morgado,E.Moons,R.H.Friend et al.De-mixing of polyfluorene-based blends by contact with acetone:electro- and photo-luminescence probes.Adv.Mater.2001,13:810-814
    21 C.Jiang,W.Yang,J.Peng et al.High-efficiency,saturated red-phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex.Adv.Mater.2004,16(6):537-541
    22 J.S.Yu,F.Suo,W.Z.Li et al.Influence of electrode materials on the performance of NPB/Alq(3)organic electroluminescent devices.Acta.Phys.Chim.Sinica 2007,23(11):1821-1826
    23 J.Liu,G.L.Tu,Q.G.Zhou et al.Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant.J.Mater.Chem.2006,16(15):1431-1438
    24 C.D.Muller,A.Falcou,N.Reckefuss et al.Multi-colour organic light-emitting displays by solution processing.Nature 2003,421(6925):829-833
    25 J.Peng,H.S.Luo,D.Lin et al.Orientation dependence of transverse piezoelectric properties of 0.70Pb(Mg1/3Nb2/3)O-3-0.30PbTiO(3) single crystals.Appl.Phys.Lett.2004,85(25):6221-6223
    26 L.T.Hou,F.Huang,J.B.Peng et al.Study of electroluminescence and electron injection on novel red polyelectrolytes copolymer.Acta Phys.Sinica 2007,56(10):6104-6108
    27 甄红宇,罗潺,朱德喜等.一种红光螯合电磷光聚合物光电性能的研究.物理学报2008,57(3):1918-1923
    28 W.Wu,M.Inbasekaran,M.Hudack et al.Recent development of polyfluorene-based RGB materials for light-emitting diodes.Microelectron.J.2004,35:343-348
    29 I.S.Millard.High-efficiency polyfluorene polymers suitable for RGB applications.Synth.Met.2000,111-112:119-123
    30 R.Q.Yang,R.Y.Tian,W.Yang et al.Novel highly electroluminescent fluorene-based copolymers.Synth.Met.2003,135(1-3):197-198
    31 J.Luo,X.Z.Li,Q.Hou et al.High-efficiency white-light emission from a single copolymer:Fluorescent blue,green,and red chromophores on a conjugated polymer backbone.Adv.Mater.2007,19(8):1113-1117
    32 M.Kawamoto,H.Mochizuki,T.lkeda et al.Polarized emission from self-organized low-molecular-weight liquid crystals with the aid of hole-injecting materials.J.Appl.Phys.2003, 94(10): 6442-6446
    33 S. W. Culligan, Y. H. Geng, S. H. Chen et al. Strongly polarized and efficient blue organic light-emitting diodes using monodisperse glassy nematic oligo(fluorene)s. Adv. Mater. 2003, 15(14): 1176-1180
    
    34 D. J. Milliron, I. G. Hill, C. Shen et al. Surface oxidation activates indium tin oxide for hole injection. J. Appl. Phys. 2000, 87: 572-576
    
    35 B. Y. Ouyang, C. W. Chi, F. C. Chen et al. High-conductivity poly (3,4-ethylenedioxy-thiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005, 15(2): 203-208
    
    36 K. B. Kahen. Rigorous optical modeling of multilayer organic light-emitting diode devices. Appl. Phys. Lett. 2001,78(12): 1649-1651
    
    37 W. M. V. Wan, N. C. Greenham, and R. H. Friend. Interference effects in anisotropic optoelectronic devices. J. Appl. Phys. 2000, 87(5): 2542-2547
    
    38 J. f. Tang, P. F. Gu, X. Liu et al. Modern optical thin film technology. Hangzhou: Zhejing University Press, 2006.20-23
    
    39 A. R. Forouhi and I. Bloomer. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 1986, 34 (10): 7018-7026
    
    40 A. R. Forouhi, I. Bloomer Simultaneous determination of thickness and optical constants of thin films. Proc. SPIE 1995, 2439: 126-136
    
    41 Y. Kim, S. Cook, S. A. Choulis et al. Effect of electron-transport polymer addition to polymer/fullerene blend solar cells. Synth. Met. 2005, 152(1-3): 105-108
    
    42 M. Tammer and A. P. Monkman Measurement of the Anisotropic Refractive Indices of Spin Cast Thin Poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) Films. Adv. Mater. 2002, 14:210-212
    
    43 W. H. Press, S. A. Teukolsky, W. T. Vetterling et al. Numerical Recipes in C. Cambridge University Press, New York. 2001
    
    44 T. Tsuboi, Y. Wasai, and N. Nabatova-Gabain. Optical constants of platinum octaethyl porphyrin in single-layer organic light emitting diode studied by spectroscopic ellipsometry. Thin Solid Films 2006, 496(2): 674-678
    
    45 C. M. Ramsdale and N. C. Greenham. Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers. Adv. Mater. 2002, 14(3):212-215
    
    46 C. M. Ramsdale and N. C. Greenham. The optical constants of emitter and electrode materials in polymer light-emitting diodes. J. Phys. D: Appl. Phys. 2003, 36(4): L29-L34
    
    47 M. Campoy-Quiles, P. G. Etchegoin, and D. D. C. Bradley. On the optical anisotropy of conjugated polymer thin films. Phys. Rev. B 2005, 72(4): 279-285
    
    48 M. M. I. Khalil, G. M. Nasr and N. M. El-Sawy. Optical properties of modified grafted polypropylene. J. Phys. D: Appl. Phys. 2006, 39: 5305-5309
    
    49 U. Heinemeyer, A. Hinderhofer, M. I. Alons et al. Uniaxial anisotropy of organic thin films determined by ellipsometry. Phys. Stat. Sol. A-Appl. Mater. Sci. 2008, 205(4): 927-930
    
    50 A. J. Moule and K. Meerholz. Interference method for the determination of the complex refractive index of thin polymer layers. Appl. Phys. Lett. 2007, 91(6): 061901
    
    51 D. Braun and A. J. Heeger. Visible-Light Emission from Semiconducting Polymer Diodes. Appl. Phys. Lett. 1991, 58(18): 1982-1984
    
    52 F. Fitrilawati, M. O. Tjia, S. Pfeiffer et al. Planar waveguides of PPV derivatives: attenuation loss, third-harmonic generation and photostability. Opt. Mater. 2002, 21:511-519
    
    53 P. N. Stavrinou, G. Ryu, M. Campoy-Quiles et al. The change in refractive index of poly(9,9-dioctylfluorene) due to the adoption of the beta-phase chain conformation. J. Phys.: Condens. Matter 2007, 19(46): 466107-1-13
    
    54 A. L. Alvarez, J. Tito, M. B. Vaello et al. Polymeric multilayers for integration into photonic devices. Thin Solid Films 2003,433(1-2): 277-280
    
    55 Z. T. Liu, C. C. Oey, A. B. Djurisi et al. Spectroscopic ellipsometry of the optical functions of some widely used organic light emitting diodes (OLEDs) materials. Mater. Res. Soc. Symp. Proc. 2005, 871E: 19.18.1-19.18.6
    
    56 D. K. Chambers and S. Selmic. Advanced characterization of the electronic structure of MEH-PPV. Mater. Res. Soc. Symp. Proc. 2005, 871E: 16.20.1-16.20.6
    
    57 N. A. Bakr and M. I. Abdelhamid. Optical and Electrical-Conductivity Investigations of Fe3~+-(Acrylonitrile-Butadiene-Styrene) Terpolymer Complex-Systems. J. Mater. Res. 1995, 10(10): 2653-2658
    
    58 D. Poplavskyy, J. Nelson, and D. D. C. Bradley. Ohmic hole injection in poly(9,9-dioctylfluorene) polymer light-emitting diodes. Appl. Phys. Lett. 2003, 83(4): 707-709
    
    59 D. Davazoglou. Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiC12H2-NH3-N2O mixtures. Thin Solid Films 2003, 437: 266-271
    
    60 D. McBranch, I. H. Campbell, D. L. Smith et al. Optical determination of chain orientation in electroluminescent polymer films. Appl. Phys. Lett. 1995, 66:1175-1177
    
    61 U. Heinemeyer, A. Hinderhoferl, M. I. Alonso et al. Uniaxial anisotropy of organic thin films determined by ellipsometry. phys. stat. sol. (a) 2008, 205: 927-930
    
    62 Y. J. Jen, C. Y. Peng and H. H. Chang. Optical constant determination of an anisolropic thin film via polarization conversion. Opt. Express 2007, 15: 4445-4451
    
    63 C. M. Ramsdale and N. C. Greenham. Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers. Adv. Mater. 2002, 14: 212-215
    
    64 C. M. Ramsdale and N. C. Greenham. The optical constants of emitter and electrode materials in polymer light-emitting diodes. J. Phys. D: Appl. Phys. 2003: 36 L29-L34
    65 T. Csendes, B. Daroczy, and Z. Hantos. Nonlinear Parameter-Estimation by Global Optimization -Comparison of Local Search Methods in Respiratory System Modeling. Lecture Notes in Control and Information Sciences 1986, 84: 188-192
    
    66 K. S. Whitehead, M. Grell, D. D. C. Bradley et al. Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2000, 76: 2946-2948
    
    67 C. Soci, D. Comoretto, F. Marabelli et al. Anisotropic photoluminescence properties of oriented poly(p-phenylene-vinylene) films: Effects of dispersion of optical constants. Phys. Rev. B 2007, 75(7): 075204-1-11
    1 J.Morgado,E.Moons,R.H.Friend et al.De-mixing of polyfluorene-based blends by contact with acetone:electro- and photo-luminescence probes.Adv.Mater.2001,13(11):810-814
    2 C.Jiang,W.Yang,J.Peng et al.High-Efficiency,Saturated red-phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex.2004,16:537-541
    3 P.Dyreklev,M.Berggren,O.Inganas et al.Polarized Electroluminescence from an Oriented Substituted Polythiophene in a Light-Emitting Diode.Adv.Mater.1995,7(1):43-45
    4 M.Granstrom.Novel polymer light-emitting diode designs using poly(thiophenes).Polym.Adv.Technol.1997,8(7):424-430
    5 X.L.Chen,Z.N.Bao,B.J.Sapjeta et al.Polarized electroluminescence from aligned chromophores by the friction transfer method.Adv.Mater.2000,12(5):344-347
    6 S.P.Li,C.J.Newsome,D.M.Russell et al.Friction transfer deposition of ordered conjugated polymer nanowires and transistor fabrication.Appl.Phys.Lett.2005,87(6):062101
    7 M.Misaki,Y.Ueda,S.Nagamatsu et al.Highly polarized polymer light-emitting diodes utilizing friction-transferred poly(9,9-dioctyifluorene) thin films.Appl.Phys.Lett,2005,87(24):243503
    8 V.Cimrova,M.Remmers,D.Neher et al.Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique.Adv.Mater.1996,8(2):146-149
    9 M.Grell,W.Knoll,D.Lupo et al.Blue polarized electroluminescence from a liquid crystalline polyfluorene.Adv.Mater.1999,11(8):671-675
    10 H.Mochizuki,T.Hasui,M.Kawamoto et al.A novel class of photo- and electroactive polymers containing oxadiazole and amine moieties in a side chain.Macromolecules 2003,36(10):3457-3464
    11 孙睿鹏,黄锡珉,马凯等.聚酰亚胺膜上液晶表面锚定强度的研究.物理学报1995,44(6):897-902
    12 K.S.Whitehead,M.Grell,D.D.C.Bradley et al.Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene).Appl.Phys.Lett.2000,76(20):2946-2948
    13 T.F.Guo,S.Pyo,S.C.Chang et al.High performance polymer light-emitting diodes fabricated by a low temperature lamination process.Adv.Funct.Mater.2001,11(5):339-343
    14 黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001
    15 A.Gadisa,E.Perzon,M.R.Andersson et al.Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes.Appl.Phys.Lett.2007,90(11):113510
    16 B.Schartel,V.Wachtendorf,M.Grell et al.Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer.Phys.Rev.B 1999,60(1):277-283
    17 M.Grell and D.D.C.Bradley.Polarized luminescence from oriented molecular materials.Adv. Mater. 1999, 11(11):895-905
    
    18 M. Klessinger and .J. Micheal. Excited States and Photochemistry of Organic Molecules. VCH Publishers, Inc. New York, 1995
    
    19 M. C. Gather and D. D. C. Bradley. An improved optical method for determining the order parameter in thin oriented molecular films and demonstration of a highly axial dipole moment for the lowest energy pi-pi optical transition in poly(9,9-dioctylfluorene-co-bithiophene). Adv. Funct. Mater. 2007, 17(3): 479-485
    1 J.Kido,K.Hongawa,K.Okuyama and K.Nagai.White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter llayer doped with three fluorescent dyes.Appl.Phys.Lett.1994,64(7):815-817
    2 J. Kido, H. Shionoya, and K. Nagai. Single-Layer White Light-Emitting Organic Electroluminescent Devices Based on Dye-Dispersed Poly(N-Vinylcarbazole). Appl. Phys. Lett. 1995, 67(16): 2281-2283
    
    3 M. Berggren, O. Inganas, G. Gustafsson et al. Light-Emitting-Diodes with Variable Colors from Polymer Blends. Nature 1994, 372(6505): 444-446
    
    4 G. L. Tu, Q. G. Zhou, Y. X. Cheng et al. White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties. Appl. Phys. Lett. 2004, 85(12): 2172-2174
    
    5 Q. F. Xu, H. M. Duong, F. Wudl et al. Efficient single-layer "twistacene"-doped polymer white light-emitting diodes. Appl. Phys. Lett. 2004, 85(16): 3357-3359
    
    6 G. K. Ho, H. F. Meng, S. C. Lin et al. Efficient white light emission in conjugated polymer homojunctions. Appl. Phys. Lett. 2004, 85(20): 4576-4578
    
    7 J. H. Kim, P. Herguth, M. S. Kang et al. Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative. Appl. Phys. Lett. 2004, 85(7): 1116-1118
    
    8 K. S. Whitehead, M. Grell, D. D. C. Bradley et al. Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2000, 76(20): 2946-2948
    
    9 A. Gadisa, E. Perzon, M. R. Andersson et al. Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. Appl. Phys. Lett. 2007, 90(11) :113510
    
    10 M. Misaki, Y. Ueda, S. Nagamatsu et al. Highly polarized polymer light-emitting diodes utilizing friction-transferred poly(9,9-dioctylfluorene) thin films. Appl. Phys. Lett. 2005, 87(24): 243503
    
    11 A. E. A. Contoret, S. R. Farrar, P. O. Jackson et al. Polarized electroluminescence from an anisotropic nematic network on a non-contact photoalignment layer. Adv. Mater. 2000, 12(13): 971-974
    
    12 M. O'Neill and S. M. Kelly. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater. 2003, 15(14): 1135-1146
    
    13 Y. H. Yao, S. H. Yang, C. S. Hsu. Synthesis of laterally attached side-chain liquid crystalline poly(p-phenylene vinylene) and polyfluorene derivatives for the application of polarized electroluminescence. Polymer 2006,47(25): 8297-8308
    
    14 Y. H. Yao, L. R. Kung, and C. S. Hsu. Polarized white emission from fluorene-based polymer blends. Jpn. J. Appl. Phys., Part 1 2005,44(10): 7648-7653
    
    15 J. M. Shi and C. W. Tang. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1997, 70(13): 1665-1667
    
    16 B. P. Lyons, K. S. Wong, and A. P. Monkman. Study of the energy transfer processes in polyfluorene doped with tetraphenyl porphyrin. J. Chem. Phys. 2003, 118(10): 4707-4711
    
    17 H. J. Egelhaaf, J. Gierschner, and D. Oelkrug. Polarizability effects and energy transfer in quinquethiophene doped bithiophene and OPV films. Synth. Met. 2002, 127(1-3): 221-227
    18 Y. H. Niu, J. Huang, and Y. Cao. High-efficiency polymer light-emitting diodes with stable saturated red emission: Use of carbazole-based copolymer blends in a poly(p-phenylenevinylene) derivative. Adv. Mater. 2003, 15(10): 807-811
    
    19 C. H. Chuen and Y. T. Tao. Highly-bright white organic light-emitting diodes based on a single emission layer. Appl. Phys. Lett. 2002, 81(24): 4499-4501
    
    20 M. T. Bernius, M. lnbasekaran, J. O'Brien et al. Progress with Light-Emitting Polymers. Adv. Mater. 2000, 12(23): 1737-1750
    
    21 C.D. Muller, A. Falcou, N. Reckefuss et al. Multi-colour organic light-emitting displays by solution processing. Nature 2003,421(6925): 829-833
    
    22 M. S. Liu, X. Z. Jiang, S. Liu et al. Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers. Macromolecules 2002, 35(9): 3532-3538
    
    23 E. Lim, B. J. Jung, and H. K. Shim. Synthesis and characterization of a new light-emitting fluorene-thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 2003, 36(12): 4288-4293
    
    24 N. J. Turro. Modern Molecular Photochemistry. Menlo Park, Benjamin/Cummings, 1978
    
    25 Y. H. Xu, J. B. Peng, Y. Q. Mo et al. Efficient polymer white-light-emitting diodes. Appl. Phys. Lett. 2005,86(16): 163502
    
    26 S. J. Bai, C. C. Wu, T. D. Dang et al. Tunable and white light-emitting diodes of monolayer fluorinated benzoxazole graft copolymers. Appl. Phys. Lett. 2004, 84(10): 1656-1658
    
    27 J. Y. Li, D. Liu, C. W. Ma et al. White-light emission from a single-emitting-component organic electroluminescent device. Adv. Mater. 2004, 16(17): 1538- 1541
    
    28 P. T. Furuta, L. Deng, S. Garon et al. Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. Journal of the American Chemical Society 2004, 126(47): 15388-15389
    
    29 Y. Z. Lee, X. W. Chen, M. C. Chen et al. White-light electroluminescence from soluble oxadiazole-containing phenylene vinylene ether-linkage copolymer. Appl. Phys. Lett. 2001, 79(3): 308-310
    
    30 M. L. Tsai, C. Y. Liu, M. A. Hsu et al. White light emission from single component polymers fabricated by spin coating. Appl. Phys. Lett. 2003, 82(4): 550-552
    
    31 M. Mazzeo, V. Vitale, F. Delia Sala et al. Bright white organic light-emitting devices from a single active molecular material. Adv. Mater. 2005, 17(1): 34- 39
    
    32 J. J. Shiang, T. J. Faircloth, and A. R. Duggal. Experimental demonstration of increased organic light emitting device output via volumetric light scattering. J. Appl. Phys.2004, 95(5):2889-2895
    
    33 A. R. Duggal, J. J. Shiang, C. M. Heller et al. Organic light-emitting devices for illumination quality white light. Appl. Phys. Lett. 2002, 80(19): 3470-3472
    34 J. Luo, X. Z. Li, Q. Hou et al. High-efficiency white-light emission from a single copolymer: Fluorescent blue, green, and red chromophores on a conjugated polymer backbone. Adv. Mater. 2007, 19(8): 1113-1117
    
    35 T. W. Lee and O. O. Park. The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes. Adv. Mater. 2000,12(11): 801-804
    
    36 Y. H. Niu, Q. Hou, and Y. Cao. Thermal annealing below the glass transition temperature: A general way to increase performance of light-emitting diodes based on copolyfluorenes. Appl. Phys. Lett. 2002, 81(4): 634-636
    1 E.A.A.Contoret,S.R.Farrar,P.O.Jackson et al.Polarized Electroluminescence from an Anisotropic Nematic Network on a Non-contact Photoalignment Layer.Adv.Mater.2000,12(13):971-974
    2 M.Galloway,W.Stryjewski,A.Henry et al.Contact conductivity detection in poly(methyl methacylate)-bascd microfluidic devices for analysis of mono- and polyanionic molecules.Analytical Chemistry 2002,74(10):2407-2415
    3 J.S.Ko,H.C.Yoon,H.S.Yang et al.A polymer-based microfluidic device for immunosensing biochips.Lab on a Chip 2003,3(2):106-113
    4 Y.Wang,B.Vaidya,H.D.Farquar et al.Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations.Anal.Chem.2003,75(5):1130-1140
    5 J.S.Buch,C.Kimball,F.Rosenberger et al.DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis.Anal.Chem.2004,76(4):874-881
    6 Y. Li, J. S. Buch, F. Rosenberger et al. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network. Anal. Chem. 2004,76 (3):742-748
    
    7 B. Vaidya, S. A. Soper, and R. L. McCarley. Surface modification and characterization of microfabricated poly(carbonate) devices: manipulation of electroosmotic flow. Analyst 2002, 127 (10):1289-1292
    
    8 S. A. Soper, S. M. Ford, S. Qi et al. Polymeric microelectromechanical systems. Anal. Chem. 2000, 72(19):642a-651a
    
    9 H. Becker and C. Gartner. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000, 21 (1): 12-26
    
    10 H. Becker and U. Heim. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators a-Physical 2000, 83 (1-3): 130-135
    
    11 M. B. Esch, S. Kapur, G. Irizarry et al. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on a Chip 2003, 3 (2): 121 -127
    
    12 H. Seidel, L. Csepregi, A. Heuberger et al. Anisotropic etching of crystalline silicon in alkaline-solutions influence of dopants. J. Electrochem. Soc. 1990, 137 (11): 3626-3632
    
    13 F. J. Touwslager, N. P. Willard and D. M. de Leeuw. 1-Line lithography of poly(3,4-ethylenedioxythiophene) electrodes and application in all-polymer integrated circuits. Appl. Phys. Lett. 2002, 81(24): 4556-4558
    
    14 M. X. Chen, D. Nilsson, T. Kugler et al. Electric current rectification by an all-organic electrochemical device. Appl. Phys. Lett. 2002, 81 (11): 2011-2013
    
    15 J. Z. Wang, J. Gu, F. Zenhausern, et al. Low-cost fabrication of submicron all polymer field effecl transistors. Appl. Phys. Lett. 2006, 88: 133502
    
    16 P.Y. Emelie, E. Cagin, J. Siddiqui et al. Electrical characteristics of PEDOT:PSS organic contacts to HgCdTe. J. Electron. Mater. 2007, 36(8): 841-845
    
    17 D. Nilsson, M. X. Chen, T. Kugler et al. Bi-stable and dynamic current modulation in electrochemical Organic Transistors. Adv. Mater. 2002, 14(1 ):51-54
    
    18 F. A. Boroumand, P. W. Fry, and D. G. Lidzey. Nanoscale conjugated-polymer light-emitting Diodes. Nano Lett. 2005, 5 (1): 67-71
    
    19 U. Lang, P. Rust and J. Dual. Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges. Microelectron. Eng. 2008, 85: 1050-1053
    
    20 M. Halik, H. Klauk, U. Zschieschang et al. Fully patterned all-organic thin film transistors. Appl. Phys. Lett. 2002, 81(2): 289-291
    
    21 K. S. Kangl, H. K. Lim, K. Y. Cho et al. Durability of PEDOT : PSS-pentacene Schottky diode. J. Phys. D: Appl. Phys. 2008, 41: 012003
    22 D. Hohnholz, H. Okuzaki, and A. G. MacDiarmid. Plastic electronic devices through line patterning of conducting polymers. Adv. Func. Mater. 2005, 15(1): 51-56
    
    23 Y. Xia, and G. M. Whitesides. Soft lithography. Angew. Chem. Int. Ed. Engl. 1998, 37(5): 551-575
    
    24 Y. Xia, and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28: 153-184.
    
    25 S. R. Quake, and A. Scherer. From micro- to nanofabrication with soft materials. In Issues in nanotechnology. Science 2000 (290): 1536-1540
    
    26 S. Y. Chou, P. R. Krauss and P. J. Renstrom. Imprint of sub 25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67 (21):3114-3116
    
    27 J. Taniguchi, Y. Tokano, I. Miyamoto et al. Diamond nanoimprint lithography. Nanotech. 2002, (13): 592-596
    
    28 M. M. Alkaisi, R. J. Blaikie, S. J. Mcnab. Low temperature nanoimprint lithography using silicon nitride molds. Microelectron. Eng. 2001, (57-58): 367-373
    
    29 M. Colburn, S.Johnson, M. Stewart et al. Step and flash imprint lithography: an alternative approach to high resolution patterning. Proc. SP1E. 1999, 3676: 37
    
    30 T. Hua, G. Andrew and S. Y. Chou. Roller nanoimprint lithography. J. Vac. Sci. Technol. B 2000, 16(6): 3926-3928
    
    31 S. Y. Chou, C. Keimel and J. Gu. Ultrafast and direct imprint of nanostructures in silicon. Nature 2002,417:835-837
    
    32 X. Qiangfei, K. Chris, G. Haixiong et al. Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography, Appl. Phys. Lett. 2003, 83(21): 4417-4419
    
    33 L. Tan, Y. P. Kong, S. W. Pang et al. Imprinting of polymer at low temperature and pressure. J. Vac. Sci. Technol. B 2004,22(5): 2486-2492
    
    34 R. M. Reano, Y. P. Kong, H. Y. Low et al. Stability of functional polymers after plasticizer- assisted imprint lithography. J. Vac. Sci. Technol. B 2004,22(6): 3294-3299
    
    35 X. H. Yu, R. Xing, S. F. Luan et al. Direct micropatterning of polymer materials by ice mold. Appl. Surf. Sci. 2006, 252: 8544-8548
    
    36 F. F. Zhang, T. Nyberg and O. Ingans. Conducting Polymer Nanowires and Nanodots Made with Soft Lithography. Nano Lett. 2002, 2(12):1373-1377
    
    37 G. Fichet, N. Corcoran, P. K. H. Ho et al. Self-organized photonic structures in polyer light-emitting diodes. Appl. Phys. Lett. 2004, 16( 21): 1908 -1912
    
    38 M. Pintani, J. Huang, M. C. Ramon et al. Breath figure pattern formation as a means to fabricate micro-structured organic light-emitting diodes, J. Phys.: Condens. Matter 2007, 19 : 016203
    
    39 D. Li and L. J. Guo. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping, J. Phys. D: Appl. Phys. 2008, 41: 105115
    
    40 X. J. Wang, K. Tvingstedt and O. Inganas. Single- and bilayer submicron arrays of fluorescent polymer on conducting polymer surface with surface energy controlled dewetting, Nanotech. 2005, 16:437-443
    
    41 C. Piliego, M. Mazzeo, B. Cortese et al. Organic light emitting diodes with highly conductive micropatterned polymer anodes, Organ. Electron. 2008, 9: 401-406
    
    42 X. J. Wanga, M. Ostblomb, T. Johanssona et al. PEDOT surface energy pattern controls fluorescent polymer deposition by Dewetting. Thin Solid Films 2004,449:125-132
    
    43 A. Bolognesi, C. Botta, and S. Yunus. Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films 2005, 492: 307-312
    
    44 J. B. Emah, R. J. Curry and S. R. P. Silva. Low cost patterning of poly(3,4- ethylenedioxythiophene): poly(styrenesulfonate) films to increase organic photovoltaic device efficiency. Appl. Phys. Lett. 2008,93: 103301
    
    45 X. C. Liu, A. Chakrabortyb, G. Parthasarathib et al. Generation of conducting polymer-based heterojunctions, diodes and capacitors using an intermediate-layer lithography method. Proc. of SPIE 2007, 6556: 65560Z
    
    46 A. Bietsch and B. Michel. Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 2000, 88(7): 4310-4318
    
    47 D. J. Campbell, K. J. Beckman, C. E. Calderon et al. Uses of polydimethylsiloxane (PDMS) elastomer. J. Chem. Educ. 1999, 76(4): 537-541
    
    48 D. C. Duffy, J. C. Mcdonald, O. J. A. Schueller et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70(23): 4974-4984
    
    49 H. Hillborg, J. F. Ankner, U. W. Gedde et al. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 2000, 41(18): 6851-6863
    
    50 B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood et al. Three dimensional micro-channel fabrication in Poly(dimethylsiloxane) (PDMS) elastomer. J. microelectromechan. Syst. 2000, 9(1): 76-81
    
    51 C.P. Hernandez, J. S. Kim, P. F. Fu et al. Nonresidual layer imprinting and new replication capabilities demonstrated for fast thermal curable polydimethysiloxanes. J. Vac. Sci. Technol. B 2007, 25(6):2402-2406
    
    52 D. H. Lee, K. H. Park, L. Y. Hong et al. SiCN ceramic patterns fabricated by soft lithography techniques. Sens. Actuators a-Phys. 2007, 135 (2): 895-901
    
    53 L. Y. Hong, D. H. Lee, and D. P. Kim, "Fabrication and application of novel hydrophilic nanomold," J. Phys. Chem. Solids 2008, 69 (5-6): 1436-1438

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700