FGFR3对骨髓间充质干细胞成骨分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     骨骼的形成和重建是一个由多种生长因子、细胞外基质以及细胞之间相互作用的生理发育过程。其主要通过软骨内成骨和膜内成骨两种方式来完成。在软骨内成骨过程中,首先是间充质干细胞的密集,然后依次分化为骨祖细胞和软骨细胞,形成软骨样骨胚,破骨细胞侵入吞噬,血管延伸进入,最后被含有成骨细胞的骨组织取代;但在膜内成骨时,间充质干细胞则经骨祖细胞直接分化为成骨细胞,没有经过软骨形成阶段而直接形成骨。目前普遍认为骨形成和重建实际上是软骨内成骨和膜内成骨这两种方式相互协调、相互依赖、相互辅助的过程。在此过程中,有许多因子参与并调控着骨细胞的增殖、分化与迁移。
     近年来的研究表明,成纤维细胞生长因子受体3(Fibroblast growth factor receptor 3,FGFR3)是骨骼形成和重建过程中的重要调控因子。FGFR3属于酪氨酸激酶受体家族成员,FGFR3基因突变导致软骨发育不全或低下、骨关节病及易骨折等骨骼疾病。目前有关FGFR3对软骨细胞的调节、影响的研究,已有较多报道,如FGFR3基因敲除小鼠骨骼过度增长、生长区内软骨细胞的增殖活性增高,提示FGFR3抑制软骨细胞增殖和分化。但其对成骨细胞的形成,以及在成骨细胞的分化与增殖过程中的作用,尚有待进一步阐明。Chen等人在研究中发现FGFR3功能增强小鼠颅缝提前钙化、膝关节茜素红染色显示骨领增加、成骨细胞分化相关基因骨桥蛋白(osteopontin,OP)、骨钙素(osteocalcin,OC)与骨连素(osteonectin,ON)在长骨骨小梁处表达增强,提示FGFR3参与成骨细胞的分化。最近Valverde-Franco等人在研究中发现FGFR3基因敲除小鼠的骨皮质变薄,比正常小鼠更易于骨折,且骨髓间充质干细胞(Mesenchymal stem cells,MSCs)体外成骨能力下降。针对FGFR3相对特异性配体FGF2,FGF9,FGF18的研究亦发现,FGF9或FGF18基因敲除小鼠胚胎发育中期出现钙化延迟;FGF2基因敲除小鼠成年后可出现小梁骨量的下降,体外分离培养其MSCs,发现其矿化能力显著下降。提示FGFR3在成骨细胞分化过程中起着重要的调节作用。
     MSCs是骨组织发育形成和重建过程中成骨细胞分化的主要来源,它们首先分化为成骨祖细胞,再渐次分化为前成骨细胞与成骨细胞。通过干预FGFR3探讨其对MSCs成骨分化的影响,明确FGFR3在骨形成和重建过程中作用,有望为临床通过干预FGFR3治疗相关疾病提供理论基础。因此,本研究在成功获得pAdE-FGFR3、pAd-DNR3(Dominant-negative,DN)重组腺病毒载体和FGFR3 RNAi载体的基础上,将pAdE-FGFR3、pAd-DNR3与FGFR3 RNAi分别转染入MSCs,从正反两方面观察FGFR3对成骨分化标志基因CbfaⅠ与CollagenⅠ的影响;应用FGFR3功能增强型小鼠模型,分离培养FGFR3功能增强型小鼠MSCs,观察其体外成骨分化能力;并将MSCs复合DBM诱导培养后移植裸鼠皮下,观察FGFR3功能增强对MSCs体内成骨分化的影响。
     研究方法与结果
     本研究采用过表达、显性负调节以及RNAi干扰技术干预FGFR3的表达,从正反两方面观察其对MSCs成骨分化标志基因CbfaⅠ与CollagenⅠ的表达影响。同时利用FGFR3功能增强型小鼠模型,研究FGFR3功能增强对MSCs的体内和体外成骨分化能力的影响,探讨FGFR3在MSCs成骨分化中的作用,为阐明FGFR3在成骨细胞分化过程中的作用以及应用FGFR3治疗骨骼疾病打下基础。主要结果如下:
     1.成功构建并包装了pAdE-FGFR3与pAd-DNR3重组腺病毒表达载体。
     通过酶切与PCR方法分别获取FGFR3 cDNA与显性负调节FGFR3 cDNA,测序后将其亚克隆至穿梭质粒pAdTrack-CMV的多克隆位点,重组后进行酶切鉴定。PmeⅠ线性化并纯化后,将其转化入感受态细胞BJ5183,扩增后提取质粒。采用PacⅠ酶切进行鉴定并测序鉴定重组腺病毒质粒构建正确。将测序正确的重组腺病毒质粒经PacⅠ线性化、纯化,在脂质体Lipofectamin 2000的介导下,转染HEK293细胞进行包装。并分别将pAdE-FGFR3与pAdE-FGFR3D腺病毒成功感染HT29与HCT116细胞,鉴定二者的表达。结果表明:本实验成功构建并包装了pAdE-FGFR3与pAd-DNR3重组腺病毒表达载体。
     2.观察到FGFR3可促进MSCs成骨分化标志基因CbfaⅠ与CollagenⅠ的表达分别将重组腺病毒pAdE-FGFR3、pAd-DNR3与FGFR3 RNAi载体转染入骨髓间充质干细胞MSCs。荧光显微镜下可见转染腺病毒后的MSCs胞内呈现报告基因产物的绿色荧光;半定量RT-PCR检测FGFR3 mRNA的表达结果显示:FGFR3 RNAi组细胞无FGFR3 mRNA的表达;pAdE-FGFR3与pAd-DNR3组MSCs表达丰度是对照组3倍。
     成骨分化标志基因CbfaⅠ与CollagenⅠmRNA的检测结果表明:pAdE-FGFR3组MSCs CbfaⅠ与CollagenⅠmRNA的表达水平均比其他各组高(P<0.05);Western blot分析结果同样显示转染pAdE-FGFR3组CbfaⅠ与CollagenⅠ蛋白的表达水平显著高于其他各组(P<0.05)。FGFR3 RNAi组RT-PCR与免疫荧光检测以及Western blot分析均未见CollagenⅠmRNA与蛋白的表达;pAd-DNR3组RT-PCR与Western blot检测虽可检测到CbfaⅠ与CollagenⅠmRNA和蛋白的表达,但都比对照组低。从正反两方面观察到FGFR3不仅可显著提高MSCs CbfaⅠ与CollagenⅠ的转录水平,而且可显著提高MSCs CbfaⅠ与CollagenⅠ的翻译水平。
     3.FGFR3功能增强可促进MSCs的体内、体外成骨分化能力
     分离培养FGFR3功能增强小鼠的MSCs,扩增后进行生长曲线描绘。生长曲线显示FGFR3功能增强小鼠MSCs潜伏期较同窝野生鼠MSCs稍长。在成骨诱导实验检测中,钙钴法染色与ALP表达检测均表明FGFR3功能增强小鼠MSCs ALP的表达与活性均较对照组高(P<0.05);茜素红矿化结节染色结果显示相同的趋势:FGFR3功能增强鼠MSCs的矿化结节较对照组多而大。RT-PCR结果均显示:在诱导后第7d,FGFR3功能增强小鼠MSCs CbfaⅠmRNA的表达与对照组无显著性差异(P>0.05):在第14d,FGFR3功能增强小鼠MSCs CbfaⅠmRNA的表达显著高于对照组(P<0.05)。
     为进一步观察FGFR3功能增强对MSCs成骨的影响,本实验将扩增后的FGFR3功能增强小鼠MSCs与脱钙骨基质DBM复合培养后,移植裸鼠皮下,观察其体内成骨能力。X摄片结果显示:FGFR3功能增强组细胞复合物形成的新生骨组织比对照组稍大,切片HE染色结果亦表明FGFR3功能增强组形成的新生骨组织较多,甚至可见典型的膜内成骨现象。
     本研究成功构建了pAdE-FGFR3、pAd-DNR3重组腺病毒质粒,并将他们转染入MSCs,使之高表达FGFR3或DNFGFR3。首次从正反两方面观察了干预FGFR3对MSCs成骨分化的影响,同时利用FGFR3功能增强型小鼠模型,研究FGFR3功能增强对MSCs的体内和体外成骨分化的影响,探讨FGFR3在MSCs成骨分化中的作用。实验结果提示FGFR3过表达和功能增强可能通过提高MSCs成骨分化标志基因CbfaⅠ与(或)CollagenⅠ的表达并促进MSCs的成骨分化,为阐明FGFR3在成骨细胞分化过程中的作用以及应用FGFR3治疗骨骼疾病提供了实验资料。
Backgound and Objective
     The skeleton is generated by two distinct mechanisms,intramembranous and endochondral ossification;either pathway is modulated by the secreting signaling molecules including FGF,TGF-βand IGF,and cell and extracellular matrix~([1]).In endochondral ossification,mesenchymal stem cells differentiate into chondrocytes,and then convert to cartilage,invaded by blood vessels and osteoclasts.Osteoblasts remodel the newly generated cartilage thus forming bone tissue.This mechanism accounts for the formation of the vertebrate and long bones~([2]).During intramembranous ossification, mesenchymal stem cells convert directly into bone-forming osteoblasts,which secrete bone matrix proteins.This pathway is responsible for the generation of skull flat bones~([3,4])
     These two pathways often interact during the bone development.For example,in the process of long bone development,the growth mainly consists of a series of chondrocytes proliferation,differentiation and apoptosis,while the thickness of cortical bone depends on intramembranous ossification.On the contrary,cranial growth mainly depends on intramembranous ossification.
     Fibroblast growth factor receptor 3(FGFR3) is a member of transmembrane tyrosine kinase receptors family(FGFR1-5),which play an important role in skeletal development. Evidence from human and mouse genetics indicates the role of FGFR3 in bone development.Mutant of the transmembrane domain of FGFR3 results in heritable skeletal dysplasias in human,such as dwarfing chondrodysplasias(hypochondroplasia, achondroplasia,severe achondroplasia with developmental delay and acanthosis nigricans—also known as 'SADDAN'—and thanatophoric dysplasia).
     Based on mutant models,Several reports confirmed that FGFR3 has negative effects on signal transduction regulating growth,differentiation,migration and apoptosis of chondrocyte.Mouse lacking FGFR3(FGFR3-/-) showed the skeletal overgrowth accompanied by increased chondrocyte proliferation,and hypertrophic chondrocyte zone~([5-7]).These results suggest that FGFR3 regulates bone growth by inhibiting the growth of chondrocytes.In 2004,investigations demonstrated FGFR3 gene disruption in adult mice resulted in osteopenic due to the reduction of cortical bone thickness and defective trabecular bone mineralization.FGFR3-/- mice MSCs expressed the markers of differentiated osteoblasts but fewer mineralized nodules developed.Studies on FGFR3 Gly369Cys mutant mouse model revealed that genes relating to osteoblast differentiation, such as osteopontin,osteonectin,and osteocalcin are upregulated,moreover,alizarin Red-S staining exhibited an advanced bone collar in mutant mice.These findings suggest the important role of FGFR3 in the process of osteoblasts differentiation~([8]).Other researches from ligand(FGF2,FGF9,and FGF18) knockout mice demonstrated that FGFR3 participates in osteoblast differentiation.Mice lacking FGF9 or FGF18 showed the delayed ossification ~([9-12]).FGF2 disruption led to the loss of trabecular bone volume and MSCs defective mineralization.~([13]).Inactivating FGFR1 in osteo-chondro-progenitor cells increased the proliferation,and delayed osteoblast differentiation,but accelerated the differentiation of osteoblasts,accompanied with an increased expression of FGFR3~([14]).All these findings manifest that FGFR3 signaling impacts on osteoblasts differentiation. However,the function of FGFR3 on osteoblast differentiation remains unclear.
     Mesenchymal stem cells(MSCs),deriving from mesoderm,have the potential of differentiation into osteoblasts,chondrocytes etc.During bone development and the process of bone repair,MSCs differentiate into precursor,pre-osteoblast and osteoblast by turns.At present,MSCs have been regarded as the main source of ostoblast cells.To explore the role of FGFR3 in differentiation of MSCs to osteoblast will better understand the role of FGFR3 in bone development and remodeling and clarify the function of FGFR3 on osteoblast differentiation.Therefore,adenovirus pAdE-FGFR3 and pAd-DNR3(Dominant-negative FGFR3)were constructed in this study and their expressions were verified using RT-PCR and Western blotting analysis.The transcriptional and translational level of the osteoblast marker genes CbfaⅠand CollagenⅠwere detected after pAdE-FGFR3,pAd-DNR3 and FGFR3RNAi transfected into MSCs.MSCs from gain of function FGFR3 mutant mice were separated and cultured,and the differentiation capability of MSCs to osteoblast was investigated in vitro and in vivo.
     Methods and Results
     FGFR3 and DNR3 recombinant adenovirus were constructed and then transferred into MSCs.Using the FGFR3 Gly369Cys mutant mouse model,the primary MSCs were cultured and differentiate into osteoblast in vivo and in vitro.The main results are as follows.
     1.FGFR3 and DNR3 recombinant adenovirus were constructed using the pAdEasy system.
     FGFR3 and DNR3 were cleaved by restrictive enzyme and inserted into pAdtrack-CMV shuttle vector.Recombinant vector was constructed and transferred into E. coli BJ5183.HEK 293 cell were transfected to pack viral particles.Viral particles infected HT-29/HCT 116 cell lines.The expressions of FGFR3 and DNR3 were analyzed by semi-quantify RT-PCR and western blotting.The titer of virus was detected by TCID50. GFP report gene showed the titer of virus was 3×10~9 pfu/ml and 3.8×10~9 pfu/ml, respectively.
     2.Effect of FGFR3 on the transcriptional and translational level of CbfaⅠand CollagenⅠin MSCs.
     FGFR3,DNR3 adenovirus and FGFR3RNAi were transfected into MSCs,the expression of FGFR3 was determined by RT-PCR.The transcriptional and translational level of the osteoblast marker genes,collagenⅠand CbfaⅠ,were detected using semiquantify RT-PCR,immunofluorescent and western blot.The overexpression of FGFR3 obviously increased the transcriptional and translational level of collagenⅠand CbfaⅠin MSCs.However,DNR3 adenovirus and FGFR3 RNAi significantly decreased the transcriptional and translational level of collagenⅠand CbfaⅠin MSCs.These findings indicated that FGFR3 can upregulate the expression of Cbfa 1 and collagenⅠin MSCs.
     3.The gain of function mutation of FGFR3 accelerated the osteoblast differentiation of MSCs in vitro and in vivo.
     Mutant mice MSCs were isolated and cultured,the 3th passage(passage 3) cell growth curve was drawed.Compared with the control MSCs,the latency of mutant MSCs was longer,suggesting that mutant cells grew more slowly.Cells with FGFR3 mutation cultured in differentiation medium for 7,14 and 21 days stained more intensely for ALP and contained more alizarin Red-S positive mineralized nodules.Semi-quantitative RT-PCR analysis showed CbfaⅠexpressed at a similar level at day 7(P>0.05),but at a remarkable higher level at day 14(P<0.05).
     Mutant MSCs combined with DBM were implanted into the back subcutaneouly of nude mice.After 8 weeks,X-ray images showed that the formation of bone,histology examination manifested trabecular bone formation.These results indicate that gain of function mutation of FGFR3 accelerated the differentiation of MSCs to osteoblast in vivo.
     Conclusion
     1.FGFR3 and DNFGFR3 recombinant adenovirus were prepared and could efficiently infect cells.
     2.FGFR3 and DNFGFR3 recombinant adenovirus and FGFR3 RNAi were successfully transferred into MSCs
     3.The overexpression of FGFR3 in MSCs upregulated the transcriptional and translational level of the osteoblast marker genes,collagenⅠand CbfaⅠ.
     4.The gain of function mutation of FGFR3 accelerated the differentiation of MSCs to osteoblast in vitro and in vivo.
     This study provides a critical data to clarify the role of FGFR3 signaling in osteoblast differentiation and lay an experimental foundation for gene therapy.
引文
1. Hartmann C, Tabin CJ Dual roles of Wnt signaling during chondrogenesis in the chicken limb. .Development, 2000. 127: p. 3141-3159.
    2. Olsen BR, Reginato AM, Wang W. Bone development. Ann. Rev. Cell. Dev. Biol., 2000: p. 16: 191-220.
    3. Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn, 2000. 219(4): p. 472-85.
    4. Tucker AS, Al Khamis A, Ferguson CA, et al. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development. Development, 1999. 126(2): p. 221-8.
    5. Chen L, Adar R, Yang X, et al.Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest, 1999. 104(11): p. 1517-25.
    6. Li C, Chen L.Iwata T, et al. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet, 1999. 8(1): p. 35-44.
    7. Colvin JS, Bohne BA,Harding GW,et al.Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet, 1996. 12(4): p. 390-7.
    8. Valverde-Franco G., Liu H,Davidson D, et al. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice, in Hum Mol Genet. 2004. p. 271-84.
    9. Liu S, Guo R, Tu Q, et al. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem, 2002. 277(5): p. 3686-97.
    10. Ohbayashi N, Shibayama M, Kurotaki Y, et al.FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev, 2002. 16(7): p. 870-9.
    11. Liu Z, Xu J, Colvin JS, et al.Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002. 16(7): p. 859-69.
    12. Colvin JS, Feldman B, Nadeau JH,et al. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev. Dyn, 1999. 216: p. 72-88.
    13. Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest, 2000. 105(8): p. 1085-93.
    14. Jacob AL, Smith C, Partanen J, et al.Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol, 2006. 296(2): p. 315-28.
    15. Suh JY, Kim, YS,Park JW, et al. Expression of fibroblast growth factor receptor 3 by fibroblast growth factor 2 in cultured chick embryo chondrocytes. Cell Biol Int, 2005. 29(3): p. 203-12.
    16. Smith LB, Dally MR, Sainz RD, et al.Enhanced skeletal growth of sheep heterozygous for an inactivated fibroblast growth factor receptor 3. J Anim Sci, 2006. 84(11): p. 2942-9.
    17. Valverde-Franco G., Binette JS, Li W,et al. Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet, 2006. 15(11): p. 1783-92.
    18. Amizuka N, Davidson D, Liu H, et al.Signalling by fibroblast growth factor receptor 3 and parathyroid hormone-related peptide coordinate cartilage and bone development. Bone, 2004. 34(1): p. 13-25.
    19. Webster MK, Donoghue DJ.Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. Embo J, 1996. 15(3): p. 520-7.
    20. Montero J A, Ganan Y, Macias D, et al.Role of FGFs in the control of programmed cell death during limb development. Development, 2001. 128(11): p. 2075-84.
    21. Ornitz DM, Marie PJ.FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 2002. 16(12): p. 1446-65.
    22. Cohen MM Jr. Achondroplasia, hypochondroplasia and thanatophoric dysplasia: clinically related skeletal dysplasias that are also related at the molecular level. Int J Oral Maxillofac Surg, 1998. 27(6): p. 451-5.
    23. Deng C, Wynshaw-Boris A, Zhou F, et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell, 1996. 84(6): p. 911-21.
    24. Fredenstein A. Precursor cells of mechanocyte. Int Rev Cytol. 1976. 47: p. 327-359.
    25. Darwin J. Marrow stromal cell as stem cell for nohematopoietic tissues. Science, 1997. 76(4): p. 71-74.
    26. Naski MC, Colvin JS, Coffin JD, et al. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development, 1998. 125(24): p. 4977-88.
    27. Ornitz DM, Leder P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J Biol Chem, 1992. 267(23): p. 16305-16311.
    28. Xiao L, Naganawa T, Obugunde E, et al. Statl controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem, 2004. 279(26): p. 27743-52.
    29. Ballay A, Levrero M, Buendia MA,et al. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses. EMBO J., 1985. 4(13B): p. 3861-3865.
    30. Yeh P, Perricaudet M. Advances in adenoviral vectors:from genetic engineering to their biology.. .FASEB 1997. 11(8): p. 615-623.
    31. Walther W, Stein U.Viral vector for gene transfer: a review of their use in the treatment of human diseases. Drugs, 2000. 60(2): p. 249-271.
    32. Hitt MM, Addison CL, Graham FL.Human adenovirus vectors for gene transfer into mammalian cells.. Advances in Pharmacolohy 1997. 40(137-156).
    33. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum.Gene Ther, 1999.10: p. 2451-2459.
    34. Yang Y, Nunes FA, Berencsi K, et al.Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. . Proc Natl Acad Sci USA, 1994. 91: p. 4407-4411.
    35. Paillard F.Circumventing adenovirus immune response to achieve long-term correction of genetic diseases.. Human Gene Therapy, 1998. 9: p. 453-456.
    36. He TC, Zhou S, da Costa LT,et al.A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA, 1998. 95: p. 2509-2514.
    37. Ferguson C, Alpern E, Miclau T,et al. Dose adult fracture healing repair recapitulate embryonic skeketal formation? Mechanisms of Development 1999. 87: p. 57-64.
    38. Wang, Q., et al., Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development, 2001. 128(19): p. 3867-76.
    39. Amizuka N, O.H., Sasaki T., The biological action of parathyroid hormone-related peptide (PTHrP) and fibroblast growth factor receptor 3 (FGFR3) on bone and cartilage. Kaibogaku Zasshi, 2000. 75(5): p. 415-25.
    40. Lee K, Majumdar MK, Buyaner D,et al. Human mesenchymal stem cellsmaintain transgene expression during expansion and diferentiation. MOlecular Therapy, 2001. 3(6): p. 857-866.
    41. Wang Q, Green RP, Zhao G, et al. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development, 2001. 128(19): p. 3867-76.
    42. Nakajima A, Shimizu S, Moriya H, et al. Expression of fibroblast growth factor receptor-3 (FGFR3), signal transducer and activator of transcription-1, and cyclin-dependent kinase inhibitor p21 during endochondral ossification: differential role of FGFR3 in skeletal development and fracture repair. Endocrinology, 2003. 144(10): p. 4659-68.
    43. Pandit SG, Govindraj P, Sasse J, et al. The fibroblast growth factor receptor, FGFR3, forms gradients of intact and degraded protein across the growth plate of developing bovine ribs. Biochem J, 2002. 361(Pt 2): p. 231-41.
    44. Wagner EF, Karsenty G. Genetic control of skeletal development. Curr Opin Genet Dev, 2001. 11(5): p. 527-32.
    45. Tou L, Quibria N, Alexander JM. Regulation of human cbfal gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol Cell Endocnnol, 2001. 183(1-2): p. 71-9.
    46. Komori T, Kishimoto T.Cbfal in bone development. Curt-Opin-Genet-Dev, 1998. 8(4): p. 494.499.
    47. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfal:a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-754.
    48. Komori T, Yagi H, Nomura S, et al.Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest ofosteoblasts. Cell, 1997. 89(5): p. 755-764
    49.Otto F,Thomell AP,Crompton T,et al.Cbfal,a candidate gene for cleidocranial dysplasia syndrome,is essential for osteoblast differentiation and bone development.Cell,1997 89:p.765-771
    50.Piccolo S,Agius E,Leyns L,et al.The head inducer Cerberus is a multifunctional antagonist of Nodal,BMP andWnt signals.Nature,1999.397:p.707-710
    51.Owen TA,Aronow M,Shalhoub V,et al.Progressive development of r at osteoblast phenotype in vitro:Reciprocal relationship in expression of genes associated with osteoblast proliferation and differentiation during formation o f bone ECM.J Cell Physiol,1990.143(3):p.420-430.
    52.Dunn SE,Ehrlich M,Sharp NJ,et al.Dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion,invasion,and metastasis of breast cancer.Cancer Res,1998.58(15):p.3353-61.
    53.Tsai PS,Moenter SM,Postigo HR,et al.Targeted expression of a dominant-negative fibroblast growth factor(FGF) receptor in gonadotropin-releasing hormone(GnRH)neurons reduces FGF responsiveness and the size of GnRH neuronal population.Mol Endocrinol,2005.19(1):p.225-36.
    54.Sunavala-Dossabhoy G,Li Y,Williams B,et al.A dominant negative mutant of TLK1causes chromosome missegregation and aneuploidy in normal breast epithelial cells..BMC Cell Biology,2003.4:p.16.
    55.Gill JC,Tsai PS.Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence.Biol Reprod,2006.74(3):p.463-472.
    56.赵廷宝,范清宇,张殿忠,et al.人脱钙骨基质颗粒的制备及应注意的问题.滨州医学院学报,2001.24(1):p.6-7.
    57.孙明学,卢世璧,王继芳,et al.脱钙骨基质为骨组织工程支架修复骨缺损实验研究.中国医学科学院学报2003.1.
    58.刘杰,许建中,王序全,罗飞.脱钙骨基质支架构建组织工程骨的实验研究.第三军医大学学报 2005.9.
    59.Ornitz,DM.FGF signaling in the developing endochondral skeleton.Cytokine &Growth Factor Reviews,2005.16:p.205-213
    60. Funato N, Ohtani K, Ohyama K, et al.Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol, 2001. 21(21): p. 7416-28.
    61. Jackson RA, Kumarasuriyar A, Nurcombe V, et al.Long-term loading inhibits ERKl/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 2006 209(3): p. 894-904
    62. Urist MR, Strates BS.Bone formation in implants of partially and wholly Demineralized
    1. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 2002. 16(12): p. 1446-65.
    2. Keegan K, Johnson DE, Williams LT, et al. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci USA., 1991. 88(4): p. 1095-1099.
    3. Wuchner C, Hilbert K, Zabel B, et al. Human fibroblast growth factor receptor 3 gene (FGFR3): genomic sequence and primer set information for gene analysis. Hum Genet, 1997. 100(2): p. 215-219.
    4. Perez-Castro AV, W.J., Altherr MR.Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene.. Genomics, 1997. 41(1): p. 10-16.
    5. Perez-Castro AV, Wilson J, Altherr MR. Genomic organization of the mouse fibroblast growth factor receptor 3 (fgfr3)gene. Genomics, 1995. 30(2): p. 157-162.
    6. McEwen DG, Ornitz DM.Regulation of the fibroblast growth factor receptor 3 promoter and intron 1 enhancer by Sp1 family transcription factors. J Biol Chem, 1998. 273(9): p. 5349-5357.
    7. DiGabriele AD, Lax I, Chen DI, et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature, 1998 393(6687): p. 812-817.
    8. Shiang R, Thompson LM, Zhu YZ , et al. Mutations in the transmembrane of Fgfr3 causes t he Most common genetic form of dwarfism , achondroplasia. Cell Growth Differ., 1994. 78(2): p. 335.
    9. Tavormina PL, Rimoin DL, Cohn DH, et al., Another mutation that results in the substitution of unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia typIHum Mol Genet 1995. 4(11): p. 2175-2177.
    10. Shah K, Astley R, Cameron AH., Thanatophoric dwarfism. J Med Genet 1973 10: p. 243 - 252.
    11. Tavormina PL, Bellus GA, Webster MK, et al., A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys 650Met mutation in the fibroblast growth factor receptor 3 gene. Am. J. Hum Genet, 1999. 64(3): p. 722-731.
    12. Patstone G, Pasquale EB, Maher PA. Different members of the fibroblast growth factor receptor family are specific to distinct cell types in the developing chicken embryo. Dev. Biol., 1993. 155: p. 107-123.
    13. Vidrich A, Buzan JM, Ilo C, et al. Fibroblast growth factor receptor-3 is expressed in undifferentiated intestinal epithelial cells during murine crypt morphogenesis. Dev.Dyn, 2004. 230: p. 114-123.
    14. Xiao L. NaganawaT, Obugunde E. Statl controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem, 2004. 279(26): p. 27743-52.
    15. Valverde-Franco G,Liu H,Davidson D, et al. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice, in Hum Mol Genet. 2004. p. 271-84.
    16. Nigel P. Pringle, Wei-Ping Yu,et al. Fgfr3 expression by astrocytes and their precursors: evidence that, astrocytes an oligodendrocytes originate in distinct neuroepithelial domains. Development, 2003. 130: p. 93-100.
    17. Yazaki N, Hosoi Y, Kawabata K, et al.Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR1-FGFR4, in rat brain. J Neuronsci Res, 1994. 37: p. 445-452.
    18. Paeters K, Ornitz D, Werner S, et al. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol, 1993. 155: p. 423-430.
    19. Hartmann C,Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. .Development, 2000.127: p. 3141-3159.
    20. Paeters K, Ornitz D, Werner S, et al. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol., 1993. 155: p. 423-430.
    21. Govindarajan V,Overbeek PA. Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation. Development, 2001. 128: p. 1617-1627.
    22. Wuechner C, Nordqvist AC, Winterpacht A,et al.Developmental expression of splicing variants of fibroblast growth factor receptor3 (FGFR3) in mouse. Int. J. Dev. Biol, 1996. 40: p. 1185-1188.
    23. Kanai M, Rosenberg I, Podolsky DK. Cytokine regulation of fibroblast growth factor receptor 3 IIIb in intestinal epithelial cells. Am. J. Physiol, 1997. 272: p. 6885-6893.
    24. Vidrich A, Buzan JM, Ilo C, et al. Fibroblast growth factor receptor-3 is expressed in undifferentiated intestinal epithelial cells during marine crypt morphogenesis, . Dev. Biol., 2004. 230: p. 114-123.
    25. Powers CJ , M.S., Wellstein A., Fibroblast growth factors , their receptors and signaling. Endoc Relat Cancer 2000. 7: p. 165 -197.
    26. Rousseau F, el Ghouzzi V, Delezoide AL,et al.Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I(TD1). Hum Mol Genet, 1996. 5(4): p. 509-512.
    27. Olsen BR, Reginato AM, Wang W.Bone development. Ann. Rev. Cell. Dev. Biol., 2000: p. 16: 191-220.
    28. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev, 2005. 16(2): p. 205-13.
    29. Deng C, Wynshaw-Boris A, Zhou F, et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell, 1996. 84(6): p. 911-21.
    30. Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest, 1999. 104(11): p. 1517-25.
    31. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, et al.Overexpression of FGFR3, Statl, StatS and p21(Cip 1) correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone, 2004. 34 p. 26-36.
    32. Li C, Chen L.Iwata T, et al. A Lys644Glu substitution in fibroblast growth factor receptor 3(FGFR3 ) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. HumMol Genet 1999. 8: p. 35 -44.
    33. Lievens PM,Liboi E. The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum,. J. Biol. Chem., 2003. 278: p. 17344-17349.
    34. Sahni M, Ambrosetti DC, Mansukhani A, et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev, 1999 13: p. 1361-1366.
    35. Dailey L, Laplantine E, Priore R,et al. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation,. J. Cell Biol., 2003. 161: p. 1053-1066.
    36. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, et al. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. . Bone, 2004. 34: p. 26.
    37. Han EK, Begemann M, Sgambato A,et al. Increased expression of cyclin D1 in a murine mammary epithelial cell line induces p27kip1, inhibits growth, and enhances apoptosis. Cell Growth Differ., 1996. 7: p. 699-710.
    38. de Jong JS, van Diest PJ, Michalides RJ,et al. Concerted overexpression of the genes encoding p21 and cyclin D1 is associated with growth inhibition and differentiation in various carcinomas. Mol. Pathol, 1999. 52: p. 78-83.
    39. Beier F , Lee RJ, Taylor A C,et al. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes,. Proc. Natl. Acad. Sci. U. S. A., 1999. 96: p. 1433-1438.
    40. Beier F, Ali Z,Mok D, et al.TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression,. Mol. Biol. Cell, 2001. 12: p. 3852-3863.
    41. Raucci A, Laplantine E, Mansukhani A,et al. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes,. J. Biol. Chem., 2004. 279: p. 1747-1756.
    42. Koike M,Yamanaka Y,Inoue M,et al.Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDCS cells from apoptosis through phosphatidylinositol 3-kinase and MAPK,. J. Bone Miner. Res., 2003. 18: p. 2043-2051.
    43. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. . Genes Dev 1999 13: p. 2072 - 2086.
    44. Lanske B, Karaplis AC,Lee K,et al. PTHPPTHrP receptor in early development and Indian hedgehog - regulated bone growth. Science 1996. 273 p. 663 - 666.
    45. Kronenberg HM. Developmental regulation of the growth plate.. Nature, 2003. 423: p. 332-336.
    46. Naski MC, Colvin JS, Coffin JD et al.Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. . Development 1998. 125: p. 4977 - 4988.
    47. Chen L, Li C, Qiao W, et al.ASer (365) →Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates IhhPPTHrP signals and causes severe achondroplasia. Hum Mol Genet, 2001. 10: p. 457 - 465.
    48. Murakami S ,Balmes G, McKinney S, et al . Constitutive activation ofMEKl in chondrocytes causes Statl - independent achondroplasia - likedwarfism and rescues the FGFR3 - deficient mouse phenotype.. Genes Dev, 2004. 18: p. 290 - 305.
    49. Liu Z,Xu J,Colvin JS, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002. 16(7): p. 859-69.
    50. Jacob AL, Smith C, Partanen J, et al.Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol, 2006. 296(2): p. 315-28.
    51. Funato N, Ohtani K, Ohyama K, et al. Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol, 2001. 21(21): p. 7416-28.
    52. Coumoul X., Deng CX. Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res C Embryo Today, 2003. 69(4): p. 286-304.
    53. TaiwoYO., Approaches indeveloping new anabolic therapies. Intemational Conference on Osteoporosis and Bone Research , Beijing, 2003. Beijing. Chinese Society of Osteoporosis and Bone Mineral Research Chinese Medical Association; International Chinese Hard Tissue Society .. : p. 10-11.
    54.罗美瑜.我国出生缺陷的现状及干预.海峡预防医学杂志,2006.12(5):p.1-2.
    55. Muenke M,Schell U.Fibroblast grow th facto r recepto rmutations in human skeletal disorders. Trends Genet, 1995. 11: p. 308-313
    56. Mulvihill JJ. Craniofacial syndromes: no such th ing as a single gene disease. Nat Genet, 1995. 9: p. 101-103.
    57. Rousseau F, Bonaventure J , L egeai-Mallet L, et al. Mutations in the gene encoding fibroblast grow th facto r receptor-3 in achondroplasia. Nature, 1994. 371: p. 252-254.
    58. Kat sumata N , Mikaml S.Analysis of t he FGFR3 Gene in J apanese Patient s Wit h Achondroplasia and Hypochondroplasia. Endocrine Journal, 2000. 47(Suppl): p. 121.
    59. Ramaswamj U , Hindmarsh PC , Brook CG Growt h hormone therapy in hypochondroplasia. Acta Poediatr Suppl, 1999. 88(428): p. 116.
    60. Perez-Castro AV, Wilson J, Altherr MR.Genomic organization of the human fibroblast growt h factor receptor 3( FGFR3) gene and comparative sequence analysis with the mot t se Fgfr3 gene. Genomics, 1997. 41: p. 10.
    61. Segev O, Chumakov I, Nevo I, et al. Rest rained chondrocyte proliferation and mat uration wit h abnormal growt h plate vascularization and ossification in human FGFR3( G380R) transgenic mice Hum Mol Genet, 2000. 9: p. 249.
    62. Bellus GA, Hefferon TW, Ortiz de Luna RI, et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet, 1995 56(2): p. 368-73.
    63. Aviezer D, Golembo M, Yayon A.Fibroblast growth factor receptor-3 as a therapeutic target for achondroplasia-genetic limbed dwarfism. Current Drug Targets, 2003. 4(353-365).
    64. Bonaventure J, Rousseau F, Legeai-Mallet L,et al. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia and thanatophoric dwarfism.Am J M ed Genet, 1996. 63(1): p. 148-154.
    65. Rousseau F, Saugier P, LeMerrer M, et al.Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type 1 (TDl)..Nat Genet. 1995. 10(1): p. 148-154.
    66. Ballinger MD, Shyamala V, Forrest LD,et al. Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotechnol, 1999. 17(12): p. 1199-1204.
    67. Colvin JS,Bohne BA,Harding Get al., Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet, 1996. 12(4): p. 390-7.
    68. Eswarakumar VP, Schlessinger J.Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A., 2007. 104(10): p. 3937-42.
    69.李平生,老年人骨质疏松症.人民军医,2004.47(7):p.419-421.
    70.黄公怡,骨质疏松症.中国骨肿瘤骨病,2003.2(4):p.197-200.
    71.Ralston SH.Osteoporosis:science,medicine,and the future.BMJ,1997.315:p.469-472.
    72.Rodan SB,W.G.,Yoon K,et al.Oppossing effect of fibroblast growth factor and pertussis toxin on alkaline phosphatase,osteopontin,osteocalcin,type collagen mRNA levels ROS 17/2 cells.J Biol Chem,1998.264:p.19934-19941.
    73.范宏斌,王全平,蒋尔鹏.,原发性骨质疏松症患者中轴骨IL—6,bFGF的免疫组化.中国矫形外科杂志,2001.8(4):p.363-365.
    74.Montero A,Okada Y,Tomita M,et al.Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation.J Clin Invest,2000.105(8):p.1085-93.
    75.Amizuka N,Davidson D,Liu H,et al.Signalling by fibroblast growth factor receptor 3and parathyroid hormone-related peptide coordinate cartilage and bone development.Bone,2004.34(1):p.13-25.
    76.Rundle CH,Miyakoshi N,Ramirez E,et al.Expression of the Fibroblast Growth Factor Receptor Genes in Fracture Repair.Clin Orthop Rel Res,2002.403:p.253-263.
    77.Nakajima A,Shimizu S,Moriya H,et al.Expression of fibroblast growth factor receptor-3(FGFR3),signal transducer and activator of transcription-1,and cyclin-dependent kinase inhibitor p21 during endochondral ossification:differential role of FGFR3 in skeletal evelopment and fracture repair.Endocrinology,2003.144(10):p.:4659-4668.
    78.Yah G,Ziff E B.NGF regulates the PC 12 cell cycle machinery through specific inhibition of the Cdk kinases and induction of cyclin D1.J.Neurosci.,1995.15:p.6200-6212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700