人工模拟不同低氧训练对大鼠心肌线粒体呼吸链酶复合物活性及自由基代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的高原训练利用高原缺氧和运动双重刺激,使运动员产生激烈的应激反应,以调动体内的机能潜力,提高运动能力。随着高原训练研究的发展,高原训练的基础理论研究不断完善;训练方法不断改进,科学化程度不断提高,从而逐步建立了一些新的训练手段及模拟训练方法。本实验利用低压氧舱设备模拟不同的低氧训练方法,建立动物训练模型,运用生理学和生物化学理论和方法,对大鼠心肌线粒体呼吸链酶活性及自由基代谢相关指标进行统计分析,探讨不同低氧训练模式对线粒体呼吸链酶活性及自由基代谢相关指标的影响,希望能为广大教练员和运动员在选择低氧训练模式时提供相关理论依据。
     实验方法:健康雄性大鼠40只,体重120±20g,所有大鼠在适应性饲养16d后,按要求随机分成低住低练组(LoLo 8只),高住高练组(HiHi 8只),高住低训组(HiLo 8只),低住高练组(LoHi 8只)和高住高练低训组(HiHiLo 8只)。根据慢性运动性疲劳动物训练模型,实验动物进行递增负荷的跑台训练,每天训练1次,每周6天,一共5周。坡度为零。在训练过程中,低氧训练第一周速度为20m/min、第二、三、四周速度为25m/min,五周速度为30m/min,常氧训练第一周速度为25m/min,第二、三、四周速度为30m/min,第五周速度为35m/min,训练时间都从30min递增到60min。训练5周后,休息两天,然后所有实验大鼠一次性跑台运动至力竭后即刻断头处死,分别测定各组大鼠心脏重量指数、心肌线粒体呼吸链酶复合物Ⅰ-Ⅳ活性和心肌线粒体SOD活性及MDA含量。
     实验结果:
     ①至实验结束时,各低氧组与对照组相比,各组大鼠体重都呈明显增长趋势,常氧训练组、低住高练组以及高住高练组大鼠体重增长相对较快,略高于高住高练低训组和高住低训组,但各组间大鼠体重变化不具有统计学意义(P>0.05)。
     ②与常氧训练组比较,5周实验结束时各低氧训练组大鼠心脏重量指数都无显著性差异(P>0.05);HiHiLo组心指数较对照组略有提高但不具有统计学意义(P>0.05)。
     ③与常氧训练组比较, HiHiLo和HiHi组力竭时间较对照组略有提高但不具有统计学意义(P>0.05);LoHi和HiLo组力竭时间比对照组稍短(P>0.05)。
     ④与常氧训练组比较,HiHi组大鼠跑台至力竭后心肌线粒体SOD活性虽有升高但不具有统计学意义(P>0.05),而MDA含量则显著性降低(P<0.05);HiLo组线粒体SOD活性有一定的升高,但没有显著性差异(P>0.05),而MDA含量则明显低于LoLo组(P<0.05);LoHi组线粒体SOD活性、MDA含量均低于对照组,但均无显著性差异(P﹥0.05); HiHiLo组SOD活性有非常显著性升高(P<0.01);而MDA含量则明显低于LoLo组(P<0.05)。
     ⑤与LoLo组比较,在力竭运动后即刻,HiHi组大鼠心肌线粒体呼吸链酶CⅠ、CⅡ活性略有升高,但无统计学意义(P﹥0.05),CⅢ活性显著性降低(P<0.05); CⅣ活性显著性升高(P﹤0.05);HiLo组CⅠ、CⅣ活性比LoLo组低,但无差异性显著(P﹥0.05),CⅡ、CⅢ活性略有升高,但无统计学意义(P﹥0.05); LoHi组CⅠ、CⅡ活性都有升高,但无统计学意义(P﹥0.05); CⅢ、CⅣ活性均比LoLo组低,且CⅢ活性具有显著性差异(P﹤0.05); HiHiLo组CⅠ活性有极显著性提高(P﹤0.001),CⅡ活性也显著性提高(P﹤0. 01),CⅢ活性显著性降低(P﹤0.05), CⅣ活性差异达到了极显著性水平(P﹤0.001)。
     结论:
     ①不同低氧训练对大鼠体重增长没有显著性影响。
     ②不同低氧训练对大鼠心脏重量指数没有显著影响;但HiHiLo模式对心指数的提高具有积极性意义。
     ③不同低氧训练对大鼠一次性跑台运动至力竭的时间没有显著影响;但HiHi、HiHiLo模式对大鼠耐力性提高具有积极意义。
     ④不同低氧训练在一定程度上可以提高大鼠心脏线粒体SOD活性、降低MDA含量; HiHiLo、HiHi、HiLo模式对提高机体抗氧化能力具有积极意义。
     ⑤低氧结合运动训练可以在一定程度上对大鼠心肌线粒体呼吸链酶复合物活性产生良性影响,加速线粒体氧化磷酸化过程,为线粒体合成ATP提供条件,但不同低氧训练模式对心肌线粒体呼吸链酶复合物活性的影响因部位不同而影响程度不同。
The traditional plateau training takes use of double stimulations of training and hypoxia environment, athletes will be able to endure severe stimulations to mobilize body potential, to arouse a series of anti一hypoxia physiological and biochemical reactions. With the develop- ment of altitude training researches, the researches of basic theories under altitude training are perfectly being built up, training methods have been more improved, scientific trainings have been more enhanced.Thus some new training means and stimulant training methods have been established. This experiment ,which make use of hypoxia cabin equipment simulation different hypoxia training method ,building-up animal training method ,applied theory and method of athletic physiology and sports biochemistry statistical to analyze the activity of respiratory complexesⅠ,Ⅱ,Ⅲ,Ⅳand free radicals metabolism in mitochondria.Explore the effect of activities of respiratory chain in mitochondria and free radicals metabolism of mice’s heart when different hypoxia training methods put on them .And hope for providing the certain theoretical reference For coaches and athletes when they want to choose hypoxia training methods . Experimental methods:
     40male healthy mice(weight 120±20g) were randomly divided into 5 groups after 16days adaptive feeding. They are Living Low-Training Low(LoLo number8),Living High Training High(HiHi number8),Living High Training Low (HiLo number8),Living Low Training High(LoHi number8),Living High Training High exercise High(HiHiLo number8). According to chronic fatigue animal movement of the training model, experimental animals all carry on gradually intensive pedestal training once a day, sum up five weeks. Zero slope. In the training process, the first week of training hypoxia speed of 20 m / min, the second ,third and fourth week is 25 m / min, the fifth week is 30 m / min, the first week of normal training is 25 m / min, the second ,third and fourth week is 30 m / min, the fifth week is 35 m / min, training time increased from 30 min to 60 min. After Training five weeks ,have a rest for two days, and then all the rats were killed by decollation after exhaustive , the rats were measured heart weight/bodyweight, Superoxide dismutase(SOD)and malondialdehyde(MDA) in mitochondria,and activity of respiratory complexesⅠ,Ⅱ,ⅢandⅣwere measured in mitochondria isolated from heart.
     Result of the experiment:
     ①After 5 weeks’feeding and training , all rats showed significant growth trend of body weight;The weight of mice from LoLo,LiHo and HiHi increased faster than HiHiLo and HiLo relatively . but the wight among groups did not change in significantly (P> 0.05).
     ②Compared with LoLo, The heart wight / body wight of hypoxia group showed no significant difference(P > 0.05) ;The HiHiLo’heart wight / body wight increased relatively, But no remarkable difference (P > 0.05).
     ③Compared with LoLo,The time of mice running to exhaustion of HiHiLo and HiHi showed a relative increase scope, but no obvious difference (P > 0.05); The time of mice running to exhaustion of LoHi and HiLo was a little shorter than LoLo’s(P > 0.05).
     ④Compared with the control group(LoLo),The activity of SOD in mitochondria of mice’s heart from HiHi showed a relative increase, but no significant difference after running to exhaustion(P > 0.05),and the amount of MDA decreased remarkably (P<0.05);The activity of SOD from HiLo represented a certain increase, but there is no significant difference between them (P> 0.05),The amount of MDA showed an obvious decrease(P <0.05); The activity of SOD and the amount of MDA of LoHi all showed a little lower dgree than loLo’s, but no distinct difference after exhaustive running (P> 0.05);The activity of SOD from HiHiLo showed an obvious increase(P <0.001);and the amount of MDA decreased significa- ntly(P<0.05).
     ⑤Compared with LoLo, The activity of CⅠ, CⅡin mitochondrial respiratory chain of mice’s heart from HiHi showed an increasing trend after exhaustive running,but there was no remarkable difference(P> 0.05), The activity of CⅢwas decreased significantly(P <0.05), and the activity of CⅣrevealed a significant rise (P <0.05); Both the activities of CⅠand CⅣfrom HiLo were lower than LoLo’s(P> 0.05); and the activities of CⅢand CⅡrepresent an increasing trend ,but no obvious difference(P> 0.05); The activities of CⅠ、CⅡof LoHi revealed a relative ascending, but no marked difference (P> 0.05),the activities of CⅢand CⅣwere lower than LoLo’,and CⅢpresented decreasing significantly(P <0.05);The activities of CⅠfrom HiHiLo showed an obvious increase (P <0.001),so did as the activity of CⅡ(P﹤0. 01),And CⅢdecreased significantly(P <0.05), CⅣrised remarkably after running to exhaustion (P <0.001) .
     Conclusion:
     ①There was no remarkable effect of different hypoxia training methods on the mice’s weight.
     ②Although no remarkable effect of different hypoxia training methods on the mice’s heart weight to body weight, there was a positive sense in proving heart weight to body weight of HiHiLo.
     ③There was no effect of different hypoxia training methods on prolonging the time of mice running to exhaustion, but HiHiLo’s resistance was better than others.
     ④There was different increasing in activity of SOD and declining in the amount of MDA from hypoxia training methods .And the manifestation of the hypoxic group is not the same as different method; HiHiLo、HiHi and LoHi showed a better result than others.
     ⑤There are some positive impact on the mitochondrial respiratory chain of mice’s heart from hypoxic training and this could accelerate the process of mitochondrial oxidative phosphorylation and help to synthesize ATP, However, effect on parts of mitochondrial respiratory chain to be different because of different training method.
引文
[1]翁庆章,钟伯光.高原训练的理论与实践.北京:人民卫生出版社,2002.
    [2]韩佐生,陈耕.高原训练研究[M].兰州:兰州大学出版社,2004,2.
    [3]Wilber Rl.Current Trend in Altitude Training. Sports Med,2001,31(4):249-265.HellemansJ.IntemittentHypoxicTraining.Internatioal Triatthlon Science ll Conference,Noosa Australia,1999 Nov:7-8.
    [4]雷志平.间歇性低氧训练与高原训练的比较研究[J].西安体育学院学报.1997,(3):57-61.
    [5]Levin BD,Stray-Gundersen J,Duhaime Get al.”Living High-Training Low”:The effect of altitude acclimatization/normoxic training trainedrunners[J].Med Sci Sports Exerc,1991,23:25.
    [6]Hoppeler H,Vogt M.Hypoxia Training for Sea-level Performance.Training High-Living Low[J].Adv Exp Med Biol 2001,(502):61-73.
    [7]胡杨.低氧训练的最新动向-HiHiLo[R].香港国际低氧研讨会,2004.
    [8]赵鹏,冯连世.新的低氧训练模式研究及应用进展[J].体育科学,2005,25(6):70-74.
    [9]蔡明春.缺氧及缺氧复合运动大鼠心肌、骨骼肌的适应性变化及机制[D],第三军医大学,2005
    [10]高钰琪,黄庆愿,史景泉,等.缺氧条件下运动可促进骨骼肌毛细血管新生一一缺氧条件下的体力活动有一利于机体对高原的习服[J].第三军医大学学报2000(01): 93-96.
    [11]田野.运动生理学高级教程[M].高等教育出版社.2003
    [12]刘柏,冯炜权.耐力运动员高原训练的生理学基础综述[J].北京体育大学学报,1994,(4):29-34.
    [13]冯连世.高原训练理论与应用研究的进展[J].体育科学,1999,19(5):64-71.
    [14]温优良,徐国琴.高原训练的生理适应与运动能力[J].广州体育学院学报.2001,6(2):48-50.
    [15]潘同斌.(HiLo)高住低训法耐力训练的新方法[J].福建体育科技,2001,20(6):15-16.
    [16]高炳宏.模拟低氧训练的新方法与新进展[J].体育科研,2005,26(2):44-46。
    [17]张薇等.浅谈模拟高原训练手段的应用[J].甘肃科技纵横,2003,32(6):79-80.
    [18]李卫平,郑蔓莉,张守正.我国优秀竞走运动员模拟高原训练的应用研究.山东体育学院学报,2004,20(2):34-36.
    [19]胡杨,黄亚茹,耐力训练的新方法-(HiLo)高住低训法[J].体育科学,2001,(2):66-70.
    [20]胡杨.低氧训练的最新动向-HiHiLo[R].香港国际低氧研讨会,2004.
    [21]尹伟娜等.高原训练的研究进展[J].首都体育学院学报,2005,17(13):115-117.
    [22]曲绵域,于长隆.实用运动医学[M].北京大学医学出版社,2003,3:46-47
    [23]许欣,曾凡星.间歇性常压低氧训练研究进展[J].中国运动医学杂志,2002,9(5):490-493.
    [24]叶鸣,雷志平.间歇性低氧训练在运动训练中应用的研究进展[J]中国运动医学杂志.2002,9(5):495-496.
    [25]包大鹏,胡杨,田野.运动后低氧暴露对血液流变学及红细胞形态学的影响.体育科学,2005(25):28-32.
    [26]胡杨.模拟高原训练的新发展-从Hilo到HiHiLo[J].中国运动医学杂志,2005,24(1):69-72.
    [27]张艳秋,田振军.模拟高原训练新方法-HiLo的研究进展[J].陕西师大体育学院学报,2006,21(1):108-112.
    [28]Hiller WD,Fortess EE,Wong DL,et al.Live high–training low affects endurance factors in some athletes .Med Sci Sports Exerc,2000,32:1220.
    [29]金锦萍.低氧训练的新发展[J].湖北体育科技.2006,11(6):668.
    [30]高炳宏等.模拟“低住高练(LoHi)”对游泳运动员运动能力的影响[J].体育科研,2005,26(2):59.
    [31]胡杨.低氧训练的最新动向-HiHiLo[R].香港国际低氧研讨会,2004.
    [32]Levine BD, Stray-Gundersen J.”LivingHigh-TrainingLow”:Effect of Moderate–Altitude Acclimatization with Low-Altitude Training on Performance[J].J Appl Hysiol,1997,83,11:102-112.
    [33]宋淑华等.高住低训(HiLo)研究进展[J].北京体育大学学报,2004,27(5):646-649
    [34]孙兆伟,田野,胡扬.用低氧屋进行间歇性低氧暴露对足球运动员血象指标和运动能力的影响[J].体育科学,2003,23:127-131.
    [35]苑宇哲.阿特拉津对弹琴蛙蝌蚪抗氧化酶细胞核的影响[D].中科院优秀硕士论文,2004
    [36]田野.运动生理学高级教程[M].高等教育出版社.3003,8:74-90.
    [37]常芸.运动心脏研究的现状与展望[J].山东体育科技.1999,12(4)28-33.
    [38]任建生.运动与运动员心脏[J].武汉体育学院学报.1995,1:36-40
    [39]朱井艳.运动与心脏变化机制研究[J].陕西师范大学学报.2001,5(30):89-95.
    [40]浦钧宗.运动心脏的回顾、现状和瞻望[J].体育与科学.1999,9(5):4-8.
    [41]胡杨等.高原训练研究与应用.北京体育大学出版社[M]2006,10:178
    [42]黄庆愿,高钰琪,史景泉.低氧习服过程中大鼠心脏的适应性改变[J].中国病理生理杂志.2001,17(7):606-609.
    [43]郑澜,陆爱云,周志宏.低氧训练促进大鼠心肌组织血管生成的体视学研究[J].体育科学.2005,25(1):49-52.
    [44] [Yang Hu ,Zhowei Kong,HaipingLiu.Effects of hypoxic training on aerobic capacity and performance.High Altitude Training Symposium,Hong Kong 2004.
    [45]缪素坤等.高原训练对优秀自行车运动员有氧能力的影响[J].体育科学1992,12(1):47-50
    [46]王东良.高原对心血管功能的影响.甘肃科技,2004,(20):110-111
    [47]邹亚昌,范宏文.浅谈低氧环境下运动员的生理变化.冰雪运动,2002,(2):
    [48]李桦,等.中日竞走运动员高原训练的生理机能及运动能力的研究[J].体育科学,1995,15(5):30-39
    [49] Hudlicka O,Brown M.D,Walter H,et al.Factors involved in capacity growth in the heart [J].Mol Cell Bioch,1995,147:57-68.
    [50]龙超良,尹昭云,汪海.慢性间断性低氧暴露对大鼠心肌线粒体ATP酶及呼吸链复合物的影响[J].中国应用生理学杂志.2004:20(3):219-220.
    [51]龙超良,尹昭云,汪海.低氧习服对大鼠心肌总蛋白、丙二醛和一氧化氮含量的影响[J].航天医学与医学工程.2004,4(2):114-116
    [52]陈扬等.运动对血液中肌酸激酶、乳酸脱氢酶、琥珀酸脱氢酶的影响[J].解放军体育学院学报.2000,1(1):25-31.
    [53]李爱红.模拟不同高原训练方法对大鼠心肌超微结构及生理生化指标的影响[D].西北师范大学,2007
    [54]许玲,邓树勋.几种生化指标(CK、BUN、HB、LA、尿蛋白和隐血,尿PH、胆红素和尿胆原肌酐)在运动实践中的运用[J].福建体育科技,1999(18):30-36.
    [55]薛慧君.我省武术运动员套路训练前后的CK值变化.山西体育科技.2006,(2):241.
    [56]雷志平.家歇性低氧训练对急性运动大鼠心肌超微结构的影响[J].中国运动医学杂志,2004,1(1):90-93.
    [57]武忠弼.病理生理学[M]人民卫生出版社,1998,163-168
    [58]罗刚,谢增柱.预缺氧对急性大鼠心肌线粒体结构功能及ATP含量的影响.中国病理生理杂志,1999,15(4):336-338.
    [59]孙希武等.低氧适应对缺氧性心功能损伤的保护作用及其机制探讨[J]。中国应用生理学杂志,1994,10(3):205-208.
    [60]李强等.不同间歇低氧适应方式对运动能力影响的实验研究[A]第六届全国体育科学大会论文摘要汇编[C]:2000:207-208.
    [61]李兵,柳君泽,陈丽芳.大鼠低压缺氧心肌及线粒体腺苷酸含量分布的变化[J].西北国防医学杂志.2005,4(2):90-92
    [62]龙超良等.低氧习服对大鼠心肌总蛋白、丙二醛和一氧化氮含量的影响[J].航天医学与医学工程.2004,4(2):114-116
    [63]徐建兴.呼吸链酶系结构与功能[J].生物化学与生物物理进展.1994,21(1):18-23. [64 ]汪堃仁.细胞生物学(第二版)北京:北京师范大学出版社,2001,5.
    [65]Papa S.Mitochondrial oxidative phosphorlation changes in the life spana :Molecular aspects and physiological implications [J].Biochim Biophs Acta,1996,1276:87-105.
    [66]谢谦.线粒体内膜的呼吸链酶系与F1-F2偶联因子及其功能的偶联[J].大同职业技术学院学报.2003,17(2):79-80.
    [67]吕梅等.运动性疲劳状态下线粒体膜生物学特征的研究:递增负荷力戒性运动后大鼠肝脏线粒体膜NADH-CoQ还原酶及肝组织NADH+的变化[J].中国运动医学杂志,1998,17:10-11.
    [68]张勇,李静先,陈家琦.耗竭性运动对大鼠心肌线粒体内膜流动性和复合体Ⅰ的影响[J].生物化学与生物物理学学报,1995,27(3):337-339.
    [69]罗刚,张国斌,谢增柱.缺氧大鼠心肌线粒体呼吸功能、ATP含量的变化[J].第三军医大学学报,1997,6:240-242.
    [70]Xie Zengzhu ,Lui Fuyu,Wang shijun et al.Prevntive and the rapeutic effects of mitrendipiine on hypoxic right ventricular hypertrophy .Acta Phar acologica Sinica,1996,17(4):337.
    [71]石晶.缺氧缺血与线粒体DNA损伤[J].国外医学儿科学分册,2002,29(1):27.
    [72]宋玲,孙秉庸,张国斌.模拟高原缺氧不同时间对大鼠心肌线粒体功能的影响及其在习服-适应中的意义[J].高原医学杂志.1999,9(3):9-11.
    [73]潘国斌等.我国高原医学进展及其在体育训练中的作用[J].辽宁体育科技,2002(2):30.
    [74]王茂叶,雷志平.间歇性低氧训练对小鼠有氧运动能力影响的研究[A].第六届全国体育科学大会论文摘要汇编[C],2000:205-206.
    [75]雷志平.间歇性低氧训练的应用研究.第六届全国体育科学大会论文摘要汇编(二):323.
    [76]代毅,柯遵渝.间歇性低氧训练对大鼠心肌、骨骼肌有氧代谢酶与运动能力的影响研究[J].成都体育学院学报,2003,5:91-93.
    [77]李世成,田野.模拟高原训练对小鼠骨骼肌代谢的影响[J].北京体育大学学报,1998,21(2):15-18.王茂叶等.间歇性低氧训练对小鼠有氧运动能力影响的研究[A].第六届全国体育科学大会论文摘要汇编,2000:205-206.
    [78]路瑛丽,冯连世.低氧训练对有氧代谢酶影响的研究进展[J].中国运动医学杂志.2005,24(2) :195-197
    [79]李俊涛.低氧训练中优秀女子中长跑运动员CK-MB和心电图∑T/R的变化[J].中国运动医学杂志,2006 25(3):314-316)
    [80]McCorD J M ,Fridoovich I,The reduction of cytochrome by milk anthing oxidase [J].J Biol Chem,1968,243:5753-5759.
    [81]刘晓莉,候莉娟,刘赟.间歇性无氧运动队小鼠脑、心肌、骨骼及抗氧化能力及脂质过氧化损伤的影响[J].中国运动医学杂志.2004,7(4):390-394.
    [82]蒋明朗,雷志平.间歇性低氧暴露对小鼠自由基代谢的影响[J].中国运动医学杂志.2005,1,(1):87-88.
    [83]Hammeren J,Powrs S,Lawler J.Exercise Training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats.Int J Sports Med,1992,13(5):412-416.
    [84]黄丽英,林文.高住低练对大鼠心肌线粒体活性氧的影响[J].中国运动医学杂志,2005,11(6):665-667.
    [85]路瑛丽,冯连世,赵鹏等.不同低氧训练模式对大鼠血液运氧能力的影响.中国运动医学杂志.2007,(1)26:68-70.
    [86] Koshelev V,B, Trasova O,S, Storozhevykh T,P,et al. Changes in the Systemic Hemodynamecs and the Vascul Arbed of the Skelettal Muscles in Rats Adspted to Hypoxic[J],Hyp Med J,1995,(2):16-19.
    [87]郑澜,陆爱云.运动性疲劳动物模型的研究[J].中国体育科技.2003,39(2):20-23.
    [88]A. X. Bigard,et al. Skeletal Muscle Changes after Endurance Training at High Altitude. J.Appl. Physiol. 1991,71(6):5114-2121.
    [89]田野,高铁群.大鼠运动性疲劳模型的建立[J].北京体育大学学报,1995,11(4)49-53.
    [90]肖明珠,郭庆芳.动物运动性疲劳方法学研究之一-不同刺激方法对大鼠跑台运动疲劳及恢复期糖代谢的影响[J].中国运动医学杂志,1998,17(4):334-338.
    [91]Galina Vyatkina, Vandanajay Bhatia, Arpad Gerstner, et al. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development[J].Biochimica et biophysica Acta 2004(1689):162-173.
    [92]静天玉,赵晓瑜.用终止剂改进超氧化物歧化酶邻苯三酚测活法[J].生物化学与生物物理进展,1995,(1):13-15.
    [93]徐叙云.药理实验方法学[M].人民卫生出版社.2002,1
    [94]Ferezou J Richacet J P.Coste T,et al.Changes in Plasma Lipids and Lipoprotein cholesterol during a High Altitude Mountaineering Expedition(4800m)[J].EurJApplPhysiol occup physiol,1998,57(6):740-745.
    [95] Olfert IM,Breen EC,Mathieu-Costello O,et al Skeletal Muscle Capillarity and Angiogenic Mrna Levels after Exercise Training in Normoxia and Chronic Hypoxia[J].J Appl Physiol,2001,91:1176-1184.
    [96]赵海军,邓树勋.运动心脏及其形成机制[J].体育学刊.2002,3(2):121-123.
    [97]常芸.运动心脏研究的现状与展望[J].山东体育科技.1999,12(4)28-33.
    [98]Dela F. On the influence of physical traiing on glucose homeostasis [J].Acta physiol Scand Suppl.1996,635:1-41.
    [99]熊正英等.几丁质.几丁聚糖对运动训练小鼠肝组织自由基代谢及血清GPT活性的影响[J].体育科学.2001,21(4):62-64.
    [100]王镜岩,朱圣庚,许长法主编.生物化学[M].北京:高等教育出版社,2002.
    [101]龙建纲王学敏,高宏翔.丙二醛对大鼠肝线粒体呼吸功能及相关脱氢酶活性的影响[J].第二军医大学学报.2005,10(10):1131-1135.
    [102]Cell BR .Is pulmonary rehabilitation an effective treatment for chronic obstructive pulmonary disease Am J Respire Cirt Care Med ,1997,155(5):781-783.
    [103]蒋明朗,雷志平.间歇性低氧暴露对小鼠自由基代谢的影响[J].中国运动医学杂志.2005,1(1):87-88
    [104]Vincent H K,Powers S K,Demirel H A.et al.Exercise training protects against contraction-induced lipid peroxidation in the diaphragm[J].EUR J Apll Physiol,1999,79(3):268-273.
    [105]谢谦.线粒体内膜的呼吸链酶系与F1-F0偶联因子及其功能的偶联[J].大同职业技术学院学报.2003,17(2):79-80.
    [106]张勇,文力.线粒体之跨膜势能与运动性自由基生成的关系[J].中国运动医学杂志.2000,19(4):346-348.
    [107]李洁,汪浩.不同强度及性疲劳运动对大鼠心肌线粒体电子传递链酶复合体活性的影响[J].中国运动医学杂志.2007,5(3):304-306.
    [108]李洁,王玉侠,张耀斌.补充辅酶Q10及递增负荷跑台运动训练堆大鼠心肌和脑线粒体电子传递链酶复合体活性的影响[J].体育科学.2008,28(1):43-48.
    [109]赵峰等.不同价态锰对大鼠心肌线粒体酶活力的影响.[J].毒理学杂志.2006,4(2):94-96.
    [110]Zwicker K, Dikalov S,Matuschka S,et al.oxygen radical generation and enzymatic properties of mitochondria in hypoxia reoxygenation.Arznei mittel for schung,1998,48(6):629-636.
    [111]张缨,胡杨.不同氧浓度的高住高练低训对红细胞等血象指标的影响[J].体育科学,2005,25(1):29-32.
    [112]Brugniallx JV,Schmitt L,Robach P,et.Living High-Training Low:Effects on Acclimatization,Erythropoiesis and Aerobic Performance In Elite Middle Distance Runners[J].High AT Med Biol,2004,5:477-478.
    [113]汤盈.不同低氧训练对大鼠骨骼肌细胞及相关生化指标的影响[D].西北师范大学,2007.
    [114]刘晔,刘桂华,陈珑等.模拟海拔4000m高度训练1-3周对大鼠骨骼肌蛋白质和血清睾酮的影响[J].北京体育大学学报.2002,23(1):41-44.
    [115]刘晔,刘桂华,陈珑.模拟海拔2000-3000m高原训练的不同是程对大鼠骨骼肌蛋白质代谢的影响[J].北京体育大学学报.2002,25(2):191-193.
    [116]常芸,孙迎,陈小同等.运动心脏内分泌功能可复性的研究[J].中国运动医学杂志,1999,18(1):3-5.
    [117]苑辉卿.医学细胞分子生物学实验.科学出版社【M】.2007.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700