双掺Hf:Fe:LiNbO_3晶体光折变性能及其光学相关识别应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学体全息数据存储器以其存储容量大、数据传输速率高、信息寻址速度快等优点,在现代信息存储技术竞争中显示出巨大的优势和良好的发展前景。理想的体全息存储材料应具有高折效率调制度、低噪声、高记录灵敏度以及较大的动态范围。铌酸锂(LiNbO3)晶体因其良好的光折变性能而成为体全息数据存储的首选记录材料。然而,LiNbO3晶体存在的响应时间长、散射噪声强等缺点从不同程度上制约了光学体全息数据存储的发展。因此,改善和优化LiNbO3晶体的光折变特性,进而提高体全息存储器的整体性能已成为目前体全息数据存储领域的重要研究课题之一。本文以新型双掺Hf:Fe:LiNbO3晶体为研究对象,从其微观缺陷结构出发,详细研究了Hf:Fe:LiNbO3晶体在488nm波长下的光折变特性,并以该材料为记录介质设计和搭建了基于光学滤波的快速相关识别系统,进行了边缘增强图像的光学相关识别研究。
     通过红外OH-吸收光谱、紫外-可见吸收光谱、ICP-AES分析以及拉曼光谱等光谱分析手段,详细研究了Hf:Fe:LiNbO3晶体的缺陷结构以及掺杂离子在晶体中的占位情况。分析结果表明,Hf4+离子掺杂浓度低于其阈值浓度时,Hf4+离子占据NbLi4+的锂位,当Hf4+离子掺杂浓度达到阈值浓度后,Hf4+离子开始进入正常的铌位。在所有样品中,Fe2+/3+离子一直占据正常的锂位。
     采用光斑畸变和光致双折射变化两种方法,针对Hf:Fe:LiNbO3晶体在488nm波长下的抗光损伤性能进行了系统研究。研究结果表明,在同成分Hf:Fe:LiNbO3晶体中,当Hf4+离子掺杂浓度为其阈值浓度(4.0mol.%)时,晶体的抗光损伤能力最强。对Hf4+离子掺杂浓度为1.0mol.%和4.0mol.%的晶体,晶体的抗光损伤能力随晶体内[Li]/[Nb]比变化呈现不同的规律。当Hf4+离子掺杂浓度为1.0mol.%时,晶体抗光损伤能力随[Li]/[Nb]比的增加而增强;当Hf4+离子掺杂浓度为4.0mol.%时,晶体抗光损伤能力随[Li]/[Nb]比的增加而减弱。
     基于二波耦合实验光路,对Hf:Fe:LiNbO3晶体在488nm波长下的光折变性能进行了详细研究。研究结果表明,随着Hf4+离子掺杂浓度的增加,晶体的光折变性能减弱,当Hf4+离子掺杂浓度超过阈值浓度后,晶体的光折变性能增强。对[Li]/[Nb]比变化的Hf:Fe:LiNbO3晶体,晶体的光折变性能改变与晶体内Hf4+离子掺杂浓度有关。对Hf4+离子掺杂浓度为1.0mol.%的晶体,晶体的光折变性能随[Li]/[Nb]比的增加而减弱。对Hf4+离子掺杂浓度为4.0mol.%的晶体,晶体的光折变性能随[Li]/[Nb]比的增加而增强。此外,通过对实验中所用记录光强进行优化,可以进一步提高晶体的光折变特性。
     利用光学高通滤波的方法实现了目标图像的边缘特征提取,并从理论和实验两方面研究了图像边缘增强对光学相关识别结果的影响。以Hf:Fe:LiNbO3晶体为记录介质,设计并搭建了基于光学滤波的快速相关识别系统。理论分析和实验结果均表明,与未经光学滤波的图像相比,经光学滤波后的边缘增强图像的相关识别准确率得到了明显提高。
Optical volume holographic data storage is the promising storage technique because of its high data storage density, high transfer speed, fast parallel access, and so on. Ideal volume holographic storage material should have high refractive index modulation, low scattering noise, high recording sensitivity and large dynamic range. Lithium niobate (LiNbO3) crystal has become a preferred holographic storage material because of its well-known photorefractive performance. However, LiNbO3 crystal exhibits the relatively low response speed and strong light-induced scattering, which limit the application of LiNbO3 crystal in volume holographic storage. So, improving and optimizing the photorefractive performance of LiNbO3 crystal have become one of important research subjects in volume holographic storage. In this thesis, a series of co-doped Hf:Fe:LiNbO3 crystals were grown and investigated. Based on the defect structure, the photorefractive properties of Hf:Fe:LiNbO3 crystals at 488nm wavelength were investigated in detail. The optical filtering correlation recognition system was designed and built up using Hf:Fe:LiNbO3 crystals as the recording materials, and the optical correlation recognition results of edge-enhanced images were investigated.
     The defect structures and occupied sites of Hf:Fe:LiNbO3 crystals were investigated detailedly by using infrared OH- absorption spectra, UV-Visible absorption spectra, ICP-AES analysis and Raman spectra. From the analytical results, its can be seen that Hf4+ ions take priority of replacing the antisite NbLi4+ defects when Hf4+ doping concentration is below its threshold concentration. While, when Hf4+ doping concentration exceeds its threshold concentration, Hf4+ ions begin to occupy the normal Nb sites. In our samples, Fe2+/3+ ions always occupy the normal Li sites.
     The optical damage resistance ability of Hf:Fe:LiNbO3 crystals was studied at 488nm wavelength by using the transmitted light spot distortion method as well as the photo-induced birefringence change method. The experimental results show that for congruent Hf:Fe:LiNbO3 crystals, the optical damage resistance ability of the crystal is the strongest when Hf4+ doping concentration is its threshold concentration (4.0mol.%). For Hf:Fe:LiNbO3 crystals with Hf4+ doping concentrations of 1.0mol.% and 4.0mol.%, the influence of the [Li]/[Nb] ratio on the optical damage resistance ability of crystals is different. When Hf4+ doping concentration is 1.0mol.%, the optical damage resistance ability of the crystals enhances remarkably with the [Li]/[Nb] ratio increasing. While, when Hf4+ doping concentration is 4.0mol.%, the optical damage resistance ability of the crystals decreases with the increase of the [Li]/[Nb] ratio.
     The photorefractive properties of Hf:Fe:LiNbO3 crystals were investigated experimentally at 488nm wavelength by using two-wave coupling experiment. The experimental results show that the photorefractive properties of the crystals descend with the increase of Hf4+ doping concentration. While, when Hf4+ doping concentration exceeds its threshold concentration, the photorefractive properties of the crystals return to increase. For Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios, the photorefractive properties of crystals is related to Hf4+ doping concentration. When Hf4+ doping concentration is 1.0mol.%, the photorefractive properties of the crystals descend with the [Li]/[Nb] ratio increasing. While, when Hf4+ doping concentration is 4.0mol.%, the photorefractive properties of the crystals enhance with the increase of the [Li]/[Nb] ratio. In addition, by optimizing the recording light intensity, preferable photorefractive properties can be obtained.
     Edge feature extraction of target images was achieved by using optical high-pass filtering method, and the influence of image edge enhancement on optical correlation recognition results was investigated theoretically and experimentally. The optical filtering correlation recognition system was designed and built up using Hf:Fe:LiNbO3 crystals as the recording materials. Theoretical analysis and experimental results show that the recognition rate of edge-enhanced images has a remarkable improvement compared with those of the original images.
引文
1 A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinsstein and K. Nassau. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1966, 9: 72-74
    2 F. S. Chen, J. T. LaMacchia and D. B. Fraser. Holographic storage in lithium niobate. Appl. Phys. Lett. 1968, 13: 223-225
    3 R. L. Townsend and J. T. LaMacchia. Optically induced refractive index changes in BaTiO3. J. Appl. Phys. 1970, 41: 5188-5192
    4 M. Peltier and F. Micheron. Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20. J. Appl. Phys. 1977, 48: 3683-3690
    5 M. D. Ewbank, R. R. Neurgaonkar and W. K. Cory. Photorefractive properties of strontium-barium niobate. J. Appl. Phys. 1987, 62: 374-380
    6 C. Y. Gao, H. R. Xia, J. Q. Xu, C. L. Zhou, S. C. Si, H. J. Zhang and J. Y. Wang. Photorefractive dynamic properties of Ca2+-doped strontium barium niobate crystals. Appl. Opt. 2009, 48: 161-166
    7 B. L. Liang, Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, M. S. Ding and H. Zhang. Enhancement of two-wave coupling in a Ce:KNSBN crystal with optimum polarization of the writing beams. Appl. Opt. 2001, 40: 3359-3364
    8 G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert and T. F. Boggess. Picosecond photorefractive beam coupling in GaAs. Opt. Lett. 1986, 11: 647-649
    9 A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson and A. A. Ballman. Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect. Appl. Phys. Lett. 1984, 44: 948-950
    10 F. Aslam, J. Stevenson-Hill, D. J. Binks, S. Daniels, N. L. Pickett and P. O. Brien. Effect of nanoparticle composition on the performance of photorefractive polymers. Chem. Phys. 2007, 334: 45-52
    11 M. Eralp, J. Thomas, S. Tay, P. A. Blanche, A. Schülzgen, R. A. Norwood, M. Yamamoto and N. Peyghambarian. Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry. Opt. Express. 2007, 15: 11622-11628
    12 C. W. Christenson, J. Thomas, P. A. Blanche, R. Voorakaranam, R. A. Norwood, M. Yamamoto and N. Peyghambarian. Grating dynamics in a photorefractive polymer with Alq3 electron traps. Opt. Express. 2010, 18: 9358-9365
    13 F. H. Mok, M. C. Tackitt and H. M. Stoll. Storage of 500 high-resolution holograms in a LiNbO3 crystal. Opt. Lett. 1991, 16: 605-607
    14 F. H. Mok. Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 1993, 18: 915-917
    15 G. W. Burr, F. H. Mok and D. Psaltis. Storage of 10,000 holograms in LiNbO3:Fe. Conf. On Laser and Electro-optics (CLEO), Anaheim CA, 1994, 8: 3463-3467
    16 J. F. Heanue, M. C. Bashaw and L. Hesselink. Volume holographic storage and retrieval of digital data. Science. 1994, 265: 749-752
    17 A. Puand and D. Psaltis. Topical meeting on optical data storage-digest of technical papers. IEEE Opt. Soc. Am. 1997, 4: 48-49
    18 G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane and R. M. Shelby. Volume holographic data storage at an areal density of 250 gigapixels/in2. Opt. Lett. 2001, 26: 444-446
    19 S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink and R. Okas. High data rate (10Gbit/s) demonstration in holographic disk digital data storage system. Pacific Rim Conference on Laser and Electro-optics (CLEO-Technical Digest), 2002: 70-71
    20李晓春. 1000幅数字图像的晶体体全息存储与恢复.光学学报. 1998, 18: 539-541
    21 Y. H. Wan, S. Q. Tao, D. Y. Wang, W. Yuan, G. Q. Liu, X. H. Ding, Z. Q. Jiang and C. J. Liu. Holographic disk data storage at a high area density of 33.7bit/?m2. SPIE. 2003, 5069: 294-299
    22 F. H. Mok and H. M. Stoll. Holographic inner-product processor for pattern recognition. SPIE. 1992, 1701: 312-322
    23 A. Pu, R. Denkewalter and D. Psaltis. Real-time vehicle navigation using a holographic memory. Opt. Eng. 1997, 36: 2737-2746
    24周雁,陶世荃,王大勇,江竹青.基于体全息图像库德模式识别算法.中国激光. 2002, 29: 359-362
    25冯文毅,严瑛白,金国藩,邬敏贤,何庆声.体全息子波关联记忆器.光学学报. 2000, 20: 602-608
    26刘海松,邬敏贤,金国藩,何庆声.基于多变量鉴别分析的光学畸变不变性图像识别.光学学报. 2000, 20: 912-918
    27 L. C. Cao, Q. S. He, C. Ouyang, Y. Liao and G. F. Jin. Improvement to human-face recognition in a volume holographic correlator by use of speckle modulation. Appl. Opt. 2005, 44: 538-545
    28 H. M. Bryan, P. K. Gallagher and C. D. Brandle. Congruent Composition and Li-Rich Phase Boundary of LiNbO3. J. Am. Ceram. Soc. 1985, 68:493-496
    29 B. C. Grabmaier, W. Wersing and W. Koestler. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure. J. Cryst. Growth. 1991, 110: 339-347
    30 S. Erdei and F. W. Ainger. Trends in the growth of stoichiometric single crystals. J. Cryst. Growth. 1997, 174: 293-300
    31 Y. S. Kuzminov and V. V. Osiko. Nonstoichiometric composition of lithium niobate crystal. Ferroelectrics. 1993, 142: 105-113
    32 H. Fay, W. J. Alford and H. M. Dess. Dependence of second harmonicphase -matching temperature in LiNbO3 crystals on melt-composition. Appl. Phys. Lett. 1968, 12: 69-71
    33 N. Iyi, K. Kitamura, F. Izumi, J. K.Yamamoto, T. Hayashi, H. Asano and S. Kimura. Comparitive study of defect structures in lithium niobate with different compositions. J. Sol. State. Chem. 1992, 101: 340-352
    34 K. L. Sweeney and L. E. Halliburton. Oxygen vacancies in lithium niobate. Appl. Phys. Lett. 1983, 43: 336-338
    35 D. M. Smyth. Defects and transport in LiNbO3. Ferroelectrics.1983, 50: 93-102
    36 O. F. Schirmer, O. Thiemann and M. Wochlecke. Defects in LiNbO3 experimental aspects. J. Phys. Chem. Solids. 1991, 52: 185-200
    37 G. E. Peterson and A. Carnevale. 93Nb NMR Linewidths in nonstoichimetric Lithium Niobate. J. Chem. Phys. 1972, 56: 4848-4852
    38 S. C. Abrahams and P. Marsh. Defect structure dependence on composition in lithium niobate. Acta Crystallogr. Sect. B. 1992, 101: 340-352
    39 P. Lerner, C. Legras and J. P. Dumas. Stoichiometric des moncristaux de Lithium. J. Cryst. Growth. 1968, 3: 231-235
    40 N. Zotov, H. Boysen, F. Frey, T. Metzger and E. Born. Models of congruent LiNbO3 investigated by X-ray and Neutron powder diffraction. J. Phys. Chem. Solids. 1994, 55: 145-152
    41 J. Blumel, E. Born, T. Metzger and G. Germany. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. J. Phys. Chem. Solids. 1994, 55: 589-593
    42 S. Kojima. Composition variation of optical phonon damping in lithium niobate crystals. Jpn. J. Appl. Phys. 1993, 32: 4373-4376
    43 R. G. Smith, D. B. Fraser, R. T. Denton and T. C. Rich. Correlation of reduction in optically induced refractive-index inhomogeneity with OH centent in LiTiO3 and LiNbO3. J. Appl. Phys. 1968, 39: 4600-4607
    44 Y. R. Nie, R. Wang and B. Wang. Growth and holographic storage properties of In:Ce:Cu:LiNbO3 crystal. Mater. Chem. Phys. 2007, 102: 281-283
    45 Y. X. Fan, H. T. Li and L. C. Zhao. Effect of Li/Nb ratio on growth and spectrometric characterization of Mg:Ce:Cu:LiNbO3 crystals. Mater. Charact. 2008, 59: 407-411
    46 L. Sun, F. Y. Guo, Q. Lv, L. L. Liu, H. T. Li, W. Cai, L. C. Zhao and Y. H. Xu. OH- absorption properties of the optical damage region in codoped In/Mg:LiNbO3 crystals with various Li/Nb ratios. Optik. 2009, 120: 514-518
    47 Y. X. Fan, C. Xu, S. X. Xia, C. X. Guan, L. C. Cao, Q. S. He and G. F Jin. Growth and spectroscopic characterization of Zr:Fe:LiNbO3 crystals with various Li/Nb ratios. J. Cryst. Growth. 2010, 312: 1875-1878
    48 L. Kovacs, V. Szaiay and R. Capelletti. Stoichiometry dependence of OH- absorption band in LiNbO3 crystals. Solid. State. Commun. 1984, 52: 1029-1035
    49冯少新.晶体缺陷能学计算及铌酸锂晶体的缺陷结构.南开大学博士研究生学位论文. 2001: 58-72
    50 L. Rebouta, P. J. M. Smulders, D. O. Boerma, F. Agulló-Lopez, M. F. Da Silva and J. C. Soares. Ion-beam channeling yields of host and impurity atoms in LiNbO3: Computer simulations. Phys. Rev. B. 1993, 48: 3600-3610
    51 H. J. Donnerberg, S. M. Tomlinson and C. R. A. Catlow. Defects in LiNbO3-II. Computer simulation. J. Phys. Chem. Solids. 1991, 52: 201-210
    52 O. Schirmer, O. Thiemann and M. W?hlecke. Defects in LiNbO3-I. Experimentalaspects. J. Phys. Chem. Solids. 1991, 52: 185-200
    53 J. Zhong, J. Jin and Z. Wu. Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO. 11th International Quantum Electronics Coference, New York, IEEE catalog. No.80, CH1561-0, 1980, 631-637
    54 T. Volk, V. Pryalkin and N. Rubinina. Optical-damage-resistant LiNbO3:Zn crystal. Opt. Lett. 1990, 15: 996-998
    55 Y. F. Kong, J. K. Wen and H. F. Wang. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In. Appl. Phys. Lett. 1995, 66: 280-281
    56 J. Yamamoto, T. Yanazaki and K. Yamagishi. Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3. Appl. Phys. Lett. 1994, 64: 3228-3230
    57 E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio and J.B. Gruber. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals. Appl. Phys. Lett. 2004, 84:1880-1882
    58 L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio and E. P. Kokanyan. Photorefractivity of Hafnium-doped congruent lithium niobate crystals. Appl. Phys. Lett. 2005, 86: 131914
    59 S. Q. Li, S. G. Liu, Y. F. Kong, D. L. Deng, G. Y. Gao, Y. B. Li, H. C. Gao, L. Zhang, Z. H. Hang, S. L. Chen and J. J. Xu. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. J. Phys.: Condens. Matter 2006, 18: 3527-3534
    60 W. B. Yan, Y. F. Kong, L. H. Shi, H. D. Liu, X. C. Li, J. J. Xu, S. L. Chen, L. Zhang, Z. H. Huang, S. G. Liu and G. Y. Zhang. Investigations of centers formed in UV-light-induced absorption for LiNbO3 highly doped with Mg and Hf. Opt. Express. 2006, 14: 10898-10906
    61 P. Galinetto, F. Rossella, I. Cristiani, P. Minzioni, V. Degiorgio and E. P. Kokanyan. Structural and optical properties of hafnium-doped lithium niobate crystals. Phys. Stat. Sol. C 2007, 4: 1372–1375
    62 Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen and J. J. Xu. Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett. 2007, 91: 081908
    63 L. Sun, F. Y. Guo, Q. Lv, H. T. Yu, H. T. Li, W. Cai, Y. H. Xu and L. C. Zhao. Increased optical damage resistance of Zr:LiNbO3 Crystals. Cryst. Res. Technol. 2007, 42: 1117-1122
    64 F. C. Liu, Y. F. Kong, X. Y. Ge, H. D. Liu, S. G. Liu, S. L. Chen, R. Rupp and J. J. Xu. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3:Zr,Cu,Ce. Opt. Express. 2010, 18: 6333-6339
    65 P. Tsai, M. Sun, C. Chia, H. Lu, S. Lin, M. Hu and J. Lee. Defect structure of highly Zn-doped LiNbO3 signal crystal revealed by extended X-ray absorption spectra. Appl. Phys. Lett. 2008, 92: 161902
    66 F. Y. Guo, Q. Lü, L. Sun, H. T. Li, X. H. Zhen, Y. H. Xu and L. C. Zhao. Experimental and theoretical investigation of lattice defect structures in a series of Zn, Fe-doped nonstoichiometric lithium niobate. Mater. Sci. Eng. B 2006, 131: 267-270
    67 G. Q. Zhang, S. M. Liu, G. Y. Tian, J. J. Xu, Q. Sun and G. Y. Zhang. New noise-suppression technique in photorefractive crystals. Appl. Opt. 1997, 36: 1815-1817
    68 G. Y. Zhang, J. J. Xu, S. M. Liu, Q. Sun, G. Q. Zhang, Q. Y. Fang and C. L. Ma. Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe,Mg crystals. SPIE. 1995, 2529:14-17
    69 Z. P. Xu, S. W. Xu, Y. H. Xu and R. Wang. Study on photorefractive property of Mg:Fe:LiNbO3 crystal. SPIE. 2005, 5636: 505-511
    70 X. H. Zhen, H. T. Li, Z. J. Sun, S. J. Ye, L. C. Zhao and Y. H. Xu. Holographic properties of double-doped Zn:Fe:LiNbO3 crystals. Mater. Lett. 2004, 58: 1000-1002
    71 T. Zhang, B. Wang, S. Q. Fang, D. C. Ma, Y. Q. Zhao and Y. H. Xu. Optical damage resistance of In:Fe:LiNbO3 crystals related to the defect structure. Mater. Lett. 2004, 58: 3074-3078
    72 Z. P. Xu, S. W. Xu, J. Zhang, X. R Liu and Y. H. Xu. Growth and photorefractive properties of In:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios. J. Cryst. Growth. 2005, 280: 227-233
    73 T. Zhang, T. Geng, W. M. Sun, D. C. Ma and F. R. Ling. The correlation between defects and photorefractive properties in Fe:In:LiNbO3 crystals. Mater. Chem.Phys. 2007, 103: 137-141
    74 W. Zheng, B. Liu, J. C. Bi and Y. H. Xu. Holographic associative memory by phase conjugate of four-wave-mixing in Sc:Fe:LiNbO3 crystal. Opt. Commun. 2005, 246: 297-301
    75 W. Zheng, N. D. Zhang and Q. Q. Lei. Growth and holographic storage properties of Sc, Fe co-doped lithium niobate crystals. J. Rare. Earths. 2007, 25: 775-778
    76 B. Liu, C. L. Li, J. C. Bi, L. Sun and Y. H. Xu. Photorefractive features of non-stoichiometry codoped Hf:Fe:LiNbO3 single crystals. Cryst. Res. Technol. 2007, 43: 260-265
    77 S. Q. Li, S. G. Liu, Y. F. Kong, J. J. Xu and G. Y. Zhang. Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 codoping. Appl. Phys. Lett. 2006, 89: 101126
    78 W. B. Yan, H. J. Chen, L. H. Shi, S. G. Liu and Y. F. Kong. Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3:Fe crystals. Appl. Phys. Lett. 2007, 90: 211108
    79 Y. F. Kong, S. Q. Wu, S. G. Liu, S. L. Chen and J. J. Xu. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Appl. Phys. Lett. 2008, 92: 251107
    80 M. Nakamura, S. Takekawa, Y. Liu and K. Kitamura. Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics. J. Cryst. Growth. 2005, 281: 549-555
    81á. Péter, K. Polgár, L. Kovács and K. Lengyel. Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals. J. Cryst. Growth. 2005, 284: 149-155
    82 S. L. Chen, H. D. Liu, Y. F. Kong, Z. H. Huang, J. J. Xu and G. Y. Zhang. The resistance against optical damage of near-stoichiometric LiNbO3:Mg crystals prepared by vapor transport equilibration. Opt. Mater. 2007, 29: 885-888
    83 Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang and J. X. Pan. Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti:PPLN devices. J. Cryst. Growth. 2009, 311: 892-894
    84 H. Qiao, J. Xu, Y. Tomita, D. Zhu, B. Fu, G. Zhang and G. Zhang. UV-light-induced one-color and two-color photorefractive effects in congruent and near-stoichiometric LiNbO3:Mg crystals. Opt. Mater. 2007, 29: 889-895
    85 C. B. Tsai, W. T. Hsu, M. D. Shih, Y. Y. Lin, Y. C. Huang, C. K. Hsieh, W. C. Hsu, R. T. Hsu and C. W. Lan. Growth and characterizations of ZnO-doped near-stoichiometric LiNbO3 crystals by zone-leveling Czochralski method. J. Cryst. Growth. 2006, 289: 145-150
    86 H. Lee, J. Shur, T. Shin and D. Yooh. Photorefractive resistance of near-stoichiometric LiNbO3 fiber single crystal by addition of ZnO. Opt. Mater. 2007, 30: 85-87
    87 F. R. Ling, Z. H. He, J. Q. Yao, B. Wang and S. J. Jiang. Structure and optical damage resistance of near-stoichiometric Zn:Fe:LiNbO3 crystals. Opt. Laser. Technol. 2008, 40: 941-945
    88 M. Nakamura, S. Takekawa, Y. Liu, S. Kumaragurubaran, S. M. Babu, H. Hatano and K. Kitamura. Photovoltaic effect and photoconductivity in Sc-doped near-stoichiometric LiNbO3 crystals. Opt. Mater. 2008, 31: 280-283
    89大连理工大学无机化学教研室.无机化学.高等教育出版社. 1989:附录十,p.463
    90甄西合. Zn:Fe:LiNbO3晶体生长及其结构与光折变性能.哈尔滨工业大学博士学位论文. 2003: 26-27
    91 R. G. Smith, D. B. Fraser, R. T. Denton and T. C. Rich. Correlation of reduction in optically induced refractive-index inhomogogeneity with OH content in LiTaO3 and LiNbO3. J. Appl. Phys. 1968, 39: 4600-4602
    92 I. F?ldvári, K. Polgár, R. Voszka and R. Balasanyan. A simple method to determine the real composition of LiNbO3 crystals. Cryst. Res. Technol. 1984, 19: 1659-1661
    93 X. D. Sun, S. H. Luo, Y. Y. Jiang and Q. X. Meng. Enhancement of nonvolatile blue photorefractive properties in LiNbO3:In:Fe:Cu crystals. Appl. Phys. B 2008, 92: 83-87
    94 H. T. Li, Y. X. Fan, F. Y. Guo, Y. Y. Xu and L. C. Zhao. Growth and spectroscopic characterization of Fe2O3 highly doped near-stoichiometric LiNbO3 single crystals. J. Cryst. Growth. 2007, 303: 651-654
    95 W. Philips and D. Staebler. Control of the Fe2+ concentration in iron-dopedlithium niobate. J. Electron. Mater. 1974, 3: 601-607
    96张光寅,蓝国祥.晶体振动光谱学.高等教育出版社. 1989
    97 R. Loudon. The Raman effect in crystals. Advan. Phys. 1964, 13: 423-482
    98 R. F. Schaufele and M. J. Weber. Raman Scattering by Lithium Niobate. Phys. Rev. 1966, 152: 705-708
    99 I. P. Kaminow and W. D. Johnston. Quantitative Determination of Sources of the Electro-Optic Effect in LiNbO3 and LiTaO3. Phys. Rev. 1967, 160: 519-522
    100 M. Nippus. Relative Raman-intensit?ten der phononen von LiNbO3. Z. Naturf. A 1976, 31: 231-235
    101 X. C. Yang, G. X. Lan, B. Li and H. F. Wang. Raman spectra and directional dispersion in LiNbO3 and LiTaO3. Phys. Stat. Sol. B 1987, 142: 287-300
    102 G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb and M. W?hlecke. Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl. Phys. A 1993, 56: 103-108
    103 W. B. Yan, L. H. Shi, H. J. Chen, X. N. Shen and Y. F. Kong. Light scattering induced by opposite microdomains in LiNbO3:Fe:Hf crystals. Opt. Express. 2010, 18: 11949-11954
    104 R. Magnusson and T. K. Grylord. Laser scattering induced holograms in lithium niobate. Appl. Opt. 1974, 13: 1545-1548
    105 L. Sun, J. Wang, Q. Lv, B. Q. Liu, F. Y. Guo, R. Wang, W. Cai, Y. H. Xu and L. C. Zhao. Defect structure and optical damage resistance of In:Mg:Fe:LiNbO3 crystals with various Li/Nb ratios. J. Cryst. Growth. 2006, 297: 199-203
    106 M. Wang, R. Wang, C. Y. Li, Y. L. Xu, J. Wang, W. H. Liu and C. H. Yang. Optical properties of Ce:Mn:LiNbO3 crystals with various [Li]/[Nb] ratios. J. Cryst. Growth. 2008, 310: 3820-3824
    107 G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb and M. Wohlecke. Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl. Phys. A: Mater. Sci. Process. 1993, 56: 103-108
    108 F. S. Chen. Optically induced change of refractive indices in LiNbO3 and LiTaO3. J. Appl. Phys. 1969, 40: 3389-3396
    109 F. Jermann, M. Simon and E. Kr?tzig. Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities. J. Opt. Soc. Am. B 1995, 12: 2066-2070
    110 H. Kogelnik. Coupled wave theory for thick hologram gratings. J. Bell Syst. Tech. 1969, 48: 2909-2949
    111 A. Vander Lugt. Single detection by complex spatial filtering. IEEE Trans. Inf. Theory. 1964, IT-10(2): 139-145
    112 C. S. Weaver and J. W. Goodman. A technique for optically convolving two functions. Appl. Opt. 1966, 5: 1248-1249
    113 J. E. Rau. Detection of differences in real distributions. J. Opt. Soc. Am. 1966, 56: 1490-1494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700