若干低维材料的表面吸附行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合第一原理密度泛函理论(DFT)和断键理论模型,研究了二维薄膜材料的表面性质,计算了具有NaCl结构的陶瓷和III-V族半导体化合物的表面能(γ),功函数(Φ)和相关的热力学参数。研究发现局域密度近似(LDA)的模拟结果和改进的断键模型预测的结果符合得很好,且γ和Φ都与材料相应的结合能(Ec)数值有相同的顺序。由于金属间化合物的脆性是研究此类材料的关键问题,本文还研究了NiAl(110)/Cr(110)的界面性质。结果表明当Ni和Al原子都位于Cr原子的空位中时,体系在热力学上更稳定。金属间化合物的脆性通过Ni-3d和Cr-3d轨道之间的相互作用而得以改善。此外,分别对CO等小分子在过渡族金属表面和纳米团簇上的化学吸附行为进行了研究。我们发现Pd(111)表面最难而Ir(111)最容易吸附CO,且Φ值的大小直接与电子态密度图(DOS)的分布相关。CO等小分子在尺寸逐渐增大的Cu原子簇上的吸附能Ead(l)曲线呈抛物线型,其中l是原子簇的层数。通过优化Li在碳纳米管上掺杂的数量和位置,发现当8个Li原子分布在六元碳环的空位位置时,储氢量可以高达13.45 wt %。最后研究了电场对Li掺杂的单壁碳纳米管和石墨烯的储氢影响。计算结果表明外加电场会明显改变体系内电子的分布情况,其强度和方向对H2的结合强度都有着重要的影响。
Zero-dimensional nanoparticles, one-dimensional nanowire, and two-dimensional slab are so-called low-dimensional materials. These materials show some special physical behaviors due to their different structures. One of the prominent characteristics of the low-dimensional material is its high density of grain boundaries, which renders a very high surface/volume ratio. In this case, their atomic arrangements cannot remain long range order in solids, and their thermodynamic properties are different from their corresponding bulk crystals, due to their high density grain boundary and their special configuration of atoms around the interface. Another prominent characteristic of low-dimensional material is its size effect. For example, the geometry and symmetry of a cluster can be completely different just by adding or deleting one atom. In fact, the distribution of electronic level changes with the dimensional and size of the nanomaterials, which renders the dimensional- and size-dependent properties. Therefore, systematically study the surface (or interface) properties, adsorption behaviors, geometric parameters, and electric structures are beneficial for us to further understand the physical mechanism of the low-dimensional materials.
     Hydrogen (H2) has been recognized as an attractive alternative energy carrier, which is lightweight, non-polluting, highly efficient, and easily derived. The so-called H2 fuel economy, however, faces various hurdles, such as safe and reliable storage concepts that can be used to deliver and store H2 in a cost effective way. Traditional storage approaches, such as compressed gas and liquefaction, are not suitable for H2, because of safety issues and relatively high energy costs associated with these approaches. A review of the current literature shows that carbon-based nanostructures, including nanotubes, fullerenes, and graphenes have emerged as attractive candidate hydrogen storage materials. Implementation of hydrogen storage systems requires moderate bonding strength. However, this goal has remained a challenge: on the one hand, the weak binding strength between H2 and the solid surface should be strengthened; on the other hand, extremely strong binding is not ideal either since finally both adsorption and desorption have to be considered. Previous works have demonstrated that the binding strength of H2 is related to the extra dipolar moment of the entire system. Therefore, one may hypothesize that the uptake capacity will increase if more dopants are added. In addition, the binding would be strengthened if more charges are transferred between the dopants and nanostructures.
     With the development of computational ability, computer simulation technologies are being widely applied in all kinds of scientific fields, which have become an effective complementary tool to the traditional experiments. For example, experimental study of size-dependent catalytic behavior is challenging due to the difficulties associated with the preparation of uniform samples with varying dimensions. In this case, computer simulation, in particular the density functional theory (DFT) has evolved as an essential tool in the study of catalytic behavior. Apparently, it is much easier to″prepare″a sequential growth of metal cluster″samples″for size effect analysis in the computer than it is in the laboratory. In addition, DFT offers distinct advantages in electronic structure determination, such as charge transfer and orbital hybridization, which is beneficial for us to understand the reaction process and mechanism in the electronic level.
     The detailed contents are listed as follows:
     1. Ab initio calculation performed by DFT and the broken bond model are utilized to systemically determine the surface energies of ceramics with B1 or NaCl structureγ100, where the subscript shows the index of surfaces. The ceramics includes the transition metal carbides (TMC), the transition metal nitrides (TMN), and the alkaline metal oxides (AMO). The results show that calculatedγ100 values of these compounds correspond to other available theoretical and simulation results well. Moreover,γvalues of AMOs on different surfaces determined have a size order ofγ100 <γ110 <γ111.γand work functionΦof twelve III-V semiconductors on (110) surfaces are calculated. The obtained values are proportional to the corresponding cohesive energy Ec, and are in good agreement with available experimental data and theoretical models. The linear relationship among Ec,γ, andΦare interpreted by analyzing their electronic properties.
     2. The atomic structure, thermodynamic properties, and electronic structures of NiAl(110)/Cr(110) interface are studied using first-principle density functional plane-wave ultrasoft pseudopotential method. Theγvalues of different NiAl surfaces are compared with those obtained based on the classical broken-bond rule. Simulation results indicate that the structure of Ni and Al placed in the hollow-sites of Cr atoms at the interface is more thermodynamically stable, and the NiCr bonding is dominated by 3d electrons of Ni and Cr. It is found that NiAl(110)/Cr(110) alloying could lower brittleness of NiAl compounds. With simulated values of adhesion work Wad and interface energyγi for NiAl(110)/Cr(110) system, its mechanical and thermodynamic properties are also discussed.
     3. DFT calculations with the All Electron Relativistic (AER) core treatment method are used to determine adsorption of CO on close-packed surfaces of Ru, Rh, Pd, Os, Ir, and Pt. The adsorption energy Ead andΦorders are obtained, which are Pd > Pt > Rh > Ru > Os > Ir and Os > Ir > Ru > Rh > Pt > Pd. In terms of the plot of electron density difference and the values of Mulliken analysis, it is found that charges transfer from metallic surfaces to CO molecules. In addition, the interaction of CO, H, and C with a sequential growth of Cu clusters with a special structure is also studied. The Ead(l) functions are found to be parabola-like for all adsorption systems, with the maximum values at layer number l = 5?6. In this case dave≈2.56 ?, which is approximately equal to the atomic distance of Cu in bulk crystals. The binding strength between the adsorbate and substrate, or ?Ead(l), is inversely proportional to their corresponding bond length d.
     4. We demonstrate that optimizing the number and position of dopants, a configuration of 8 Li dispersed at the hollow sites above the hexagonal carbon rings can lead to an extremely high H2 storage capacity of 13.45 wt %. Moreover, our local density approximation (LDA) calculations predict that the average Ead = ?0.17 eV/H2, which is close to the lowest requirement (?0.20 eV/H2) as proposed by the U.S. Department of Energy. The electronic analysis demonstrates two salient points, namely that the best dopants are those whose bands overlap strongly with those of H2 and the nanotube simultaneously; second, all carbon atoms in the nanotube are fully ionized and thus the high capacity is attainable.
     5. Using an 8-Li-doped carbon nanotube, it is found that H2 binding can be externally enhanced (or weakened) via superimposition of a positive (or negative) electric field. The calculated Ead = ?0.58 eV/H2 under F = +0.010 au is 93.33 % lower than that in the absence of a field (F indicates the field intensity). This is because the positive field produces an extra dipole moment. In contrast, Ead increases from ?0.30 to ?0.20 eV/H2 when F = ?0.010 au. In view of the fact that storage systems are insensitive to small unexpected field fluctuations, the application of the electric field as a reversible switch makes practical sense. Similar results can also be found in the Li-doped single-layer and bilayer graphenes. Our results show that the binding strength increases by 88 % when a field with a magnitude of +0.020 au is imposed. Hirshfeld charge analysis results suggest that an increase in the binding strength will occur as long as the Li (or C) carries more positive (or negative) charges.
引文
[1] GLEITER H. Nanostructured materials: basic concepts and microstructure [J]. Acta Materialia, 2000, 48:1-29.
    [2] SHIRAKI I, TANABE F, HOBARA R, NAGAO T, HASEGAWA S. Independently driven four-tip probes for conductivity measurements in ultrahigh vacuum [J]. Surface Science, 2001, 493:633.
    [3] KIM H C, ALFORD T L, ALLEE D R. Thickness dependence on the thermal stability of silver thin films [J]. Applied Physics Letters, 2002, 81:4287.
    [4] JIANG Q, LU H M. Size dependent interface energy and its applications [J]. Surface Science Reports, 2008, 63:427-464.
    [5] SUN C Q. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach [J]. Progress in Materials Science, 2009, 54:179-307.
    [6] SPAEPEN F. Interfaces and stresses in thin films [J]. Acta Materialia, 2000, 48:31-42.
    [7] JIANG Q, LIANG L H, ZHAO D S. Lattice contraction and surface stress of fcc nanocrystals [J]. Journal of Physics Chemistry B, 2001, 105:6275-6277.
    [8] HAISS W. Surface stress of clean and adsorbate-covered solids [J]. Reports on Progress in Physics, 2001, 64:591-648.
    [9] JIANG Q, SHI H X, ZHAO M. Free energy of crystal-liquid interface [J]. Acta Materialia, 1999, 47:2109-2112.
    [10] JIANG Q, ZHAO D S, ZHAO M. Size-dependent interface energy and related interface stress [J]. Acta Materialia, 2001, 49:3143-3147.
    [11] RENAUD G. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering [J]. Surface Science Reports, 1998, 32:1.
    [12] HUGOSSON H W, ERIKSSON O, JANSSON U, RUBAN A V, SOUVATIS P, ABRIKOSOV I A. Surface energies and work functions of the transition metal carbides [J]. Surface Science, 2004, 557:243-254.
    [13] LIU L M, WANG S Q, YE H Q. Adhesion of metal-carbide/nitride interfaces: Al/TiC and Al/TiN [J]. Journal of Physics-Condensed Matter, 2003, 15:8103-8114.
    [14] SIEGEL D J, HECTOR L G, ADAMS J B. First-principles study of metal-carbide/nitride adhesion: Al/VC vs. Al/VN [J]. Acta Materialia, 2002, 50:619-631.
    [15] BROQVIST P, GRONBECK H, PANAS I. Surface properties of alkaline earth metal oxides [J]. Surface Science, 2004, 554:262-271.
    [16] HEMMING F, WEHRER P, KATRIB A, MAIRE G. Approach to the reaction mechanisms using concepts of organometallic chemistry [J]. Journal of Molecular Catalysis. A, Chemical, 1997, 124:39-56.
    [17] AEGERTER P, QUIGLEY W, SIMPSON G, ZIEGLER D, LOGAN J, MCCREA K, GLAZIER S, BUSSELL M. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface [J]. Journal of Catalysis, 1996, 164:109-121.
    [18] HWU H, CHEN J. Potential application of tungsten carbides as electrocatalysts: 4. Reactions of methanol, water, and carbon monoxide over carbide-modified W(110) [J]. Journal of Physics Chemistry B, 2003, 107:2029-2039.
    [19] SEHESTED J, JACOBSEN C, ROKNI S, ROSTRUP-NIELSEN J. Activity and stability of molybdenum carbide as a catalyst for CO2 reforming [J]. Journal of Catalysis, 2001, 201:206-212.
    [20] YUAN S, DEROUANE-ABD HAMID S, LI Y, YING P, XIN Q, DEROUANE E, LI C. Preparation of Mo2C/HZSM-5 and its catalytic performance for the conversion of n-butane into aromatics [J]. Journal of Molecular Catalysis. A, Chemical, 2002, 184:257-266.
    [21] TRAWCZY SKI J. Effect of synthesis conditions on the hydrodesulfurization and hydrodenitrogenation activities of alumina supported Mo and CoMo nitrides [J]. Applied Catalysis A, General, 2000, 197:289-293.
    [22] YUHONG W, WEI L, MINGHUI Z, NAIJIA G, KEYI T. Characterization and catalytic properties of supported nickel molybdenum nitrides for hydrodenitrogenation [J]. Applied Catalysis A, General, 2001, 215:39-45.
    [23] BORSA DM, GRACHEV S, KERSSEMAKERS J W J, BOERMA D O. Development of an all-nitride magnetic tunnel junction [J]. Journal of Magnetism and Magnetic Materials, 2002, 240:445-447.
    [24] RAYNOLDS J E, RODDICK E R, SMITH J R, SROLOVITZ D J. Impurity effects on adhesion at an interface between NiAl and Mo [J]. Acta Materialia, 1999, 47:3281-3289.
    [25] MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A. Embedded-atom potential for B2-NiAl [J]. Physical Review B, 2002, 65:224114.
    [26] YANG J, JENG S, BAIN K, AMATO R. Microstructure and mechanical behavior of in-situ directional solidified NiAl/Cr (Mo) eutectic composite [J]. Acta Materialia, 1997, 45:295-308.
    [27] DAVIS H, NOONAN J. Rippled relaxation in the (110) surface of the ordered metallicalloy NiAl [J]. Physical Review Letters, 1985, 54:566-569.
    [28] NOONAN J, DAVIS H. Atomic arrangements at metal surfaces [J]. Science, 1986, 234:310-316.
    [29] YALISOVE S, GRAHAM W. Multilayer rippled structure of the NiAl(110) surface: A medium energy ion scattering study [J]. Surface Science, 1987, 183:556-564.
    [30] CHEN S, VOTER A, SROLOVITZ D. Oscillatory surface relaxations in Ni, Al, and their ordered alloys [J]. Physical Review Letters, 1986, 57:1308-1311.
    [31] VAN DER MERWE J. Interfacial energy: bicrystals of semi-infinite crystals [J]. Progress in Surface Science, 2001, 67:365-381.
    [32] RAYNOLDS J, SMITH J, ZHAO G, SROLOVITZ D. Adhesion in NiAl-Cr from first principles [J]. Physical Review B, 1996, 53:13883-13890.
    [33] NG J C Y, CHEUNG W H, MCKAY G. Equilibrium studies for the sorption of lead from effluents using chitosan [J]. Chemosphere, 2003, 52:1021-1030.
    [34] ORITA H, ITOH N, INADA Y. All electron scalar relativistic calculations on adsorption of CO on Pt(111) with full-geometry optimization: a correct estimation for CO site-preference [J]. Chemical Physics Letters, 2004, 384:271-276.
    [35] RAJASREE R, HOEBINK J, SCHOUTEN J C. Transient kinetics of carbon monoxide oxidation by oxygen over supported palladium/ceria/zirconia three-way catalysts in the absence and presence of water and carbon dioxide [J]. Journal of Catalysis, 2004, 223:36-43.
    [36] PETERSSON L, KONO S, HALL N, FADLEY C, PENDRY J. Determination of adsorbate geometries from intramolecular scattering in deep-core-level x-ray photoemission: CO on Ni(001) [J]. Physical Review Letters, 1979, 42:1545-1548.
    [37] HELD G, SCHULER J, SKLAREK W, STEINRüCK H. Determination of adsorption sites of pure and coadsorbed CO on Ni(111) by high resolution X-ray photoelectron spectroscopy [J]. Surface Science, 1998, 398:154-171.
    [38] LIU L M, MCALLISTER B, YE H Q, HU P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): A density functional theory study on the intrinsic role of water [J]. Journal of the American Chemical Society, 2006, 128:4017-4022.
    [39] FEIBELMAN P, HAMMER B, NORSKOV J, WAGNER F, SCHEFFLER M, STUMPF R, WATWE R, DUMESIC J. The CO/Pt(111) Puzzle [J]. Journal of Physics Chemistry B, 2001, 105:4018-4025.
    [40] KRESSE G, GIL A, SAUTET P. Significance of single-electron energies for thedescription of CO on Pt(111) [J]. Physical Review B, 2003, 68:73401.
    [41] BLYHOLDER G. Molecular orbital view of chemisorbed carbon monoxide [J]. The Journal of Physical Chemistry, 1964, 68:2772-2777.
    [42] DAVLIEVA M G, LINDEMAN S V, NERETIN I S, KOCHI J K. Structural effects of carbon monoxide coordination to carbon centers.πandσbindings in aliphatic acyl versus aromatic aroyl cations [J]. New Journal of Chemistry, 2004, 28:1568-1574.
    [43] CURULLA D, GOVENDER A, BROMFIELD T C, NIEMANTSVERDRIET J W. A DFT study of the adsorption and dissociation of CO on sulfur-precovered Fe(100) [J]. Journal of Physical Chemistry B, 2006, 110:13897-13904.
    [44] OLSEN R A, PHILIPSEN P H T, BAERENDS E J. CO on Pt(111): A puzzle revisited [J]. Journal of Chemical Physics, 2003, 119:4522-4528.
    [45] GAJDOS M, EICHLER A, HAFNER J, MEYER G, RIEDER K H. CO adsorption on a Cu(211) surface: First-principle calculation and STM study [J]. Physical Review B, 2005, 71:035402.
    [46] STECKEL J A, EICHLER A, HAFNER J. CO adsorption on the CO-precovered Pt(111) surface characterized by density-functional theory [J]. Physical Review B, 2003, 68:085416.
    [47] MAVRIKAKIS M, REMPEL J, GREELEY J, HANSEN L B, NORSKOV J K. Atomic and molecular adsorption on Rh(111) [J]. Journal of Chemical Physics, 2002, 117:6737-6744.
    [48] HE R, KUSAKA H, MAVRIKAKIS M, DUMESIC J A. Microcalorimetric, infrared spectroscopic and DFT studies of CO adsorption on Rh and Rh-Te catalysts [J]. Journal of Catalysis, 2003, 217:209-221.
    [49] GONZALEZ S, ILLAS F. CO adsorption on monometallic Pd, Rh, Cu and bimetallic PdCu and RhCu monolayers supported on Ru(0001) [J]. Surface Science, 2005, 598:144-155.
    [50] SONG C R, GE Q F, WANG L C. DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule [J]. Journal of Physical Chemistry B, 2005, 109:22341-22350.
    [51] GIL A, CLOTET A, RICART J M, ILLAS F, ALVAREZ B, RODES A, FELIU J M. Adsorption of CO at palladium monolayers deposited on Pt(111) electrodes. Combined spectroelectrochemical and theoretical study [J]. Journal of Physical Chemistry B, 2001, 105:7263-7271.
    [52] EICHLER A. Chemical characterization of a zirconia-supported Pt cluster [J]. Physical Review B, 2005, 71:125418.
    [53] CURULLA D, CLOTET A, RICART J M, ILLAS F. Ab initio cluster model study of the chemisorption of CO on low-index platinum surfaces [J]. Journal of Physical Chemistry B, 1999, 103:5246-5255.
    [54] REMEDIAKIS I N, LOPEZ N, NORSKOV J K. CO oxidation on gold nanoparticles: Theoretical studies [J]. Applied Catalysis A, General, 2005, 291:13-20.
    [55] MOLINA L M, HAMMER B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) [J]. Physical Review B, 2004, 69:155424.
    [56] GANDHI H S, GRAHAM G W, MCCABE R W. Automotive exhaust catalysis [J]. Journal of Catalysis, 2003, 216:433-442.
    [57] ALAVI A, HU P, DEUTSCH T, SILVESTRELLI P, HUTTER J. CO oxidation on Pt(111): An ab initio density functional theory study [J]. Physical Review Letters, 1998, 80:3650-3653.
    [58] NARLOCH B, HELD G, MENZEL D. A LEED-IV determination of the Ru(001)-p(2×2)(O+CO) structure: a coadsorbate-induced molecular tilt [J]. Surface Science, 1995, 340:159-171.
    [59] KRENN G, BAKO I, SCHENNACH R. CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory [J]. The Journal of Chemical Physics, 2006, 124:144703.
    [60] SCHWEGMANN S, OVER H, DE RENZI V, ERTL G. The atomic geometry of the O and CO+O phases on Rh(111) [J]. Surface Science, 1997, 375:91-106.
    [61] LIU D J, EVANS J W. Atomistic lattice-gas modeling of CO oxidation on Pd(100): Temperature-programed spectroscopy and steady-state behavior [J]. Journal of Chemical Physics, 2006, 124:154705.
    [62] GAJDOS M, EICHLER A, HAFNER J. CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations [J]. Journal of Physics-Condensed Matter, 2004, 16:1141-1164.
    [63] GRUENE P, FIELICKE A, MEIJER G, RAYNER D M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters [J]. Physical Chemistry Chemical Physics, 2008, 10:6144-6149.
    [64] LIU W, ZHU Y F, LIAN J S, JIANG Q. Adsorption of CO on surfaces of 4d and 5d elements in group VIII [J]. Journal of Physical Chemistry C, 2007, 111:1005-1009.
    [65] PHILIPSEN P H T, VANLENTHE E, SNIJDERS J G, BAERENDS E J. Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation [J]. Physical Review B, 1997, 56:13556-13562.
    [66] WANG Y, DE GIRONCOLI S, HUSH N S, REIMERS J R. Successful a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory [J]. Journal of the American Chemical Society, 2007, 129:10402-10407.
    [67] REN X, RINKE P, SCHEFFLER M. Exploring the random phase approximation: Application to CO adsorbed on Cu(111) [J]. Physical Review B, 2009, 80:045402.
    [68] DOLL K. CO adsorption on the Pt(111) surface: a comparison of a gradient corrected functional and a hybrid functional [J]. Surface Science, 2004, 573:464-473.
    [69] KRESSE G, GIL A, SAUTET P. Significance of single-electron energies for the description of CO on Pt(111) [J]. Physical Review B, 2003, 68:073401.
    [70] DABO I, WIECKOWSKI A, MARZARI N. Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces [J]. Journal of the American Chemical Society, 2007, 129:11045-11052.
    [71] SCANLON D O, GALEA N M, MORGAN B J, WATSON G W. Reactivity on the (110) Surface of Ceria: A GGA plus U Study of Surface Reduction and the Adsorption of CO and NO2 [J]. Journal of Physical Chemistry C, 2009, 113:11095-11103.
    [72] HUANG M, FABRIS S. CO adsorption and oxidation on ceria surfaces from DFT+U calculations [J]. Journal of Physical Chemistry C, 2008, 112:8643-8648.
    [73] GAJDOS M, HAFNER J. CO adsorption on Cu(111) and Cu(001) surfaces: Improving site preference in DFT calculations [J]. Surface Science, 2005, 590:117-126.
    [74] GONG X Q, LIU Z P, RAVAL R, HU P. A systematic study of CO oxidation on metals and metal oxides: Density functional theory calculations [J]. Journal of the American Chemical Society, 2004, 126:8-9.
    [75] ACKERMANN M D, PEDERSEN T M, HENDRIKSEN B L M, ROBACH O, BOBARU S C, POPA I, QUIROS C, KIM H, HAMMER B, FERRER S, FRENKEN J W M. Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation [J]. Physical Review Letters, 2005, 95:255505.
    [76] YAMANAKA T. Mode-dependent coupling between vibration and translation of product CO2 in CO oxidation on Pd(111) [J]. Journal of Chemical Physics, 2008, 128:171102.
    [77] KRENN G, BAKO I, SCHENNACH R. CO adsorption and CO and O coadsorption onRh(111) studied by reflection absorption infrared spectroscopy and density functional theory [J]. Journal of Chemical Physics, 2006, 124:144703.
    [78] SCHWEGMANN S, OVER H, DERENZI V, ERTL G. The atomic geometry of the O and CO+O phases on Rh(111) [J]. Surface Science, 1997, 375:91-106.
    [79] BOARINI P, CARASSITI V, MALDOTTI A, AMADELLI R. Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: Effect of the solvent and of oxygen [J]. Langmuir, 1998, 14:2080-2085.
    [80] ALMQUIST C B, BISWAS P. The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity [J]. Applied Catalysis A, General, 2001, 214:259-271.
    [81] GERMAN E D, SHEINTUCH M. Comparative theoretical study of CO adsorption and desorption kinetics on (111) surfaces of transition metals [J]. Journal of Physical Chemistry C, 2008, 112:14377-14384.
    [82] LO J M H, ZIEGLER T. Adsorption and decomposition of CO on stepped Fe(310) surfaces [J]. Journal of Physical Chemistry C, 2008, 112:3692-3700.
    [83] ASKELAND D R, PHULE P P. The Science and Engineering of Materials [M]. 4th ed., Pacific Grove, CA: Thomson Learning Press, 2004.
    [84] YANG C C, JIANG Q. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals [J]. Acta Materialia, 2005, 53:3305-3311.
    [85] FERNANDEZ E M, SOLER J M, GARZON I L, BALBAS L C. Trends in the structure and bonding of noble metal clusters [J]. Physical Review B, 2004, 70:165403.
    [86] GRIGORYAN V G, ALAMANOVA D, SPRINGBORG M. Structure and energetics of CuN clusters with (2≤N≤150): An embedded-atom-method study [J]. Physical Review B, 2006, 73:115415.
    [87] XU Z, XIAO F, PURNELL S, ALEXEEV O, KAWI S, DEUTSCH S, GATES B. Size-dependent catalytic activity of supported metal clusters [J]. Nature, 1994, 372:346.
    [88] JACOBS K, ZAZISKI D, SCHER E C, HERHOLD A B, ALIVISATOS A P. Activation volumes for solid-solid transformations in nanocrystals [J]. Science, 2001, 293:1803-1806.
    [89] GUVELIOGLU G H, MA P P, HE X Y, FORREY R C, CHENG H S. Evolution of small copper clusters and dissociative chemisorption of hydrogen [J]. Physical Review Letters, 2005, 94:026103.
    [90] TADA M, SASAKI T, IWASAWA Y. Performance and kinetic behavior of a newSiO2-attached molecular-imprinting Rh-dimer catalyst in size- and shape-selective hydrogenation of alkenes [J]. Journal of Catalysis, 2002, 211:496-510.
    [91] SAFONOVA O V, TROMP M, VAN BOKHOVEN J A, DE GROOT F M F, EVANS J, GLATZEL P. Identification of CO adsorption sites in supported Pt catalysts using high-energy-resolution fluorescence detection X-ray spectroscopy [J]. Journal of Physical Chemistry B, 2006, 110:16162-16164.
    [92] LI F, GATES B C. Size-dependent catalytic activity of zeolite-supported iridium clusters [J]. Journal of Physical Chemistry C, 2007, 111:262-267.
    [93] ARGO A M, ODZAK J F, GATES B C. Role of cluster size in catalysis: Spectroscopic investigation ofγ-Al2O3-supported Ir4 and Ir6 during ethene hydrogenation [J]. Journal of the American Chemical Society, 2003, 125:7107-7115.
    [94] BERGAMASKI K, PINHEIRO A L N, TEIXEIRA-NETO E, NART F C. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts [J]. Journal of Physical Chemistry B, 2006, 110:19271-19279.
    [95] SEMAGINA N, RENKEN A, KIWI-MINSKER L. Palladium nanoparticle size effect in 1-hexyne selective hydrogenation [J]. Journal of Physical Chemistry C, 2007, 111:13933-13937.
    [96] PANIGRAHI S, BASU S, PRAHARAJ S, PANDE S, JANA S, PAL A, GHOSH S K, PAL T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process [J]. Journal of Physical Chemistry C, 2007, 111:4596-4605.
    [97] DENG J P, SHIH W C, MOU C Y. Hydrogenation of anthracene catalyzed by surfactant-protected gold nanoparticles in aqueous solution: Size dependence [J]. Chemphyschem, 2005, 6:2021-2025.
    [98] FORREY R C, GUVELIOGLU G H, MA P, HE X, CHENG H. Rate constants for dissociative chemisorption of hydrogen molecules on copper clusters [J]. Physical Review B, 2006, 73:155437.
    [99] GUVELIOGLU G H, MA P P, HE X Y, FORREY R C, CHENG H S. First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2 [J]. Physical Review B, 2006, 73:155436.
    [100] SCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414:353-358.
    [101] SATYAPAL S, PETROVIC J, READ C, THOMAS G, ORDAZ G. The USDepartment of Energy′s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements [J]. Catalysis Today, 2007, 120:246-256.
    [102] MENG S, KAXIRAS E, ZHANG Z Y. Metal-diboride nanotubes as high-capacity hydrogen storage media [J]. Nano Letters, 2007, 7:663-667.
    [103] XIONG Z T, YONG C K, WU G T, CHEN P, SHAW W, KARKAMKAR A, AUTREY T, JONES M O, JOHNSON S R, EDWARDS P P, DAVID W I F. High-capacity hydrogen storage in lithium and sodium amidoboranes [J]. Nature Materials, 2008, 7:138-141.
    [104] BANERJEE S, MURAD S, PURI I K. Hydrogen storage in carbon nanostructures: Possibilities and challenges for fundamental molecular simulations [J]. Proceedings of the IEEE, 2006, 94:1806-1814.
    [105] XIONG Z T, WU G T, HU J J, LIU Y F, CHEN P, LUO W F, WANG J. Reversible hydrogen storage by a Li-Al-N-H complex [J]. Advanced Functional Materials, 2007, 17:1137-1142.
    [106] NIKITIN A, LI X L, ZHANG Z Y, OGASAWARA H, DAI H J, NILSSON A. Hydrogen storage in carbon nanotubes through the formation of stable C?H bonds [J]. Nano Letters, 2008, 8:162-167.
    [107] DURGUN E, CIRACI S, ZHOU W, YILDIRIM T. Transition-metal-ethylene complexes as high-capacity hydrogen-storage media [J]. Physical Review Letters, 2006, 97:226102.
    [108] DILLON A, JONES K, BEKKEDAHL T, KIANG C, BETHUNE D, HEBEN M. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386:377.
    [109] VAN SETTEN M J, DE WIJS G A, BROCKS G. Ab initio study of the effects of transition metal doping of Mg2NiH4 [J]. Physical Review B, 2007, 76:075125.
    [110] LIU C, FAN Y Y, LIU M, CONG H T, CHENG H M, DRESSELHAUS M S. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286:1127-1129.
    [111] CHO J, PARK C. Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory [J]. Catalysis Today, 2007, 120:407-412.
    [112] DURGUN E, CIRACI S, YILDIRIM T. Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage [J]. Physical Review B, 2008, 77:085405.
    [113] PUPYSHEVA O V, FARAJIAN A A, YAKOBSON B I. Fullerene nanocage capacity for hydrogen storage [J]. Nano Letters, 2008, 8:767-774.
    [114] KUC A, ZHECHKOV L, PATCHKOVSKII S, SEIFERT G, HEINE T. Hydrogen sieving and storage in fullerene intercalated graphite [J]. Nano Letters, 2007, 7:1-5.
    [115] CHANDRAKUMAR K R S, GHOSH S K. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: An ab initio study [J]. Nano Letters, 2008, 8:13-19.
    [116] YOON M, YANG S Y, HICKE C, WANG E, GEOHEGAN D, ZHANG Z Y. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage [J]. Physical Review Letters, 2008, 100:206806.
    [117] COLUCI V R, BRAGA S F, BAUGHMAN R H, GALVAO D S. Prediction of the hydrogen storage capacity of carbon nanoscrolls [J]. Physical Review B, 2007, 75:125404.
    [118] MPOURMPAKIS G, TYLIANAKIS E, FROUDAKIS G E. Carbon nanoscrolls: A promising material for hydrogen storage [J]. Nano Letters, 2007, 7:1893-1897.
    [119] CABRIA I, LOPEZ M J, ALONSO J A. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping [J]. Journal of Chemical Physics, 2005, 123:204721.
    [120] ROJAS M, LEIVA E. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates [J]. Physical Review B, 2007, 76:155415.
    [121] PARK N, HONG S, KIM G, JHI S H. Computational study of hydrogen storage characteristics of covalent-bonded graphenes [J]. Journal of the American Chemical Society, 2007, 129:8999-9003.
    [122] ZHOU B, GUO W L, TANG C. Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations [J]. Nanotechnology, 2008, 19:075707.
    [123] YILDIRIM T, CIRACI S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium [J]. Physical Review Letters, 2005, 94:175501.
    [124] BOUKHVALOV D W, KATSNELSON M I, LICHTENSTEIN A I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J]. Physical Review B, 2008, 77:035427.
    [125] DUPLOCK E J, SCHEFFLER M, LINDAN P J D. Hallmark of perfect graphene [J]. Physical Review Letters, 2004, 92:225502.
    [126] SHA X W, JACKSON B, LEMOINE D. Quantum studies of Eley-Rideal reactions between H atoms on a graphite surface [J]. Journal of Chemical Physics, 2002,116:7158-7169.
    [127] MIWA R H, MARTINS T B, FAZZIO A. Hydrogen adsorption on boron doped graphene: an ab initio study [J]. Nanotechnology, 2008, 19:155708.
    [128] PANELLA B, HONES K, MULLER U, TRUKHAN N, SCHUBERT M, PUTTER H, HIRSCHER M. Desorption studies of hydrogen in metal-organic frameworks [J]. Angewandte Chemie-International Edition, 2008, 47:2138-2142.
    [129] CABRIA I, LóPEZ M J, ALONSO J A. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping [J]. Journal of Chemical Physics, 2005, 123:204721.
    [130] HENWOOD D, CAREY J D. Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes [J]. Physical Review B, 2007, 75:245413.
    [131] ARELLANO J S, MOLINA L M, RUBIO A, ALONSO J A. Density functional study of adsorption of molecular hydrogen on graphene layers [J]. Journal of Chemical Physics, 2000, 112:8114-8119.
    [132] ROJAS M I, LEIVA E P M. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates [J]. Physical Review B, 2007, 76:155415.
    [133] ATACA C, AKTüRK E, CIRACI S, USTUNEL H. High-capacity hydrogen storage by metallized graphene [J]. Applied Physics Letters, 2008, 93:043123.
    [134] DIMITRAKAKIS G K, TYLIANAKIS E, FROUDAKIS G E. Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage [J]. Nano Letters, 2008, 8:3166-3170.
    [135] GROENBECK H. First principles studies of metal-oxide surfaces [J]. Topics in Catalysis, 2004, 28:59-69.
    [136] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140:A1133.
    [137] RINKE P, QTEISH A, NEUGEBAUER J, FREYSOLDT C, SCHEFFLER M. Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors [J]. New Journal of Physics, 2005, 7:126.
    [138] CEPERLEY D, ALDER B. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45:566-569.
    [139] PERDEW J, YUE W. Accurate and simple density functional for the electronicexchange energy: Generalized gradient approximation [J]. Physical Review B, 1986, 33:8800-8802.
    [140] PERDEW J, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77:3865-3868.
    [141] HU Q, REUTER K, SCHEFFLER M. Towards an Exact Treatment of Exchange and Correlation in Materials: Application to the″CO Adsorption Puzzle″and Other Systems [J]. Physical Review Letters, 2007, 98:176103.
    [142] FEIBELMAN P, HAMMER B, NORSKOV J, WAGNER F, SCHEFFLER M, STUMPF R, WATWE R, DUMESIC J. The CO/Pt (111) Puzzle [J]. Journal of Physical Chemistry B, 2001, 105:4018-4025.
    [143] GRINBERG I, YOURDSHAHYAN Y, RAPPE A M. CO on Pt(111) puzzle: A possible solution [J]. Journal of Chemical Physics, 2002, 117:2264.
    [144] NEEF M, DOLL K. CO adsorption on the Cu(111) surface: A density functional study [J]. Surface Science, 2006, 600:1085-1092.
    [145] BESLEY N A. Theoretical study of the electronic spectroscopy of CO adsorbed on Pt(111) [J]. Journal of Chemical Physics, 2005, 112:184706.
    [146] STROPPA A, TERMENTZIDIS K, PAIER J, KRESSE G, HAFNER J. CO adsorption on metal surfaces: A hybrid functional study with plane-wave basis set [J]. Physical Review B, 2007, 76:195440.
    [147] SCHWERDTFEGER P, LEIN M, KRAWCZYK R P, JACOB C R. The adsorption of CO on charged and neutral Au and Au2: A comparison between wave-function based and density functional theory [J]. Journal of Chemical Physics, 2008, 128:124302.
    [148] ANISIMOV V I, ARYASETIAWAN F, LICHTENSTEIN A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method [J]. Journal of Physics-Condensed Matter, 1997, 9:767-808.
    [149] ROHRBACH A, HAFNER J, KRESSE G. Molecular adsorption on the surfaces of strongly correlated transition-metal oxides: A case study for CO/NiO(100) [J]. Physical Review B, 2004, 69:075413.
    [150] YOON M, YANG S Y, WANG E, ZHANG Z Y. Charged fullerenes as high-capacity hydrogen storage media [J]. Nano Letters, 2007, 7:2578-2583.
    [151] MATTSSON A E, SCHULTZ P A, DESJARLAIS M P, MATTSSON T R, LEUNG K. Designing meaningful density functional theory calculations in materials science-a primer [J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13:R1-R31.
    [152] AL-ABADLEH H A, GRASSIAN V H. Oxide surfaces as environmental interfaces [J]. Surface Science Reports, 2003, 52:63-161.
    [153] MATZKE H. Diffusion in carbides and nitrides: unsolved problems [J]. Defect and diffusion forum, 1992, 83:111–130.
    [154] WITTMER M, STUDER B, MELCHIOR H. Electrical characteristics of TiN contacts to N silicon [J]. Journal of Applied Physics, 1981, 52:5722.
    [155] NICOLET M. Diffusion barriers in thin films [J]. Thin Solid Films, 1978, 52:415-443.
    [156] JIANG X, WANG M, SCHMIDT K, DUNLOP E, HAUPT J, GISSLER W. Elastic constants and hardness of ion beam sputtered TiN films measured by Brillouin scattering and depth sensing indentation [J]. Journal of Applied Physics, 1991, 69:3053.
    [157] FEIBELMAN P J. Static quantum-size effects in thin crystalline, simple-metal films [J]. Physical Review B, 1983, 27:1991-1996.
    [158] BOETTGER J. Nonconvergence of surface energies obtained from thin-film calculations [J]. Physical Review B, 1994, 49:16798-16800.
    [159] FIORENTINI V, METHFESSEL M. Extracting convergent surface energies from slab calculations [J]. Journal of Physics-Condensed Matter, 1996, 8:6525-6530.
    [160] JIANG Q, LU H M, ZHAO M. Modelling of surface energies of elemental crystals [J]. Journal of Physics-Condensed Matter, 2004, 16:521-530.
    [161] METHFESSEL M, HENNIG D, SCHEFFLER M. Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals [J]. Physical Review B, 1992, 46:4816-4829.
    [162] PERDEW J, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 1992, 45:13244-13249.
    [163] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics-Condensed Matter, 2002, 14:2717-2744.
    [164] MARLO M, MILMAN V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals [J]. Physical Review B, 2000, 62:2899-2907.
    [165] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41:7892-7895.
    [166] MONKHORST H, PACK J. Special points for Brillouin-zone integrations [J].Physical Review B, 1976, 13:5188-5192.
    [167] LIU L M, WANG S Q, YE H Q. First-principles study of polar Al/TiN(111) interfaces [J]. Acta Materialia, 2004, 52:3681-3688.
    [168] H?GLUND J, GRIMVALL G, JARLBORG T, GUILLERMET A. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure [J]. Physical Review B, 1991, 43:14400-14408.
    [169] GUILLERMET A, H?GLUND J, GRIMVALL G. Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure [J]. Physical Review B, 1992, 45:11557-11567.
    [170] GUILLERMET A, H?GLUND J, GRIMVALL G. Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure [J]. Physical Review B, 1993, 48:11673-11684.
    [171] ZHAO J, WANG X, CHEN Z, YANG S, SHI T, LIU X. Overall energy model for preferred growth of TiN films during filtered arc deposition [J]. Journal of Physics D, 1997, 30:5-12.
    [172] DUDIY S V, LUNDQVIST B I. First-principles density-functional study of metal-carbonitride interface adhesion: Co/TiC(001) and Co/TiN(001) [J]. Physical Review B, 2001, 64:045403.
    [173] ARYA A, CARTER E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles [J]. Journal of Chemical Physics, 2003, 118:8982-8996.
    [174] GONIAKOWSKI J, NOGUERA C. Characteristics of Pd deposition on the MgO(111) surface [J]. Physical Review B, 1999, 60:16120-16128.
    [175] ABRIKOSOV I, SKRIVER H. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys [J]. Physical Review B, 1993, 47:16532-16541.
    [176] PRICE D, WILLS J, COOPER B. Linear-muffin-tin-orbital calculation of TaC(001) surface relaxation [J]. Physical Review B, 1993, 48:15301-15310.
    [177] GALANAKIS I, BIHLMAYER G, BELLINI V, PAPANIKOLAOU N, ZELLER R, BLUGEL S, DEDERICHS P H. Broken-bond rule for the surface energies of noble metals [J]. Europhysics Letters, 2002, 58:751-757.
    [178] GALANAKIS I, PAPANIKOLAOU N, DEDERICHS P H. Applicability of the broken-bond rule to the surface energy of the fcc metals [J]. Surface Science, 2002, 511:1-12.
    [179] EBERT P. Nano-scale properties of defects in compound semiconductor surfaces [J]. Surface Science Reports, 1999, 33:121-303.
    [180] ENGELS B, RICHARD P, SCHROEDER K, BLüGEL S, EBERT P, URBAN K. Comparison between ab initio theory and scanning tunneling microscopy for (110) surfaces of III-V semiconductors [J]. Physical Review B, 1998, 58:7799-7815.
    [181] MIRBT S, MOLL N, KLEY A, JOANNOPOULOS J D. A general rule for surface reconstructions of III-V semiconductors [J]. Surface Science, 1999, 422:L177-L182.
    [182] SCHMIDT W G. III-V compound semiconductor (001) surfaces [J]. Applied Physics a-Materials Science & Processing, 2002, 75:89-99.
    [183] TUTUNCU H M, SRIVASTAVA G P. Atomic geometry, electronic structure, and vibrational properties of the AlSb(110) and GaSb(110) surfaces [J]. Physical Review B, 1999, 59:4925-4932.
    [184] NIENHAUS H. Phonons in {110} surfaces of III-V compound semiconductors [J]. Physical Review B, 1997, 56:13194-13201.
    [185] ESSER N, HINRICHS K, POWER J R, RICHTER W, FRITSCH J. Surface vibrational modes of Sb-terminated (110) surfaces of III-V semiconductors investigated by Raman spectroscopy [J]. Physical Review B, 2002, 66:075330.
    [186] NIENHAUS H, M?NCH W. Dispersion of GaAs(110) surface phonons measured with HREELS [J]. Physical Review B, 1994, 50:11750-11754.
    [187] FERHAT M, ZAOUI A. Structural and electronic properties of III-V bismuth compounds [J]. Physical Review B, 2006, 73:115107.
    [188] OOI N, ADAMS J B. Ab initio studies of the cubic boron nitride (110) surface [J]. Surface Science, 2005, 574:269-286.
    [189] LIU W, LIU X, ZHENG W T, JIANG Q. Surface energies of several ceramics with NaCl structure [J]. Surface Science, 2006, 600:257-264.
    [190] SHCHUKIN V A, BIMBERG D. Spontaneous ordering of nanostructures on crystal surfaces [J]. Reviews of Modern Physics, 1999, 71:1125-1171.
    [191] LI Y, WEATHERLY G C, NIEWCZAS M. Crack healing during molecular-beam-epitaxy growth of GaP/GaAs thin films [J]. Journal of Applied Physics, 2005, 98:013522.
    [192] XUE Y Q, RATNER M A. Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit [J]. Physical Review B, 2004, 70:205416.
    [193] RIZZI A, LUTH H. III-V semiconductor interface properties as a knowledge basis for modern heterostructure devices [J]. Applied Physics A-Materials Science & Processing, 2002, 75:69-77.
    [194] SKRIVER H, ROSENGAARD N. Surface energy and work function of elemental metals [J]. Physical Review B, 1992, 46:7157-7168.
    [195] PRICE D, COOPER B, WILLS J. Effect of carbon vacancies on carbide work functions [J]. Physical Review B, 1993, 48:15311-15315.
    [196] MESSMER C, BILELLO J. The surface energy of Si, GaAs, and GaP [J]. Journal of Applied Physics, 1981, 52:4623.
    [197] QIAN G, MARTIN R, CHADI D. First-principles calculations of atomic and electronic structure of the GaAs(110) surface [J]. Physical Review B, 1988, 37:1303-1307.
    [198] MOLL N, KLEY A, PEHLKE E, SCHEFFLER M. GaAs equilibrium crystal shape from first principles [J]. Physical Review B, 1996, 54:8844-8855.
    [199] ZHANG S B, WEI S H. Surface energy and the common dangling bond rule for semiconductors [J]. Physical Review Letters, 2004, 92:086102.
    [200] LIU W, LI J C, ZHENG W T, JIANG Q. NiAl(110)/Cr(110) interface: A density functional theory study [J]. Physical Review B, 2006, 73:205421.
    [201] VITOS L, RUBAN A, SKRIVER H, KOLLAR J. The surface energy of metals [J]. Surface Science, 1998, 411:186-202.
    [202] DA SILVA J L F, STAMPFL C, SCHEFFLER M. Converged properties of clean metal surfaces by all-electron first-principles calculations [J]. Surface Science, 2006, 600:703-715.
    [203] LI W, LI D. On the correlation between surface roughness and work function in copper [J]. The Journal of chemical physics, 2005, 122:064708.
    [204] HUCKSTADT C, SCHMIDT S, HUFNER S, FORSTER F, REINERT F, SPRINGBORG M. Work function studies of rare-gas/noble metal adsorption systems using a Kelvin probe [J]. Physical Review B, 2006, 73:075409.
    [205] LI D Y, LI W. Electron work function: A parameter sensitive to the adhesion behavior of crystallographic surfaces [J]. Applied Physics Letters, 2001, 79:4337-4338.
    [206] FISCHER T E. Reflectivity, Photoelectric Emission, and Work Function of AlSb [J]. PHYS REV, 1965, 139:1228-1233.
    [207] FISCHER T E. Photoelectric Emission and Interband Transitions of GaP [J]. Physical Review, 1966, 147:603-607.
    [208] GOBELI G, ALLEN F. Photoelectric Properties of Cleaved GaAs, GaSb, InAs, and InSb Surfaces; Comparison with Si and Ge [J]. Physical Review, 1965, 137:245-254.
    [209] FISCHER T E. Photoelectric Emission and Work Function of InP [J]. Physical Review, 1966, 142:519-523.
    [210] DA SILVA J L F, STAMPFL C, SCHEFFLER M. Xe adsorption on metal surfaces: First-principles investigations [J]. Physical Review B, 2005, 72:075424.
    [211] VINES F, SOUSA C, LIU P, RODRIGUEZ J A, ILLAS F. A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides [J]. Journal of Chemical Physics, 2005, 122:174709.
    [212] KOBAYASHI K. First-Principles Study of the Surface Electronic Structures of Transition Metal Carbides [J]. Japanese Journal of Applied Physics Part 1, 2000, 39:4311-4314.
    [213] KOBAYASHI K. First-principles study of the electronic properties of transition metal nitride surfaces [J]. Surface Science, 2001, 493:665-670.
    [214] WANG S Q, YE H Q. Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure [J]. Physical Review B, 2002, 66:235111.
    [215] FRANCOEUR S, SEONG M J, MASCARENHAS A, TIXIER S, ADAMCYK M, TIEDJE T. Band gap of GaAs1-xBix, 0 < x < 3.6% [J]. Applied Physics Letters, 2003, 82:3874-3876.
    [216] SUN C Q. Size dependence of nanostructures: Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007, 35:1-159.
    [217] PALMER D W, http://www.semiconductors.co.uk/.
    [218] HARRISON W. Electronic structure and the properties of solids: the physics of the chemical bond [M]. San Francisco: Freeman, 1980.
    [219] PERDEW J, LEVY M. Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities [J]. Physical Review Letters, 1983, 51:1884-1887.
    [220] RUTTER M, ROBERTSON J. Ab initio calculation of electron affinities of diamond surfaces [J]. Physical Review B, 1998, 57:9241-9245.
    [221] LEY L, POLLAK R, MCFEELY F, KOWALCZYK S, SHIRLEY D. Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy [J]. Physical Review B, 1974, 9:600-621.
    [222] RUSU P C, BROCKS G. Work functions of self-assembled monolayers on metalsurfaces by first-principles calculations [J]. Physical Review B, 2006, 74:073414.
    [223] SUN C Q. Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection [J]. Physical Review B, 2004, 69:045105.
    [224] LI W, WANG Y, CAI M, WANG C. An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds [J]. Journal of Applied Physics, 2005, 98:083503.
    [225] MEDVEDEVA N I, GORNOSTYREV Y N, KONTSEVOI O Y, FREEMAN A J. Ab-initio study of interfacial strength and misfit dislocations in eutectic composites: NiAl/Mo [J]. Acta Materialia, 2004, 52:675-682.
    [226] PICKARD S, ZHANG H, GHOSH A. Interface shear properties and toughness of NiAl Mo laminates [J]. Acta Materialia, 1997, 45:4333-4350.
    [227] SIEGEL D J, HECTOR L G, ADAMS J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC [J]. Surface Science, 2002, 498:321-336.
    [228] HUNG A, YAROVSKY I, MUSCAT J, RUSSO S, SNOOK I, WATTS R O. First-principles study of metallic iron interfaces [J]. Surface Science, 2002, 501:261-269.
    [229] SMITH J, ZHANG W. Stoichiometric interfaces of Al and Ag with Al2O3 [J]. Acta Materialia, 2000, 48:4395-4403.
    [230] ARYA A, CARTER E A. Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles [J]. Surface Science, 2004, 560:103-120.
    [231] LIU L M, WANG S Q, YE H Q. Adhesion and bonding of the Al/TiC interface [J]. Surface Science, 2004, 550:46-56.
    [232] TORRELLES X, WENDLER F, BIKONDOA O, ISERN H, MORITZ W, CASTRO G R. Structure of the clean NiAl(110) surface and the Al2O3/NiAl(110) interface by measurements of crystal truncation rods [J]. Surface Science, 2001, 487:97-106.
    [233] BROWN J A, MISHIN Y. Monte Carlo modeling of low-index surfaces in stoichiometric and Ni-rich NiAl [J]. Physical Review B, 2003, 67:195414.
    [234] BROWN J A, MISHIN Y. Effect of surface stress on Ni segregation in (110) NiAl thin films [J]. Physical Review B, 2004, 69:195407.
    [235] FINNIS M W. The theory of metal-ceramic interfaces [J]. Journal of Physics-Condensed Matter, 1996, 8:5811-5836.
    [236] MYERS D. Surfaces, interfaces, and colloids [M]. New York: VCH, 1991.
    [237] CHRISTENSEN M, DUDIY S, WAHNSTROM G. First-principles simulations of metal-ceramic interface adhesion: Co/WC versus Co/TiC [J]. Physical Review B, 2002,65:045408.
    [238] FENG J W, ZHANG W Q, JIANG W. Ab initio study of Ag/Al2O3 and Au/Al2O3 interfaces [J]. Physical Review B, 2005, 72:115423.
    [239] PERDEW J, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23:5048-5079.
    [240] HANSEN M, ANDERKO K. Constitution of Binary Alloys, Metallurgy and Metallurgical Engineering Series [M]. New York: McGraw-Hill Book Company, 1958, pp.118-121.
    [241] COCULA V, STARROST F, WATSON S C, CARTER E A. Spin-dependent pseudopotentials in the solid-state environment: Applications to ferromagnetic and antiferromagnetic metals [J]. Journal of Chemical Physics, 2003, 119:7659-7671.
    [242] WOLFENDEN A, COAN D A, HEBSUR M G. Investigation of the dynamic Young′s modulus and vibration damping for cryomilled NiAl-AlN composites [J]. Journal of Materials Science, 1998, 33:3183-3186.
    [243] AMOUYAL Y, RABKIN E, MISHIN Y. Correlation between grain boundary energy and geometry in Ni-rich NiAl [J]. Acta Materialia, 2005, 53:3795-3805.
    [244] LI J C, LIU W, JIANG Q. Bi-phase transition diagrams of metallic thin multilayers [J]. Acta Materialia, 2005, 53:1067-1071.
    [245] KING H. Physical metallurgy [M]. Cahn RW, Haasen P, editors, Amsterdam: North-Holland Physics Publishing, 1983, pp.63.
    [246] BRANDES E, BROOK G. Smithells metals reference book [M]. London: 1983, pp.15.
    [247] HOPSTAKEN M J P, NIEMANTSVERDRIET J W. Structure sensitivity in the CO oxidation on rhodium: Effect of adsorbate coverages on oxidation kinetics on Rh(100) and Rh(111) [J]. Journal of Chemical Physics, 2000, 113:5457-5465.
    [248] GUO X, YATES JR J. Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111) [J]. Journal of Chemical Physics, 1989, 90:6761.
    [249] YEO Y, VATTUONE L, KING D. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt {111} [J]. Journal of Chemical Physics, 1997, 106:392.
    [250] PFNüR H, FEULNER P, MENZEL D. The influence of adsorbate interactions on kinetics and equilibrium for CO on Ru(001). II. Desorption kinetics and equilibrium [J].Journal of Chemical Physics, 1983, 79:4613.
    [251] COMRIE C, WEINBERG W. The chemisorption of carbon monoxide on the iridium (111) surface [J]. Journal of Chemical Physics, 1976, 64:250-259.
    [252] VAYENAS C, BEBELIS S, LADAS S. Dependence of catalytic rates on catalyst work function [J]. Nature, 1990, 343:625-627.
    [253] VAYENAS C, BEBELIS S, NEOPHYTIDES S. Non-Faradaic electrochemical modification of catalytic activity [J]. The Journal of Physical Chemistry, 1988, 92:5083-5085.
    [254] GIL A, CLOTET A, RICART J M, KRESSE G, GARCIA-HERNANDEZ M, ROSCH N, SAUTET P. Site preference of CO chemisorbed on Pt(111) from density functional calculations [J]. Surface Science, 2003, 530:71-86.
    [255] DELLEY B. An all electron numerical method for solving the local density functional for polyatomic molecules [J]. Journal of Chemical Physics, 1990, 92:508.
    [256] DELLEY B. From molecules to solids with the DMol3 approach [J]. Journal of Chemical Physics, 2000, 113:7756-7764.
    [257] HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59:7413-7421.
    [258] DELLEY B. A scattering theoretic approach to scalar relativistic corrections on bonding [J]. International Journal of Quantum Chemistry, 1998, 69:423.
    [259] www.webelements.com.
    [260] KOHLER L, KRESSE G. Density functional study of CO on Rh(111) [J]. Physical Review B, 2004, 70:165405.
    [261] MASON S E, GRINBERG I, RAPPE A M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces [J]. Physical Review B, 2004, 69:161401.
    [262] LIDE D. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data [M]. 81st ed., Boca Raton, FL: CRC press, 2000.
    [263] GIERER M, BARBIERI A, VAN HOVE M, SOMORJAI G. Structural reanalysis of the Rh(111)+(3×3)R30°-CO and Rh(111)+(2×2)-3CO phases using automated tensor LEED [J]. Surface Science, 1997, 391:176-182.
    [264] FOHLISCH A, NYBERG M, HASSELSTROM J, KARIS O, PETTERSSON L G M, NILSSON A. How carbon monoxide adsorbs in different sites [J]. Physical Review Letters,2000, 85:3309-3312.
    [265] SUN C Q. Oxidation electronics: bond-band-barrier correlation and its applications [J]. Progress in Materials Science, 2003, 48:521-685.
    [266] KOPER M T M, VAN SANTEN R A. Electric field effects on CO and NO adsorption at the Pt(111) surface [J]. Journal of Electroanalytical Chemistry, 1999, 476:64-70.
    [267] MICHAELSON H. The work function of the elements and its periodicity [J]. Journal of Applied Physics, 1977, 48:4729.
    [268] SCHUBERT M M, HACKENBERG S, VAN VEEN A C, MUHLER M, PLZAK V, BEHM R J. CO oxidation over supported gold catalysts-″inert″and″active″support materials and their role for the oxygen supply during reaction [J]. Journal of Catalysis, 2001, 197:113-122.
    [269] REBOREDO F A, GALLI G. Size and structure dependence of carbon monoxide chemisorption on cobalt clusters [J]. Journal of Physical Chemistry B, 2006, 110:7979-7984.
    [270] LU H M, WEN Z, JIANG Q. Size dependent adsorption on nanocrystal surfaces [J]. Chemical Physics, 2005, 309:303-307.
    [271] JIANG Q, LI J C, CHI B Q. Size-dependent cohesive energy of nanocrystals [J]. Chemical Physics Letters, 2002, 366:551-554.
    [272] PHALA N S, KLATT G, VAN STEEN E. A DFT study of hydrogen and carbon monoxide chemisorption onto small gold clusters [J]. Chemical Physics Letters, 2004, 395:33-37.
    [273] NEYMAN K M, INNTAM C, GORDIENKO A B, YUDANOV I V, ROSCH N. Adsorption of carbon on Pd clusters of nanometer size: A first-principles theoretical study [J]. Journal of Chemical Physics, 2005, 122:174705.
    [274] YUDANOV I V, SAHNOUN R, NEYMAN K M, ROSCH N. Metal nanoparticles as models of single crystal surfaces and supported catalysts: Density functional study of size effects for CO/Pd(111) [J]. Journal of Chemical Physics, 2002, 117:9887-9896.
    [275] HERMANN K, BAGUS P, NELIN C. Size dependence of surface cluster models: CO adsorbed on Cu(100) [J]. Physical Review B, 1987, 35:9467-9473.
    [276] HSU W D, ICHIHASHI M, KONDOW T, SINNOTT S B. Ab initio molecular dynamics study of methanol adsorption on copper clusters [J]. Journal of Physical Chemistry A, 2007, 111:441-449.
    [277] CAO Z X, WANG Y J, ZHU J, WU W, ZHANG Q N. Static polarizabilities of coppercluster monocarbonyls CunCO (n=2?13) and selectivity of CO adsorption on copper clusters [J]. Journal of Physical Chemistry B, 2002, 106:9649-9654.
    [278] POATER A, DURAN M, JAQUE P, TORO-LABBE A, SOLA M. Molecular Structure and Bonding of Copper Cluster Monocarbonyls CunCO (n=1?9) [J]. J. Physical Chemistry B, 2006, 110:6526-6536.
    [279] FU T Y, CHENG L C, NIEN C H, TSONG T T. Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation [J]. Physical Review B, 2001, 64:113401.
    [280] KUO H S, HWANG I S, FU T Y, WU J Y, CHANG C C, TSONG T T. Preparation and characterization of single-atom tips [J]. Nano Letters, 2004, 4:2379-2382.
    [281] BOTEZ C E, MICELI P F, STEPHENS P W. Temperature dependence of surface roughening during homoepitaxial growth on Cu(001) [J]. Physical Review B, 2001, 64:125427.
    [282] ERNST H, FABRE F, FOLKERTS R, LAPUJOULADE J. Observation of a growth instability during low temperature molecular beam epitaxy [J]. Physical Review Letters, 1994, 72:112-115.
    [283] MAROUTIAN T, DOUILLARD L, ERNST H J. Morphological instability of Cu vicinal surfaces during step-flow growth [J]. Physical Review B, 2001, 64:165401.
    [284] DELLEY B. Hardness conserving semilocal pseudopotentials [J]. Physical Review B, 2002, 66:155125.
    [285] MCNAUGHT A, WILKINSON A. International Union of Pure and Applied Chemistry: Compendium of Chemical Terminology″The Gold Book″[M]. Oxford, UK: 1997 2nd ed.
    [286] HUBER K, HERZBERG G. Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules Van Nostrand-Reinhold [M]. New York: Van Nostrand Reinhold, 1979.
    [287] ISHIKAWA T, URATA T, CHO B, ROKUTA E, OSHIMA C, TERUI Y, SAITO H, YONEZAWA A, TSONG T T. Highly efficient electron gun with a single-atom electron source [J]. Applied Physics Letters, 2007, 90:143120.
    [288] SCHMIDT M, HABERLAND H. Phase transitions in clusters [J]. Comptes Rendus Physique, 2002, 3:327-340.
    [289] BALETTO F, FERRANDO R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects [J]. Reviews of Modern Physics, 2005, 77:371-423.
    [290] MOLER E, KELLAR S, HUFF W, HUSSAIN Z, CHEN Y, SHIRLEY D. Spatial structure determination of (3×3)R30°and (1.5×1.5)R18°CO or Cu (111) using angle-resolved photoemission extended fine structure [J]. Physical Review B, 1996, 54:10862-10868.
    [291] SAKONG S, MOSCH C, GROSS A. CO adsorption on Cu-Pd alloy surfaces: ligand versus ensemble effects [J]. Physical Chemistry Chemical Physics, 2007, 9:2216-2225.
    [292] VOLLMER S, WITTE G, WOLL C. Determination of site specific adsorption energies of CO on copper [J]. Catalysis Letters, 2001, 77:97-101.
    [293] LIU W, LIAN J S, JIANG Q. Theoretical study of C2H2 adsorbed on low-index Cu surfaces [J]. Journal of Physical Chemistry C, 2007, 111:18189-18194.
    [294] Sun Q, Jena P, Wang Q, Marquez M. First-principles study of hydrogen storage on Li12C60 [J]. Journal of the American Chemical Society, 2006, 128:9741-9745.
    [295] STAMPFER JR J, HOLLEY JR C, SUTTLE J. The magnesium-hydrogen system [J]. Journal of the American Chemical Society, 1960, 82:3504.
    [296] JHI S-H. Activated boron nitride nanotubes: A potential material for room-temperature hydrogen storage [J]. Physical Review B, 2006, 74:155424.
    [297] CHEN P, WU X, LIN J, TAN K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science, 1999, 285:91-93.
    [298] Yang R T. Hydrogen storage by alkali-doped carbon nanotubes-revisited [J]. Carbon, 2000, 38:623-626.
    [299] PINKERTON F E, WICKE B G, OLK C H, TIBBETTS G G, MEISNER G P, MEYER M S, HERBST J F. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials [J]. Journal of Physical Chemistry B, 2000, 104:9460-9467.
    [300] MARESCA O, PELLENQ R J M, MARINELLI F, CONARD J. A search for a strong physisorption site for H2 in Li-doped porous carbons [J]. Journal of Chemical Physics, 2004, 121:12548-12558.
    [301] CHEN L, ZHANG Y, KORATKAR N, JENA P, NAYAK S K. First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures [J]. Physical Review B, 2008, 77:033405.
    [302] VALENCIA F, ROMERO A H, ANCILOTTO F, SILVESTRELLI P L. Lithium adsorption on graphite from density functional theory calculations [J]. Journal of Physical Chemistry B, 2006, 110:14832-14841.
    [303] KLONTZAS E, MAVRANDONAKIS A, TYLIANAKIS E, FROUDAKIS G E. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms [J]. Nano Letters, 2008, 8:1572-1576.
    [304] GAO G, ?A IN T, GODDARD III W. Position of K atoms in doped single-walled carbon nanotube crystals [J]. Physical Review Letters, 1998, 80:5556-5559.
    [305] FROUDAKIS G E. Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake [J]. Nano Letters, 2001, 1:531-533.
    [306] KRASNOV P O, DING F, SINGH A K, YAKOBSON B I. Clustering of Sc on SWNT and reduction of hydrogen uptake: Ab-initio all-electron calculations [J]. Journal of Physical Chemistry C, 2007, 111:17977-17980.
    [307] COBIAN M, INIGUEZ J. Theoretical investigation of hydrogen storage in metal-intercalated graphitic materials [J]. Journal of Physics-Condensed Matter, 2008, 20:285212.
    [308] ATACA C, AKTURK E, CIRACI S, USTUNEL H. High-capacity hydrogen storage by metallized graphene [J]. Applied Physics Letters, 2008, 93:043123.
    [309] DE ANDRES P L, RAMIREZ R, VERGES J A. Strong covalent bonding between two graphene layers [J]. Physical Review B, 2008, 77:045403.
    [310] WU X J, YANG J L, ZENG X C. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes [J]. Journal of Chemical Physics, 2006, 125:044704.
    [311] DENG W Q, XU X, GODDARD W A. New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation [J]. Physical Review Letters, 2004, 92:166103.
    [312] ZHOU Z, ZHAO J, GAO X, CHEN Z, YAN J, VON RAGUE SCHLEYER P, MORINAGA M. Do composite single-walled nanotubes have enhanced capability for lithium storage? [J]. Chemistry of Materials, 2005, 17:992-1000.
    [313] LI J, FURUTA T, GOTO H, OHASHI T, FUJIWARA Y, YIP S. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures [J]. Journal of Chemical Physics, 2003, 119:2376-2385.
    [314] WU X J, GAO Y, ZENG X C. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes [J]. Journal of Physical Chemistry C, 2008, 112:8458-8463.
    [315] DAG S, OZTURK Y, CIRACI S, YILDIRIM T. Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J]. Physical Review B,2005, 72:155404.
    [316] ARICO A S, BRUCE P, SCROSATI B, TARASCON J M, VAN SCHALKWIJK W. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4:366-377.
    [317] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes-the route toward applications [J]. Science, 2002, 297:787-792.
    [318] SUN C Q, BAI H L, TAY B K, LI S, JIANG E Y. Dimension, strength, and chemical and thermal stability of a single C?C bond in carbon nanotubes [J]. Journal of Physical Chemistry B, 2003, 107:7544-7546.
    [319] JHI S-H. A theoretical study of activated nanostructured materials for hydrogen storage [J]. Catalysis Today, 2007, 120:383-388.
    [320] CHANDRAKUMAR K R S, GHOSH S K. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: An ab initio study [J]. Nano Letters, 2008, 8:13-19.
    [321] LIU B, YANG Q Y, XUE C Y, ZHONG C L, SMIT B. Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks [J]. Physical Chemistry Chemical Physics, 2008, 10:3244-3249.
    [322] KLONTZAS E, TYLIANAKIS E, FROUDAKIS G E. Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation [J]. Journal of Physical Chemistry C, 2008, 112:9095-9098.
    [323] SHEVLIN S A, GUO Z X. Transition-metal-doping-enhanced hydrogen storage in boron nitride systems [J]. Applied Physics Letters, 2006, 89:153104.
    [324] YILDIRIM T, CIRACI S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium [J]. Physical Review Letters, 2005, 94:175501.
    [325] PAN H, FENG Y P, LIN J Y. Hydrogen adsorption by tungsten carbide nanotube [J]. Applied Physics Letters, 2007, 90:223104.
    [326] JHI S-H, KWON Y-K. Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage [J]. Physical Review B, 2004, 69:245407.
    [327] RAO B K, JENA P. Hydrogen uptake by an alkali-metal ion [J]. Europhysics Letters, 1992, 20:307-312.
    [328] AHN C H, BHATTACHARYA A, DI VENTRA M, ECKSTEIN J N, FRISBIE C D, GERSHENSON M E, GOLDMAN A M, INOUE I H, MANNHART J, MILLIS A J, MORPURGO A F, NATELSON D, TRISCONE J M. Electrostatic modification of novel materials [J]. Reviews of Modern Physics, 2006, 78:1185-1212.
    [329] QIAO L, ZHENG W T, WEN Q B, JIANG Q. First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes [J]. Nanotechnology, 2007, 18:155707.
    [330] TOMONARI M, SUGINO O. DFT calculation of vibrational frequency of hydrogen atoms on Pt electrodes: Analysis of the electric field dependence of the Pt?H stretching frequency [J]. Chemical Physics Letters, 2007, 437:170-175.
    [331] MIGANI A, SOUSA C, SANZ F, ILLAS F. Electric field induced electron transfer at the adsorbate-surface interface. Effect of the type of metal surface [J]. Physical Chemistry Chemical Physics, 2005, 7:3353-3358.
    [332] ZHOU J, WANG Q, SUN Q, JENA P, CHEN X S. Electric Field Enhanced Hydrogen Storage on BN Sheet [J]. http://arxiv.org/ftp/arxiv/papers/0903/0903.3079.pdf.
    [333] LIU W, ZHAO Y H, LI Y, JIANG Q, LAVERNIA E J. Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes [J]. Journal of Physical Chemistry C, 2009, 113:2028-2033.
    [334] DELLEY B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules [J]. Journal of Chemical Physics, 1990, 92:508-517.
    [335] COBIAN M, INIGUEZ J. Theoretical investigation of hydrogen storage in metal-intercalated graphitic materials [J]. Journal of Physics: Condensed Matter, 2008, 20:285212.
    [336] ATACA C, AKTüRK E, CIRACI S, USTUNEL H. High-capacity hydrogen storage by metallized graphene [J]. Applied Physics Letters, 2008, 93:043123.
    [337] DE ANDRES P L, RAMíREZ R, VERGéS J A. Strong covalent bonding between two graphene layers [J]. Physical Review B, 2008, 77:045403.
    [338] ZHAO J, BULDUM A, HAN J, LU J P. First-principles study of Li-intercalated carbon nanotube ropes [J]. Physical Review Letters, 2000, 85:1706-1709.
    [339] NIKITIN A, LI X L, ZHANG Z Y, OGASAWARA H, DAI H J, NILSSON A. Hydrogen storage in carbon nanotubes through the formation of stable C?H bonds [J]. Nano Letters, 2008, 8:162-167.
    [340] SHTOGUN Y V, WOODS L M. Electronic Structure Modulations of Radially Deformed Single Wall Carbon Nanotubes under Transverse External Electric Fields [J]. Journal of Physical Chemistry C, 2009, 113:4792-4796.
    [341] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation-energy [J]. Physical Review B, 1992, 45:13244-13249.
    [342] GONZáLEZ S, SOUSA C, ILLAS F. Electric field effects in the chemisorption of CO on bimetallic RhCu surface models [J]. Surface Science, 2004, 548:209-219.
    [343] HUBER K P, HERZBERG G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules [M]. Van Nostrand: New York, 1979.
    [344] YILDIRIM T, INIGUEZ J, CIRACI S. Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60 [J]. Physical Review B, 2005, 72:153403.
    [345] ILLAS F, MELE F, CURULLA D, CLOTET A, RICART J M. Electric field effects on the vibrational frequency and bonding mechanism of CO on Pt(111) [J]. Electrochimica Acta, 1998, 44:1213-1220.
    [346] AO Z M, ZHENG W T, JIANG Q. The effects of electronic field on the atomic structure of the graphene/alpha-SiO2 interface [J]. Nanotechnology, 2008, 19:5.
    [347] MPOURMPAKIS G, FROUDAKIS G. Why alkali metals preferably bind on structural defects of carbon nanotubes: A theoretical study by first principles [J]. Journal of Chemical Physics, 2006, 125:204707.
    [348] TOKURA A, MAEDA F, TERAOKA Y, YOSHIGOE A, TAKAGI D, HOMMA Y, WATANABE Y, KOBAYASHI Y. Hydrogen adsorption on single-walled carbon nanotubes studied by core-level photoelectron spectroscopy and Raman spectroscopy [J]. Carbon, 2008, 46:1903-1908.
    [349] ZHANG G Y, QI P F, WANG X R, LU Y R, MANN D, LI X L, DAI H J. Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes [J]. Journal of the American Chemical Society, 2006, 128:6026-6027.
    [350] DAG S, OZTURK Y, CIRACI S, YILDIRIM T. Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J]. Physical Review B, 2005, 72:155404.
    [351] DILLON A C, HEBEN M J. Hydrogen storage using carbon adsorbents: past, present and future [J]. Applied Physics A, 2001, 72:133-142.
    [352] OOSTINGA J B, HEERSCHE H B, LIU X L, MORPURGO A F, VANDERSYPEN L M K. Gate-induced insulating state in bilayer graphene devices [J]. Nature Materials, 2008, 7:151-157.
    [353] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6:183-191.
    [354] LHERBIER A, BLASE X, NIQUET Y M, TRIOZON F, ROCHE S. Charge transportin chemically doped 2D graphene [J]. Physical Review Letters, 2008, 101:036808.
    [355] PATCHKOVSKII S, TSE J S, YURCHENKO S N, ZHECHKOV L, HEINE T, SEIFERT G. Graphene nanostructures as tunable storage media for molecular hydrogen [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102:10439-10444.
    [356] ROMAN T, DINO WA, NAKANISHI H, KASAI H, SUGIMOTO T, TANGE K. Hydrogen pairing on graphene [J]. Carbon, 2007, 45:218-220.
    [357] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, ZHANG Y, DUBONOS S V, GRIGORIEVA I V, FIRSOV A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306:666-669.
    [358] LIN Y M, AVOURIS P. Strong suppression of electrical noise in bilayer graphene nanodevices [J]. Nano Letters, 2008, 8:2119-2125.
    [359] CASTRO E V, NOVOSELOV K S, MOROZOV S V, PERES N M R, DOS SANTOS J, NILSSON J, GUINEA F, GEIM A K, NETO A H C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J]. Physical Review Letters, 2007, 99:216802.
    [360] OHTA T, BOSTWICK A, SEYLLER T, HORN K, ROTENBERG E. Controlling the electronic structure of bilayer graphene [J]. Science, 2006, 313:951-954.
    [361] DE ANDRES P L, RAMíREZ R, VERGéS J A. Strong covalent bonding between two graphene layers [J]. Physical Review B, 2008, 77:045403.
    [362] ZHU Z H, LU G Q, SMITH S C. Comparative study of hydrogen storage in Li- and K-doped carbon materials-theoretically revisited [J]. Carbon, 2004, 42:2509-2514.
    [363] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46:6671-6687.
    [364] TADA K, FURUYA S, WATANABE K. Ab initio study of hydrogen adsorption to single-walled carbon nanotubes [J]. Physical Review B, 2001, 63:155405.
    [365] GüLSEREN O, YILDIRIM T, CIRACI S. Tunable adsorption on carbon nanotubes [J]. Physical Review Letters, 2001, 87:116802.
    [366] AERTSENS M, NAUDTS J. Field-induced percolation in a polarized lattice gas [J]. Journal of Statistical Physics, 1991, 62:609-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700