老芒麦野生种质资源的遗传多样性及群体遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究和了解植物种质间的遗传变异对于其在育种上的有效利用非常有益。自然种群的遗传多样性研究可以为物种保护计划的制定和实施提供参考和借鉴。老芒麦(Esibiricus L.)又名西伯利亚野麦草,是披碱草属的模式种,原生于欧亚大陆北部,具有多年生和自花授粉的习性,为具有StStHH染色体组构成的异源四倍体。其自然分布横跨欧洲的瑞典到东亚的日本,甚至到达北美的阿拉斯加和加拿大,向南可以延伸分布至中国青藏高原的海拔4000米以下的地区。老芒麦一般生长于湿润的草地、河滩、灌木丛中或森林边缘地带。国内对老芒麦的研究多集中在资源评价、栽培技术、种子生产、抗性生理生化等方面;国外的研究更多的是集中于其抗寒性的生化与分子生物学机理及包括老芒麦在内的披碱草属物种的系统分类与进化方面。目前对老芒麦种质的遗传多样性几乎没有相关研究。
     本研究利用形态-农艺学性状、种子醇溶蛋白和SRAP分子标记评价了来源广泛的老芒麦种质的遗传多样性;同时利用ISSR和RAPD分子标记对青藏高原东南部的8个老芒麦居群进行了群体结构和遗传变异分析。主要结果如下:
     1.以栽培品种川草2号为对照,观测34份老芒麦野生种质的13个形态和农艺学性状的基本数据,基于欧氏距离进行UPGMA聚类分析,揭示老芒麦各野生种质间的生物多样性。研究结果表明,老芒麦野生种质间表型差异明显,生物多样性丰富。根据聚类结果,供试种质可以划分成3个具有明显形态和农艺性状差异的类群。类群Ⅲ中3份来自新疆的种质和1份来四川红原的种质具有突出的农艺性状表现,其牧草和种子生产性能远高于其它居群。主成分分析的结果与聚类分析基本一致。另外还对野生老芒麦种质的收集和保护提出了建议。
     2.利用基于APAGE的醇溶蛋白标记对来自亚洲和北美的86份老芒麦种质的遗传多样性和遗传关系进行了分析。电泳共检测到52条醇溶蛋白条带,其中47条为多态性条带,多态性比率达90.4%。种质间遗传相似系数的变幅为0.108~0.952,平均值为0.373,这表明种质间的存在较高水平的遗传多样性。利用Shannon多样性指数反映了类似的结果,即供试种质间的多样性指数达到0.460的较高水平。基于多样性指数计算了老芒麦种质地理类群遗传分化程度,地理类群间和地理群内的遗传变异分别占总变异的55.9%和44.2%。对种质和地理类群的聚类分析结果均显示来源于青藏高原的种质与来源于其它地理来源的种质具有较大的差异,可以分成明显的两支。这种聚类结果可能与种质的地理来源与生态适应性有关。同时还就遗传多样性的范围及种质间的遗传关系做了进一步探讨。
     3.利用SRAP标记对来自亚洲的84份老芒麦种质的遗传多样性和遗传关系进行了分析。23个引物组合共产生337条扩增带,其中203条为多态性带,多态性比率为60.24%。各种质问遗传相似系数的变幅为0.783到0.965,平均值为0.865。来自于青藏高原和蒙古的种质间的平均GS值最小(0.830),而来自于俄罗斯和和蒙古的种质间的平均GS值最大(0.897)。对84份种质的聚类分析表明,供试种质可以划分成2大类,而且聚类结果与原始相似性矩阵间的具有很高的吻合度(r=0.88)。同时,主向量分析(PCoA)也得到了与聚类分析类似的结果。分子方差分析(AMOVA)表明在总的遗传变异中有79.62%发生在地理类群内,有20.38%发生在类群间(Φ_(ST)=0.204),类群间和类群内的变异均为极显著(P<0.0001)。基于各地理类群间Φ_(ST)值进行的聚类分析也表明青藏高原类群明显区别于其它地理类群。这种聚类模式可能依赖于种质的地理来源赋予其的特殊生态地理适应性。
     4.本研究利用ISSR分子标记对来自青藏高原东南部的8个老芒麦的遗传多样性和群体遗传结构进行了分析和评价。在100个ISSR引物中筛选出13个能扩增出高度重复性条带的引物。这13个引物共扩增出193条可分辨的条带,其中149条(占77.2%)具有多态性,表明老芒麦居群在物种水平上存在较高水平的变异。相反,各居群的多态性位点比率(P_P)在44.04%到54.92%之间变化,表明群体水平的变异较低。群体水平的平均基因多样性(H_E)为0.181(变幅为0.164~0.200),而物种水平的平均基因多样性达0.274。基于Nei.氏基因多样性的群体分化系数达到33.1%,而基于Shannon指数、贝斯叶方法和分子方差分析(AMOVA)的群体分化系数分别为34.5%、33.2%和42.5%。AMOVA分析表明采样地区之间的ISSR变异不存在显著的统计学差异(P=0.08),然而群体间和群体内的变异分别为42.5%和57.5%,均显示为差异极显著(P<0.001)。各居群间存在较高的Nei氏遗传一致度。这种遗传变异模式不同于已报导的大多数小麦族自交物种。另外,基于聚类分析和主向量分析的结果表明各居群间存在较为明显的地理分化,即8个居群分化为采集地的南部和北部2个分支。总之,本研究结果表明来自青藏高原东南部的老芒麦居群内部存在较高水平的ISSR变异。
     5.本研究利用RAPD分子标记对来自青藏高原东南部的8个老芒麦的遗传多样性和群体遗传结构进行了分析和评价。在150个RAPD引物中筛选出25个能扩增出高度重复性条带的引物。这25个引物共扩增出370条可分辨的条带,其中291条(占78.65%)具有多态性,表明供试居群在物种水平上存在较高水平的变异。同时各居群的多态性位点比率(P_P)在46.49%到53.78%之间变化,表明群体水平的变异较低。居群水平的平均基因多样性(H_E)为0.176(变幅为0.159~0.190),而物种水平的平均基因多样性达0.264。基于Nei氏基因多样性、Shannon指数和贝叶斯方法的群体分化系数分别为32.0%、33.7%和33.5%。AMOVA分析表明居群内遗传达到总变异的59.9%,而居群间变异仅有40.1%,但二者均达到极显著水平(P<0.001)。居群间每世代迁入个体数(基因流)达到1.06个。各居群间存在较高的Nei氏遗传一致度。基于RAPD和ISSR的Nei基因多样性指数间存在显著相关。另外,基于聚类分析、主向量分析及AMOVA的结果均表明各居群间存在较为明显的地理分化,即8个居群分化为采集地的南部和北部2个分支,与RAPD结果存在相似性。对该地区老芒麦应尽量选择遗传多样性高的居群实施就地保护。
The understanding and knowledge of genetic variation within germplasm collections are useful for the efficient utilization of genetic resources in breeding programs.A prerequisite for an efficient conservation of biodiversity is that there is knowledge on genetic variation of native populations.As the type species of the genus Elymus,E. sibiricus L.(Siberian wildrye)is a perennial,self-pollinating and allotetraploid grass indigenous to Northern Asia,possessing the St and H genome.Its natural geographic distribution extends from Sweden to Japan and even to parts of Alaska and Canada,and that extends southerly to Qinghai-Tibet Plateau,which is the highest plateau in the world. E.sibiricus usually grows on wet meadows,riverside sands,and among open forest or shrubs.In the subalpine meadows with less than 4000m altitude in Qinghai-Tibet Plateau, E.sibiricus usually serves as an important forage species.Resource evaluation,cultivation technique,and seed production has been studied for E.sibiricus in China,whereas overseas studies of this species focused on biochemical and molecular mechanism of cold resistance, and phylogegenetic and evolutionary relationships of Elymus species including E.sibiricus. At present,very little is known about the information of genetic diversity of E.sibiricus germplasm collections or populations.
     The genetic diversity of worldwide germplasm collections of E.sibiricus was evaluated based on morpho-agronomic traits,gliadin markers,and SRAP markers.In addition,population structure and genetic variation among E.sibiricus populations from the southeast of Qinghai-Tibet Plateau of China.The main results showed as follows:
     1.Based on investigation of thirteen morpho-agronomic traits of 35 native Elymus sibiricus accessions including cultivar Chuancao No.2 as a check,Euclidean distances were calculated to performing cluster analysis for.The results showed that there were significant phenotypic differences among the studied accessions,indicating rich within-species biodiversity.According to the cluster analysis,the 35 accessions were classified into three groups with great morpho-agronomic differences.In groupⅢ,three accessions from Xingjiang Province and one accession from Hongyuan,Sichuan Province, had the highest performance in terms of forage and seed yields.The principle component analysis revealed a similar result to cluster analysis.The collection and conservation of native germplasm resources of E.sibiricus was also discussed in this part.
     2.Gliadin markers based on A-PAGE were used to analyze genetic diversity and genetic relationship among eighty-six Elymus sibiricus accessions from Asia and North America. Total of 52 gliadin bands were scored,of which 47 were polymorphic(90.4%).The generated similarity matrix showed that the genetic diversity within the accessions was fairly high(average similarity index=0.373).Similarity values among the accessions ranged between 0.108 and 0.952.Similar results were obtained when genetic diversity was estimated using the Shannon-Weaver index of diversity.The total genetic diversity across all accessions was 0.460.The proportion of variation explained by within geographic group and between geographic groups diversity was 0.559 and 0.442,respectively.Cluster analysis showed a clear demarcation between accessions from Qinghai-Tibetan Plateau, China and the others as separate groups.The extent of genetic diversity and genetic relationship among accessions is discussed.The clustering pattern was probably dependent on geographic origin and ecological adaptability of the accessions.
     3.SRAP markers were used to analyze genetic diversity and genetic relationship among eighty-four Elymus sibiricus accessions from Asia.A set of 23 primer combinations yielded 337 bands,of which 203 were polymorphic(60.24%).Genetic similarity values (GS)among the accessions ranged between 0.783 and 0.965 with a mean of 0.865.On the average,Mongolian and Russian accessions were the most similar while,Mongolian and Qingahi-Tibet Plateau accessions were the most distant ones.Cluster analysis grouped the 84 accessions into two clusters,which has quite a high fit(r=0.88)to the original similarity matrix.Results of cluster analysis which was supported strongly by the principal coordinate analysis.The molecular variance analysis(AMOVA)showed that the proportion of variation explained by within geographic group and between geographic groups diversity was 0.7962 and 0.2038,respectively.Similar results were obtained when genetic diversity was estimated using the Shannon's index of diversity.Based on pairwiseΦ_(ST)between geographic groups,cluster analysis showed a clear demarcation between accessions from Qinghai-Tibetan Plateau and the others as separate groups.The clustering pattern was probably dependent on geographic origin and ecological adaptability of the accessions.The results of present study can be useful in collecting germplasm and the establishment of core collections of E.sibiricus.
     4.Inter-simple sequence repeats(ISSR)markers were used to assess the genetic diversity and population structure in eight populations of Elymus sibiricus L.from the southeast of Qinghai-Tibet Plateau of China.Of the 100 primers screened,13 produced highly reproducible ISSR bands.Using these primers,193 discernible DNA fragments were generated with 149(77.2%)being polymorphic,indicating considerable genetic variation at the species level.In contrast,there were relatively low levels of polymorphism at the population level with the percentage of polymorphic loci(P_P)ranging from 44.04% to 54.92%.The mean gene diversity(H_E)was estimated to be 0.181 within populations (range 0.164 to 0.200),and 0.274 at the species level.A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (33.1%),Shannon's index analysis(34.5%),Bayesian method(33.2%)and AMOVA analysis(42.5%).No significant statistical differences(analysis of molecular variance [AMOVA],P=0.08)in ISSR variation was found between the sample collection regions. However,among populations(42.5%of the variance)and within populations(57.5%of the variance),there were significant differences(P<0.001).Populations shared high levels of genetic identity.This pattern of genetic variation was different from that for most of inbreeding Triticeae species reported.In addition,a geographical pattern of population differentiation,where the populations from south and north of sampling sites were clearly separated from each other,was revealed by both the cluster and principal coordinates analyses.Generally,the result of this study indicates that E.sibiricus contains high molecular variation in its populations.
     5.Random amplified polymorphic DNA(RAPD)markers were also used to assess the genetic diversity and population structure in eight populations of Elymus sibiricus L.from the southeast of Qinghai-Tibet Plateau of China.Of the 150 primers screened,25 produced highly reproducible RAPD bands.Using these primers,370discernible DNA fragments were generated with 291(78.65%)being polymorphic,indicating considerable genetic variation at the species level.In contrast,there were relatively low levels of polymorphism at the population level with the percentage of polymorphic loci(P_P)ranging from 46.49% to 53.78%.The mean gene diversity(H_E)was estimated to be 0.176 within populations (range 0.159 to 0.190),and 0.264 at the species level.A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (32.0%),Shannon's index analysis(33.7%),Bayesian method(33.5%).The partitioning of molecular variance by AMOVA analysis indicated significant genetic differentiation within populations(59.9%)and among populations(40.1%;P<0.001).The average number of individuals exchanged between populations per generation(Nm)was 1.06.Populations shared high levels of genetic identity.The correlation between RAPD and ISSR gene diversity(H_E)showed a relative high correlation.In addition,a geographical pattern of population differentiation,where the populations from south and north of sampling sites were clearly separated from each other,was revealed by both the cluster,AMOVA,and principal coordinates analyses.Generally,the result of this study indicates that E.sibiricus contains high molecular variation in its populations.The implications of these results for the conservation of the species are also discussed.
引文
1.Agafonov A V,Agafonova O V.1990.Intraspecific variation in the prolamins of Elymus sibiricus established by means of one-dimensional eletrophoresis.Genetika Moskva,26:304-311.
    2.Agafonov A V,Agafonova O V.1992.SDS-electrophoresis of the endosperm proteins in representatives of the genus Elymus L.with different genome structure.Sibirskii Biologicheskii Zhurnal,3:7-12.
    3.Agafonov A V,Baum B R,Bailey L G,Agafonova O V.2001.Differentiation in the Elymus dahuricus complex(Poaceae):evidence from grain proteins,DNA,and crossability.Hereditas,135:277-289.
    4.Agafonov A V,Baum B R.1998.Variation of endosperm proteins in the complex of Elymus trachycaulus(Link)Gould ex Shinners.In:Jaradat A A(ed.)Triticeae Ⅲ.Science Publishers,Enfield,New Hampshire,USA.pp 273-282.
    5.Agafonova O V.1997.Genetic analysis of short-awned siberian wildrye.Doklady Biological of sciences,353:569-571.
    6.Alvarez J B,Moral A,Martin L M.2006.Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkom wheat(Triticum monococcum L.ssp.monococcum).Genet Resour Crop Evol,53:1061-1067.
    7.Apostol B,Black Ⅳ W C,Miller B R,Reiter P,Beaty B J.1993.Estimation of family numbers at an oviposition site using RAPD-PCR markers:applications to the mosquito Aedes aegypti.Theor Appl Genet,86:991-1000.
    8.Asay K H.1992.Breeding potential in perennial Triticeae grasses.Hereditas,116:167-173.
    9.Bantock C R,Price D J.1975.Marginal populations of Cepaea nemoralis(L.)on the Brenden Hills,England.I.Ecology and ecogenetics.Evolution,29:267-277.
    10.Barcaccia G,Molinari L,Porfiri O,Veronesi F.2002.Molecular characterization of emmer (Triticum dicoccon Schrank)Italian landraces.Genet Resour Crop Evol,49:415-426.
    11.Bowden W M,Cody W J.1961.Recognition of Elymus sibiricus L.from Alaska and the District of Mackenzie.Bull Torrey Bot Club,88:153-155.
    12.Budak H,Shearman R C,Parmaksiz I,Gaussoin R E,Riordan T P,Dweikat I.2004a.Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers.Theor Appl Genet,108:328-334.
    13.Budak H,Shearman R C,Parmaksiz I,Riordan T P,Dweikat I.2004b.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs,SSRs,RAPDs,and SRAPs.Theor Appl Genet,109:280-288
    14.Bushuk W,Zillman R R.1978.Wheat cultivars identification by gliadin electrophoregrams.I.Apparatus method and nomenclature.Can J Plant Sci,58:505-515.
    15.Caballero L,Martin L M,Alvarez J B.2004.Variation and genetic diversity for gliadins in Spanish spelt wheat accessions.Genet Resour Crop Evol,51:679-686.
    16.Ciaffi M,Lafiandra D,Porceddu E,Benedettelli S.1993.Storage-protein variation in wild cromer (Triticum turgidum ssp.dicoccoides)Ⅱ.Patterns of allele distribution.Theor Appl Genet,86:518-525.
    17.Clegg M T.1989.Molecular diversity in plant populations.In:Brown A H D,Clegg M T,Kahler A L,Weir B S(ed.)Plant Population Genetics,Breeding and Genetic Resources.Sinauer,Sunderland,MA.pp 98-115.
    18.Dewey D R.1974.Cytogenetics of Elymus sibiricus and its hybrids with Agropyron tauri,Elymus canadensis,and Agropyron caninu.Bot Gaz,135:80-87.
    19.Dewey D R.1982.Genomic and phylogenetic relationships among North American perennial Triticeae.In:Estes J R,Tyrl R J,Brunken J N(ed.)Grasses and grasslands:systematics and ecology.University of Oklahoma Press,Norman,Oklahoma,USA.pp 51-88.
    20.Dewey D R.1984.The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae.In:Gustafson J P(ed.)Gene manipulation in plant improvement.Plenum Press,New York.pp 209-279.
    21.Diaz O,Salomon B,and von Bothmer R.1998.Description of isozyme polymorphisms in Elymus species using starch gel electrophoresis.In:Jaradat AA(ed.)Triticeae Ⅲ.Science Publishers Inc,Enfield,New Hampshire,USA.pp 199-208.
    22.Diaz O,Salomon B,yon Bothmer R.1999a.Genetic variation and differentiation in Nordic populations of Elymus alaskanus(Skrib.ex Merr.)Love(Poaceae).Theor Appl Genet,99:210-217.
    23.Díaz O,Salomon B,von Bothmer R.1999b.Genetic diversity and structure in populations of Elymus caninus(L.)(Poaceae).Hereditas,131:63-74.
    24.Díaz O,Sun G L,Salomon B,von Bothmer R.2000.Levels and distribution of allozyme and RAPD variation in populations of Elymus fibrosis(Schrenk)Tzvel.(Poaceae).Genet Resour Crop Evol,47:11-24.
    25.Dong G J,Liu G S,Li K F.2007.Studying genetic diversity in the core germplasm of confectionary sunflower(Helianthus annuus L.)in China based on AFLP and morphological analysis.Russian Journal of Genetics 43:627-635.
    26.Doyle J J.1991.DNA protocols for plants-CTAB total DNA isolation.In:Hewitt G M,Johnston A(ed.)Molecular Techniques in Taxonomy.Springer-Verlag,Berlin,Germany.pp 283-293.
    27.Draper S R.1987.ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986.Seed Sci & Technol,15:431-434.
    28.Ellstrand N C,Elam D R.1993.Population genetic consequences of small population size:implications for plant conservation.Annu Rev Ecol Syst,24:217-243.
    29.Excoffier L,Guillaume L,Schneider S.2006.Arlequin Ver 3.01:An Integrated Software Package for Population Genetics Data Analysis.Computational and Molecular Population Genetic Lab,University of Berne.
    30.Excoffier L,Smouse P E,Quattro J M.1992.Analysis of molecular variance inferred from metric distances among DNA haplotypes:applications to human mitochondrial DNA restriction data.Genetics,131:479-491.
    31.Fahima T,Sun G L,Beharav A,Krugman T,Beiles A,Nevo E.1999.RAPD polymorphism of wild emmer wheat populations,Triticum dicoccoides,in Israel.Theor Appl Genet,98:434-447.
    32.Felsenstein J.1985.Confidence limits on phylogenesis:an approach using the bootstrap.Evolution,39:783-791.
    33.Ferriol M,Pico B,Nuze F.2003.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers.Theor Appl Genet,107:271-282.
    34.Fu Y B,Peterson G W,Williams D,Richards K W,Fetch J M.2005.Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm.Theor Appl Genet,530:530-539.
    35.Futuyma D J.1986.Evolutionary Biology,2nd ed.Sinauer,Sunderland,Massachusetts,USA.
    36.Gaudett M,Salomon B,Sun G L.2005.Molecular variation and population structure in Elymus trachycaulus and comparison with its morphologically similar E.alaskanus.Plant Syst.Evol.250,81-91.
    37.Given D R.1987.What the conservationist requires of ex situ collections.In:Bramwell D,Hamann O,Heywood V,Synge H(ed.)Botanical Gardens and the World Conservation Strategy.Academic Press,London.pp 103-116.
    38.Godt M J W,Johnson B R,Hamrick J L.1996.Genetic diversity and population size in four rare southern Appalachian plant species.Conserv Biol,10:796-805.
    39.Govindajaru D R.1989.Variation in gene flow levels among predominantly self-pollinated plants.J Evol Biol,2:173-181.
    40.Gunter L E,Tuskan G A,Wullschleger S D.1996.Diversity among populations of switchgrass based on RAPD markers.Crop Science,36:1017-1022.
    41.Guo D L,Luo Z R.2006.Genetic Relationships of some PCNA Persimmons(Diospyros kaki Thunb.)from China and Japan revealed by SRAP analysis.Genet Resour Crop Evol,53:1597-1603.
    42.Hamrick J L,Godt M J W,Murawshi D A,Loveless M D.1991.Correlations between species traits and allozyme diversity:implications for conservation biology.In:Falk D A,Holsinger K E (ed.)Genetics and Conservation of Rare Plants.Oxford University Press,New York,USA.pp 75-86.
    43.Hamrick J L,Godt M J W.1990.Allozyme diversity in plant species.In:Brown A H D,Clegg M T,Kahler A L,Weir B S.(ed.)Plant Population Genetics,Breeding and Genetic Resources.Sinauer,Sunderland,Mass.pp 43-63.
    44.Hamrick J L,Godt M J W.1996.Conservation genetics of endemic plant species.In:Avise J C,Hamrick J L(ed.)Conservation Genetics,Case Histories from Nature.Chapman and Hall,New
    York.pp 281-304.
    45.Hamrick J L,Linhart Y B,Mitton J B.1979.Relationship between life history characteristics and electrophoretically detectable genetic variation in plants.Rev Ecol Syst,10:173-200.
    46.Han X Y,Wang L S,Shu Q Y,Liu Z A,Xu S X,Tetsumura T.2008.Molecular Characterization of Tree Peony Germplasm Using Sequence-Related Amplified Polymorphism Markers.Biochem Genet,46:162-179.
    47.Hartl D L,Clark A G.1994.Principles of Population Genetics.Sinauer Press,Sunderland.
    48.Holsinger K E,Lewis P O,Dey D K.2002.A Bayesian approach to inferring population structure from dominant markers.Mol Ecol,11:1157-1164.
    49.Holsinger K E,Lewis P O.2005.Hickory:A Package for Analysis of Population Genetic Data v.1.0.Department of Ecology and Evolutionary Biology,University of Connecticut,Storrs,USA.
    50.HuffD R,Quinn J A,Higgins B,Palazzo A J.1998.Random amplified polymorphic DNA(RAPD)variation among native little bluestem[Schizachyrium scopariurn(Michx.)Nash]populations from sites of high and low fertility in forest and grassland biomes.Mol Ecol,7:1591-1597.
    51.Huff D R.1997.RAPD characterization of heterogeneous perennial ryegrass cultivars.Crop Sci,37:557-564.
    52.Jaradat A A.1991.Groin protein variability among populations of wild barley(Hordeum spontaneum C.Koch.)from Jordan.Theor Appl Genet,83:164-168.
    53.Jensen K B,Chen S L.1992.An overriver:Systematic relationships of Elymus and Roegneria (Poaceae).Hereditas,116:127-132.
    54.Johnson R C,Johnston W J,Golob C T,Nelson M C,Soreng R J.2002.Characterization of the USDA Poa pratensis collection using RAPD markers and agronomic descriptors.Genet Resour Crop Evol,49:349-361.
    55.Knapp E E,Rice K J.1996.Genetic structure and gene flow in Elymus glaucus(blue wild rye):implications for native grassland restoration.Restorat Ecol,4:1-10.
    56.Kostina E V,Agafonov AV,Salomon B.1998.Electrophoretic properties and variability of endosperm proteins of Elymus caninus(L.)L.In:Jaradat A A(ed.)Tritiecae Ⅲ.Science Publishers,New Hampshire,USA.pp 265-272.
    57.Larson S R,Jones T A,Jensen K B.2004.Population structure in Pseudoroegneria spicata (Poaceae:Triticeae)modeled by Bayesian clustering of AFLP genotypes.Am J Botany,91:1789-1801.
    58.Lewinton R C.1972.The apportionment of human diversity.Evol Biol,6:381-398.
    59.Li G,Quiros C F.2001.Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet,103:455-461.
    60.Liu W Z,Wang R R-C,Carman J G.1994.Hybrids and backcross progenies between wheat (Triticum aestivum L.)and apomictic Australian wheatgrass(Elymus rectisetus(Nees in lehm.)a.Love & Connor):karyotypic and genomic analyses.Theor Appl Genet,89:599-605.
    61.Loveless M D,Hamrick J L.1984.Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst, 15:65-96.
    
    62. Lu B R. 1993. Biosystematic investigations of Asiatic wheat grasses - Elymus L. (Triticeae: Poaceae). Ph.D. thesis. The Swedish University of Agricultural Sciences, Svalov, Sweden.
    
    63. Lynch M, Milligan B G 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol, 3: 91-99.
    
    64. MacPherson J, Eckstein P, Scoles G, Gajadhar A. 1993: Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol Cell Probes, 7: 293-299.
    
    65. Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27: 209-220.
    
    66. Max K H, William C S, Bruce W. 1978. The origin of isolating mechanism in flowing plants. In: Max K H (ed.) Evolutionary biology. Plenum Press, New York, pp 185-317.
    
    67. McDermott J M, McDonald B A. 1993. Gene flow in plant pathosystems. Annu Rev Phytopathol, 31:353-373.
    
    68. McGuire P E and Dvorak J. 1981. High salt tolerance potential in wheat grasses. Crop Sci, 21: 102-105.
    
    69. McMillan E, Sun G L. 2004. Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theor Appl Genet, 108: 535-542.
    
    70. Melchinger, A.E., A. Graner, M. Singh & M.M. Messmer, 1994. Relationships among winter and spring cultivars revealed by RFLP's. Crop Sci, 34:1191-1199.
    
    71. Metakovsky E V, Yu Novoselskaya A, Kopus M M, Sobko T A, Sozinov A A. 1984. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet, 67: 559-568.
    
    72. Miller M P. 1997. Tools for Population Genetic Analysis (TEPGA). Version 1.3. Department of Biological Sciences, Northern Arizona University, Arizona, USA.
    
    73. Miller M P. 1998. AMOVA-PREP 1.01: A Program for the Preparation of the AMOVA Input Files from Dominant-Marker Raw Data. Department of Biological Sciences, Northern Arizona University, Arizona, USA.
    
    74. Mitton J B. 1994. Molecular approaches to population biology. Annu Rev Ecol Syst, 25: 209-220.
    75. Mizianty M. 2005.Variability and structure of natural populations of Elymus caninus (L.) L. based on morphology. Plant Syst Evol, 251: 199-216.
    
    76. Moreno-Gonzalez J, Cubero J I. 1993. Selection strategies and choice of breeding methods. In: Hayward M D, Bosemark N O, Romagosa I (ed.) Plant Breeding, Principles and Prospects. Chapman & Hall, London, pp 281-313.
    
    77. Motsny I I, Simonenko V K. 1996. The influence of Elymus sibiricus L. genome on the diploidization system of wheat. Euphytica, 91: 189-193.
    
    78. Mueller U G, Wolfenbarger L L. 1999. AFLP genotyping and fingerprinting. Trends Ecol & Evol, 14:389-394.
    
    79. Nei M, Li W H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 76: 5269-5273.
    
    80. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70: 3321-3323.
    
    81. Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590.
    
    82. Nevo E. 1998. Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genet Resour Crop Evol, 45:355-370.
    
    83. Nieto-Lopez R M, Casanova C, Soler C. 2000. Analysis of the genetic diversity of wild Spanish population of the species Elymus caninus(L.) and Elymus hispanicus (Boiss.) Talavera by PCR-based marks and endosperm proteins. Agronomie, 20: 893-905.
    
    84. Nybom H, Bartish I V. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst. 3: 93-114.
    
    85. Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol, 13:1143-1155.
    
    86. Panthee D R, KC R B, Regmi H N, Subedi P P, Bhattarai S, Dhakal J. 2006. Diversity analysis of garlic (Allium sativum L.) germplasms available in Nepal based on morphological characters. Genet Resour Crop Evol, 53: 205-212.
    
    87. Perez T, Albornoz J, Dominguez A. 1998. An evaluation of RAPD fragment reproducibility and nature. Mol Ecol, 7:1347-1357.
    88.Powell W,Morgante M,Andre C,Hanafey M,Vogel J,Tingey S,Rafalski A.1996.The comparison of RFLP,RAPD,AFLP and SSR(microsatellite)marker for germplasm analysis.Mol Breed,2:225-238.
    89.Qiu Y X.,Hong D Y,Fu C X,Kenneth M C.2004.Genetic variation in the endangered and endemic species Changium smyrnioides(Apiaceae).Biochem Syst Ecol,32:583-596.
    90.Reddy M P,Sarla N,Siddiq E A.2002.Inter simple sequence repeat(ISSR)polymorphism and its application in plant breeding.Euphytica,128:9-17.
    91.Reisch C,Poschlod P,Wingender R.2003.Genetic differentiation among populations of Sesleria albicans Kit.ex Schultes(Poaceas)from ecologically different habitats in central Europe.Heredity,91:519-527.
    92.Rolf,J F.2000.NTSYSpc:Numerical Taxonomy and Multivariate Analysis System,Version 2.1.Exeter Software,Setaukel,New York,USA.
    93.Ruiz M,Aguiriano E.2004.Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins.Genet Resour Crop Evol,51:231-235.
    94.Sakamoto S.1982.Cytogenetical studies on artificial hybrids among Elymus sibiricus,E.dahuricus and Agropyron tsukushiense in the tribe Triticeae,Gramineae.Bot Mag Tokyo,95:375-383.
    95.Salomon B,Lu B R.1994.Genomic relationships between species of the Elymus semicostatus group and Elymus sensulato(Poaceae).Plant Sys Evol,191:199-211.
    96.SAS Institute Inc.1999.SAS Proprietary Software,Release 8.01.SAS Institute Inc.,Cary,NC.
    97.Schaal B A,Hayworth D A,Olsen K M,Rauscher J T,Smith W A.1998.Phylogeographic studies in plants:problems and prospects.Mol Ecol,7:465-474.
    98.Schaal B A,Leverich W J,Rogstad S H.1991.A comparison of methods for assessing genetic variation in plant conservation biology.In:Falk D A,Holsinger K E(ed.)Genetics and Conservation of Rare Plants.Oxford University Press,New York.pp 123-134.
    99.Schewder M,Shatters R,West S,Smith R.1995.Effect of transition interval between melting and annealing temperatures on RAPD analyses.Biotechniques,19:38-42.
    100.Schlichting C D.1986.The evolution of phenotypic plasticity in plants.Annu Rev Ecol Syst,17:667-693.
    101. Schneider S, Roessli D, Excoffier L. 2006. ARLEQUIN version 3.1: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
    
    102. Schoen D J, Brown A H D. 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA, 88: 4494-4497.
    
    103. Shumaker K M, Babble G R. 1980. Patterns of allozymic similarity in ecologically central and marginal populations of Hordeumjubatum in Utah. Evolution, 34: 110-116.
    
    104. Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science, 236: 778-792.
    
    105. Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L): comparisons with data from RFLPS and pedigree. Theor Appl Genet, 95:163-173.
    
    106. Sneath P H A, Sokal RR. 1973. Numerical Taxonomy. W.H. Freeman, San Francisco.
    
    107. Spiegelhalter D J, Best N G, Carlin B P, van der Linde A. 2002. Bayesian measures of model complexity and fit. J Roy Stat Soc Ser B, 64:483-489.
    
    108. Stevens L, Salomon B, Sun G L. 2007. Microsatellite variability and heterozygote excess in Elymus trachycaulus populations from British Columbia in Canada. Biochem Syst. Ecol, 35: 725-736.
    
    109. Stewart C N, Excoffier L. 1996. Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J Evol Biol, 9: 153-171.
    
    110. Sun G L, Diaz O, Salomon B, von Bothmer R. 1998. Microsatellite variation and its comparison with allozyme and RAPD variation in Elymus fibrosis (Schrenk) Tzvel. (Poaceae). Hereditas, 129: 275 -282.
    
    111. Sun G L, Diaz O, Salomon B, von Bothmer R. 1999. Genetic diversity in Elymus caninus as revealed by isozyme, RAPD and microsatellite markers. Genome, 42: 420-431.
    
    112. Sun G L, Salomon B, von Bothmer R. 1997. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome, 40: 806-814.
    
    113. Sun G L, Salomon B, von Bothmer R. 2002. Microsatellite polymorphism and genetic differentiation in three Norwegian populations of Elymus alaskanus (Poaceae). Plant Syst Evol, 234: 101-110.
    114.Sun G L,Salomon B.2003.Microsatellite variability and heterozygote deficiency in the arctic-alpine Alaskan wheatgrass(Elyrnus alaskanus)complex.Genome,46:729-37.
    115.Sun M.1996.Effects of population size,mating system,and evolutionary origin on genetic diversity in Spiranthes sinensis and S.hongkongensis.Conserv Biol,10:785-795.
    116.Tesfaye T,Getachew B,Worede M.1991.Morphological diversity in tetraploid wheat landrace populations from the central highlands of Ethiopia.Hereditas,114:171-176.
    117.Turesson G.1922.The genotypical response of the plant species to the habitat.Hereditas,3:211-350.
    118.Vandemark G J,Ariss J J,Bauchan G A,Larsen R C,Hughes T J.2006.Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms.Euphytica,152:9-16.
    119.Vos P,Hogers R,Bleeker M,Reijans M,van de Lee T,Homes M,Frijters A,Pot J,Peleman J,Kuiper M,Zabeau M.1995.AFLP:Anewtechnique forDNAfingerprinting.Nucl Acids Res,23:4407-4414.
    120.Wachira F N,Waugh R,Hachett C A,Powell W.1995.Detection of genetic diversity in tea (Camellia sinesis)using RAPD markers.Genome,38:201-210.
    121.Wang S L,Qi L L,Cheng P D,Liu D J,Friebe B,Gill BS.1999.Molecular cytogenetic identification of wheat Elyrnus tsukushiensis introgression lines.Euphytica,107:207-224.
    122.Williams J G K,Kubelik A R,Livak K J,Rafalski J A,Tingey S V.1990.DNA polymorphisrns amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res,18:6531-6535.
    123.Wilson B L,Kitzmiller J,Rolle W,Hipkins V D.2001.Isozyme variation and its environmental correlates in Elymus glaucus from the Califomia Florisitc Province.Can J Bot,79:139-153.
    124.Wolfe A D,Liston A.1998.Contributions of PCR-based methods to plant systematics and evolutionary biology.In:Soltis D E,Soltis P S,Doyle J J(ed.)Plant Molecular Systematics Ⅱ.Chapman and Hall,New York.pp 43-86.
    125.Wright S.1965.The interpretation of population structure by F-statistics with special regard to systems of mating.Evolution,19:395-420.
    126.Xu D H,Ban T.2004.Phylogenetic and evolutionary relationships between Elymus humidus and other Elymus species based on sequencing of non-coding regions of cpDNA and AFLP of nuclear DNA.Theor Appl Genet,108:1443-1448.
    127.Yap I,Nelson R J.1996.WinBoot:a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms.IRRI Discussion Papers Series 14.International Rice research Institute,Manila,Philippines.
    128.Yeh F C,Yang R C,Boyle T.1997.POPGENE,the User friendly shareware for population genetic analysis.Molecular Biology and Biotechnology Center,University of Alberta,Edmonton,Canada.
    129.Zeng B,Zhang X Q,Lan Y,Yang W Y.2008.Evaluation of genetic diversity and relationships in orchardgrass(Dactylis glomerata L.)germplasm based on SRAP markers.Can J Plant Sci,88:53-60.
    130.Zhang X Q,Salomom B,von Bothmer R,Diaz O.2000.Patterns and levels of genetic differentiation in North American populations of the Alaskan wheatgrass complex.Hereditas,133:123-132.
    131.Zhang X Q,Salomom B,von Bothmer R.2002.Application of random amplified polymorphic DNA markers to evaluate intraspecific genetic variation in the Elyraus alaskanus complex (Poaceae).Genet Resour Crop Evol,49:397-407.
    132.Zhao N X,Gao Y B,Wang J L,Ren A Z.2008.Population structure and genetic diversity of Stipa grandis P.Smim,a dominant species in the typical steppe of northern China.Biochem Syst Ecol,36:1-10.
    133.Zietkiewicz E,Rafalski A,Labuda D.1994.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics,20:176-183.
    134.蔡联炳.1997.中国鹅观草属的分类研究.植物分类学报,35(2):148-177.
    135.陈灵芝.1993.中国的生物多样性.北京:科学出版社.pp 99-113.
    136.陈默君,贾慎修.2002.中国饲用植物.北京:中国农业出版社.pp 121-122.
    137.陈佩度.2001.作物育种生物技术.北京:中国农业出版社.pp 124-125.
    138.道来提,麦耒.1988.新疆老芒麦的驯化.中国草地,(4):48-50.
    139.董昭林,卞志高,邓红华.2003.川草1号老芒麦高产栽培技术.四川草原,(1):29-29.
    140.方宣钧,吴为人,唐纪良.2001.作物DNA标记辅助育种.北京:科学出版社.pp 1-9.
    141.何文兴,徐莺,唐琳,等.2005.川草2号老芒麦(Elymu sibiricus L.)atpA基因的克隆及其调控表达.生物化学与生物物理进展,32(1):67-64.
    142.贾继增.1996.分子标记种质资源鉴定和分子标记育种.中国农业科学,29(4):1-10.
    143.贾慎修,史德宽.1997.中国饲用植物志第六卷.北京:中国农业出版社.pp 91-97.
    144.蒋尤泉.2007.中国作物及其近缘野生植物-饲用及绿肥作物卷.北京:中国农业出版社.pp 135-140.
    145.解新明,云锦凤.2000.植物遗传多样性及其检测方法.中国草地,22(6):51-59.
    146.金燕,卢宝荣.2003.遗传多样性的取样策略.生物多样性,11(2):155-161.
    147.李永祥,李斯深,李立会,等.2005.披碱草属12个物种遗传多样性的ISSR和SSR比较分析.中国农业科学,38(8):1522-1527.
    148.李造哲,马青枝,云锦凤,等.2001.披碱草和野大麦及其杂种F_1与BC1过氧化物酶同工酶分析.草业学报,10(3):38-41.
    149.李造哲,马青枝,云锦凤,等.加拿大披碱草和老芒麦及其杂种F_1同工酶分析.中国草地,2000,(5):28-31.
    150.卢宝荣.1995.小麦族遗传资源的多样性及其保护.生物多样性,3(2):63-68.
    151.卢纹岱.2002.SPSS for Windows统计分析(第2版).北京:电子工业出版社.pp 311-337.
    152.马啸,周永红,于海清,张海琴.2006.野生垂穗披碱草种质的醇溶蛋白遗传多样性分析.遗传 28(6):699-706.
    153.盘朝邦,胡启元,.川西北高原栽培牧草育种研究Ⅱ、老芒麦产草量随生长年限下降的品系间差异及育种改良可行性探讨.四川草原,1987,(4):49-53.
    154.盘朝邦,刘国藩.1988.川西北高原栽培牧草育种研究Ⅲ、老芒麦单株选择系统的性状变异及其育种效果.四川草原,(1):28-32.
    155.钱迎倩,马克平.1994.生物多样性研究的原理与方法.北京:中国科学技术出版社.
    156.王比德.1986.野生老芒麦的引种驯化.中国草地,6:35-37.
    157.王元富,盘朝邦,杨智永.1994.川草1号老芒麦选育报告.四川草原,(4):7-13.
    158.王元富,杨智永,盘朝邦.1995.川草2号老芒麦选育报告.四川草原,(1):19-24.
    159.肖文一.1982.老芒麦的生育期及其产量和品质的调查研究.中国草地,2:50-53
    160.严学兵.2005.披碱草属植物遗传多样性研究.中国农业大学博士学位论文.
    161.杨瑞武,周永红,郑有良.2000.披碱草属的醇溶蛋白研究.四川农业大学学报,18(1):11-14.
    162.杨瑞武,周永红,郑有良.2003.小麦族披碱草属、鹅观草属和猬草属模式种的C带研究.云南植物研究,25(1):71-77.
    163.袁庆华,张吉宇,张文淑,苏加楷.2003.披碱草和老芒麦野生居群生物多样性研究.草业学 报,12(5):44-49.
    164.云锦凤,王照兰,杜建才,等.1997.加拿大披碱草与老芒麦种间杂交及F_1代细胞学分析.中国草地,(1):32-35.
    165.张大勇,姜新华.1999.遗传多样性与濒危植物保护生物学研究进展.生物多样性,7(1):31-37.
    166.张学勇,杨欣明,董玉琛.1995.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学 28(4):25-32.
    167.张镱锂,李炳元,郑度.2002.论青藏高原范围与面积.地理研究,21(1):1-8.
    168.张众,王比德,吴渠来,冷丽娇.1995.农牧老芒麦的选育推广及其栽培利用.中国草地,(4):29-32.
    169.周荣华,董玉琛,李立会,等.1993.中国多年生小麦野生近缘植物的抗病性鉴定.作物品种资源,(3):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700