用户名: 密码: 验证码:
丛枝菌根共生体磷信号转运受体的发现及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根是球囊菌门的从枝菌根真菌与高等维管束植物根系建立的互惠共生体,丛枝菌根是自然界中分布最为广泛的共生体,80%以上的陆生维管束植物能与菌根真菌形成植物内共生体。丛枝菌根真菌为宿主植物提供无机矿质营养,主要是磷素与氮素,促进植物的生长和矿质营养的吸收利用。反过来,植物通过光合作用为AM真菌提供碳源,使其菌丝正常生长发育并完全成生适史。AM真菌介导的磷吸收途径第一步是靠真菌细胞膜上Pi转运蛋白将土壤中的无机磷酸盐转运到根外菌丝中,在真菌与植物的共生界面又依靠AM特异性的植物Pi转运蛋白将质外体空间的游离态磷酸盐转运到皮层细胞。然而到目前为止,这些代谢途径中的许多科学问题还没有完全被理解,甚至对有些问题尚不清楚。Pi作为营养物质被AM菌根途径吸收转运,同时Pi又作为一种信号来调控AM共生体系的建立与发育,Pi信号调控AM共生体系的分子机理还是不明确。
     在本文中,以AM真菌Gigaspora margarita和紫云英(Astragalua sinicus)为材料,通过分子生物学,生物化学,反向遗传学,细胞生物学以及生理学等方法详细深入探讨了AM共生体系中磷转运基因的功能及其作用的分子机制。
     1.发现了G margarita (BEG34)中存在一个高亲和力磷转运系统,分离出该系统关键调控基因GigmPT,属于高亲和力无机磷酸盐转运基因。GigmPT是MFS超家族转运体,编码一个膜整合蛋白,由12个疏水的跨膜结构域组成,包括6个N端的跨膜区与6个C端的跨膜区,第六个和第七个跨膜区之间存在一个大中央亲水环,氨基酸N端和c端均在细胞质侧。在AM真菌中调控一个类似酵母PHO调控系统的途径。从A. sinicus中分离到类似的AM特异性AsPT1与AsPT4磷转运蛋白,调控AM共生界面磷转运。
     2.分离到的这些磷转运基因在共生时期诱导表达,尤其是在丛枝细胞中大量表达,同时受Pi抑制表达。宿主根组织碳源能够激发GigmPT基因的表达,GigmPT基因的活性同样影响着AM共生体的碳转运。
     3.反向遗传学研究结果表明GigmPT是AM共生体系的必需基因,GigmPT的功能直接影响AM真菌G margarita菌丝以及丛枝的生长与发育,维持真菌在植物体内持续生长是必不可少的。该基因失活后阻断共生Pi转运,且在丛枝细胞积累大量多聚磷酸盐。
     4.利用生物化学方法研究该基因发现其还具有受体功能,即是一个转运受体,调控PKA信号途径;利用SCAM与突变分析找到了转运受体GigmPT的磷酸盐结合位点,并发现该转运体利用同一个位点进行转运与信号识别。转运受体GigmPT的信号激活需要发生特异的构象变化。
     5.研究还发现在AM共生体中存在第二类AM特异性磷转运基因AsPT1,与第一类AsPT4基因一起非冗余性调节AM共生体系,尤其调节丛枝的发育。还发现AsPT4对AM途径磷转运起主要作用,而AsPT1不是共生磷转运必须基因,可能编码一个非转运型转运受体,调控丛枝界面Pi与营养代谢平衡。研究还发现AsPT4在非公生时期植物根尖以及分生组织中表达,在共生时期却只在含丛枝的细胞中表达,该基因调节侧根生长发育。
     6.通过本文研究,得出一个重要的假说:在AM共生体系中存在一类磷素营养转运受体,同时调控PHO与PKA途径,对AM共生体的磷代谢与营养平衡起至关重要的作用。推测在AM共生体中这是一个普遍规律,绝大多数营养转运子(包括C,N和P等)可能都获得了受体功能,起着信号转导功能,调节AM真菌在植物体内正常生长发育。还提出了传统的化学信号受体最早是由营养转运体进化而来的模型。
The majority vascular plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. The symbiosis, termed arbuscular mycorrhiza is a reciprocal symbiosis, improving plant uptake of phosphate. The more than80%of land plants form AM interactions, in which plants supply associatedAM fungi with carbohydrates, essential for fungalsurvival and growth. In exchange, AMfungi provide their host plants with mineral nutrients, phosphorus (P), nitrogen(N)and other benefits. The first step of the fungus-mediated uptake is carried out by fungal membrane Pi transporters (PT) that transfer Pi from the soil into the extraradical hyphae, then the AM-specific Pi transporters transport the phosphate from the apoplastic space to plant cell.,So far, however, the Pi metabolic pathway of AM fungi are still not fully understood. Pi as a signal to permit continued development of theAM symbiosis, however, the mechanisms involved in signaling are poorly understood.
     To characterize the detailfunctions of Pi transporters in AM symbiosis, we combined cellular localization, heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta.
     l.Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (GigmPT) from the arbuscular mycorrhizal fungus Gigaspora margarita during mycorrhizal association with Astragalua sinicus roots. The kinetic analysis of GigmPT reveals that it belongs to high affinity phosphate transporter family. The GigmPT polypeptide belongs to the major facilitator superfamily (MFS). Homology modeling reveals that GigmPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle.
     2.GigmPT, a fungal Pi transporter highlyinduced during AM symbiosis. GigmPT is expressed in arbuscules and intercellular hyphae. These analyses show that GigmPT expression is regulated in response to external Pi concentrations. Phosphate concentrations, typical of those found in the soil solution, result in expression of GigmPT. Carbon availability triggers fungal phosphate uptake andtransport in AM symbiosis.
     3.We show that GigmPTis essential for the acquisition of Pidelivered by the AM fungus. However, more significantly, GigmPT function is critical for AM symbiosis. Loss of GigmPT function leadsto premature death of the arbuscules; the fungus is unable toproliferate within the root, and symbiosis is terminated. Thus, Pitransport is also a requirementfor the AM symbiosis.
     4. The GigmPTphosphate transceptor transports phosphate and mediatesrapid phosphate activation of the protein kinase A (PKA) pathway.Using Substituted CysteineAccessibility Method (SCAM) we identified A146in TMDIV and V357in TMD VIII as residues exposed with their side chaininto the phosphate-binding site of GigmPT. Our results provide to the best of our knowledge the first insightinto the molecular mechanism of a phosphate transceptor.
     5. There also exists a second AM-specific Pi-transporter AsPT1indispensable for the development of AM symbiosis indicots. Knockdown of AsPTl by RNA interferenceled to degenerating or dead arbuscule phenotypesidentical to that of;AsPT4silencing lines. Nonredundant regulation of A. sinicusAM. symbiosis byAsPT1and AsPT4. AsPT4but not AsPTl is necessary and sufficient to mediatesymbiotic Pi transfer.
     6.These results substantiatethe hypothesis that phosphate transporteracts as the main provider of phosphate to the cell, but alsomediates rapid activation of thePKApathway. The nutrientsensers haveevolved from nutrient transporters andthus provide further support for the proposed evolutionaryscheme from nutrient transporters to chemicalsignal receptors.
引文
1. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu GTwo rice phosphate transporters, OsPhtl;2 and OsPhtl;6, have different functions and kinetic properties in uptake and translocation. Plant J,2009,57(5):798-809.
    2. Alexander T, Toth R, Meier R,Weber HC. Dynamics of arbuscule development and degeneration in onion, bean and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Can. J. Bot,1989,67(8):2505-2513.
    3. Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker D G, Carvalho-Niebel F. AP2-ERF transcription factors mediate Nod factor-dependent MtENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell,2007, 19(9):2866-2885.
    4. Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol,2000,124(3):949-958.
    5. Balestrini R,Gomez-Ariza J,Lanfranco L and Bonfante P, Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated ctlls.MPMI,2007,20(9):1055-1062.
    6. Balestrini R, Hahn MG, Faccio A, Mendgen K, Bonfante P. Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscularmycorrhizal fungi. Plant Physiol,1996,111(1):203-213.
    7. Balzergue C, Puech-Page's V, Be'card G, Rochange S F. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. JExp Bot,2011,62(3):1049-1060.
    8. Bari R, Datt Pant B, Stitt, M and Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signalling pathway. Plant Physiol,2006,141:988-999.
    9. Bearden BN, Petersen L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil,2000,218(1-2):173-183.
    10. Benfey P N, Ren L, and Chua N H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J,1989,8:2195-2202.
    11. Besserer A, et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol,2006,4:1239-1247.
    12. Biswas K, Morschhauser J. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol,2005, 56(3):649-669.
    13. Blancaflor E B, Zhao L M, Harrison M J. Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma,2001,217(4):154-165.
    14. Blee K A, Anderson A J. Regulation of arbuscule formation by carbon in the plant.Plant J,1998,16(5):523-530.
    15. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions,2001,14(6):695-700.
    16. Bonanomi A, Wiemken A, Boller T, Salzer P. Local induction of a mycorrhizaspecific class Ⅲ chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol,2001,3(2):194-199.
    17. Bonfante-Fasolo P. Anatomy and morphology of VA mycorrhizae. In VA Mycorrhizae,1984,5-33.
    18. Bonfante P, Perotto S. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol,1995,130:3-21.
    19. Boyd C A. Chemical neurotransmission:an hypothesis concerning the evolution of neurotransmitter substances. J Theor Biol,1979,76:415-417.
    20. Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact,2010,23(7):915-926.
    21. Brechenmacher L,Weidmann S, vanTuinen D, Chatagnier O, Gianinazzi S, et al. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza,2004,14:253-262.
    22. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U and Reinhardt D. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal,2010,64:1002-1017.
    23. Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist,2007,173(1):11-26.
    24. Bucher M, Rausch C, Daram P. Molecular and biochemical mechanisms of phosphorus uptake into plants. Journal of Plant Nutrition and Soil Science,2001, 164(2):209-217.
    25. Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol,2007,173(1):11-26.
    26. Bu'nemann E K, Obserson A, Frossard E.Phosphorus in Action:Biological Processes in Soil Phosphorus Cycling. Springer Heidelberg,2011,113-133.
    27. Burleigh S M, Harrison M J. Characterization of the Mt4 gene from Medicago truncatula. Gene,1998,216(1):47-53.
    28. By B D, Thomson D T, Clarkson and Brain P. Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol,1990,116(4):647-653.
    29. Cavagnaro T R, Gao L-L, Smith AF, Smith S E. Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol,2001,151(2):469-475.
    30. Chen A, Gu M, Sun S, Zhu L, Hong S, Xu G. Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytologist, 2011,189:1157-1169.
    31. Chen A, Hu J, Sun S, Xu G. Conservation and divergence of both phosphate-and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist 173:817-831.
    32. Chiou TJ, Liu H, Harrison MJ. The spatial expression patterns of a phosphate transporter (MtPTl) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant Journal,2001,25(3):281-293.
    33. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development,2006,20:1250-1255.
    34. Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. The Plant Cell Online,1999,11 2153-2166.
    35. Demchenko K,Winzer T, Stougaard J, Parniske M, Pawlowski K. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol,2004,163:381-392.
    36. Denison RF, Kiers ET. Life histories of symbiotic rhizobia and mycorrhizal fungi. Current Biology,2011,21:R775-R785.
    37. Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y. Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Molecular Plant Pathology,2010,11:121-135.
    38. Diez-Sampedro A, et al. A glucose sensor hiding in a family of transporters. ProcNatl Acad Sci USA,2003,100(20):11753-11758.
    39. Dickson S. The Arum-Paris continuum of mycorrhizal symbioses. New Phytol,2004, 163:187-200.
    40. Didion T, Regenberg B, Jorgensen M U, Kielland-Brandt M C, Andersen H A. The permease homologue Ssylp controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol,1998,27:643-650.
    41. Donaton M C, et al. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol,2003,50:911-929.
    42. Drew E A, Murray R S, Smith S E, Jakobsen I. Beyond the rhizosphere:growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil,2003,251:105-114.
    43. Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht MB, Boller T, Felix G, Amrhein N, Bucher M. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science,2007,318:265-268.
    44. Elghachtouli N, Paynot M, Morandi D, Martintanguy J and Gianinazzi S. The effect of polyamines on endomycorrhizal infection of wildtype Pisum sativum, cv. Frisson (nod+myc+) and two mutants (nod-myc+and nod-myc-). Mycorrhiza,1995,5(3): 189-192.
    45. Ezawa T, Cavagnaro TR, Smith SE, Smith FA, Ohtomo R. Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist,2004,161:387-392.
    46. Fehlberg V, Vieweg MF, Dohmann EMN, Hohnjec N, Puhler A, Perlick AM, Kuster H. The promoter of the leghaemoglobin gene VfLb29:functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. Journal of Experimental Botany,2005,56(413):799-806.
    47. Fellbaum C R, Kowalchbvnvuk G A, Hart M M, Bago A, Palmer T M, West S A, Vandenkoornhuyse P, Jansa J, Bucking, H. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science,2011,333:880-882.
    48. Finlay, R D. Ecological aspects of mycorrhizal symbiosis:with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot,2008,59:1115-1126.
    49. Fiorilli V, Lanfranco L, Bonfante P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta,2013,237(5):1267-1277.
    50. Floss DS, Hause B, Lange PR, Kuster H, Strack D, Walter MH. Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant Journal,2008,56:86-100.
    51. Frenzel A, Tiller N, Hause B, Krajinski F. The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites. Planta,2006,224: 792-800.
    52. Gianinazzi-Pearson V. Plant cell responses to arbuscular mycorrhiza fungi:getting to the roots of the symbiosis. Plant Cell,1996,8:1871-1883.
    53. Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Due G. Genetic and cellular analysis of resistance to vesicular arbuscular (VA) mycorrhizal fungi in pea mutants. In Advances in Molecular Genetics of Plant-Microbe Interactions,1991, 336-342.
    54. Giots F, Donaton M C, Thevelein J M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol,2003,47:1163-1181.
    55. Giovannetti M, Avio L, Sbrana C, Citernesi A S. Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungu? Glomus mosseae (Nicol. &Gerd.) Gerd.& Trappe. New Phytol,1993,123:115-122.
    56. Goberdhan D C, Meredith D, Boyd C A, Wilson C. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids.Development,2005,132(10):2365-2375.
    57. Gomez-Ariza J, Balestrini R, Novero M, Bonfante P. Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biology and Fertility of Soils, 2009,45:845-853.
    58. Gomez-Roldan, V, et al. Strigolactone inhibition of shoot branching. Nature,2008, 455:189-194.
    59. Guether M, Balestrini R, Hannah M, He J, Udvardi M K and Bonfante P. Genome-widereprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbios in Lotus japonicus. New Phytol,2009,182:200-212.
    60. Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G H. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant,2010,138:226-237.
    61. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal,2012,69: 906-920.
    62. Grace E J, Cotsaftis O, Tester M, Smith F A, Smith S E. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol,2009,181:938-949.
    63. Hamel C, Liu A, Hamilton R I, Ma B L and Smith D L. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza,2000,9:331-336.
    64. Hammond J P, White P J. Sucrose transport in the phloem:integrating root responses to phosphorus starvation. JExp Bot,2008,59:93-109.
    65. Harinder S, Hundal and Peter M T. Amino acid transceptors:gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab,2009, 296:E603-E613.
    66. Harrison M J. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol,1999,50:361-389.
    67. Harrison M J. Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J Exp Bot,1999,50:1013-1022.
    68. Harrison MJ, Dewbre GR, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell Online,2002,14:2413-2429.
    69. Hause B, Mrosk C, FornerS, Hause G, Kuster H and Kopka J. Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. JExp Bot,2009,60:3797-3807.
    70. Lota F, Wegmuller F, Buer B, Sato S, Brautigam A, Hanf B and Bucher M. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicas. Plant J,2013,174(2):280-293.
    71. Hijiri M, Sanders I R. The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fungal Genet Biol,2004,41:253-261.
    72. Holford ICR. Soil phosphorus:its measurement, and its uptake by plants. Aust J Soil Res.1997,35:227-239.
    73. Hong J, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ. Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta,2012,236:851-865.
    74. Hyde R, Cwiklinski E L, MacAulay K, Taylor P M, Hundal H S. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem,2007,282(27):19788-19798.
    75. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences,2007a,104:1720-1725.
    76. Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell & Environment,2007b,30: 310-322.
    77. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G.2011. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiology 156:1164-1175.
    78. Journet E P, van Tuinen D, Gouzy J, Crespeau H, Carreau V, et al. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res,2002,30:5579-5592.
    79. Johan M, Thevelein, Voordeckers K, Functioning and Evolutionary Significance of Nutrient Transceptors. Mol Biol Evol,2009,26(11):2407-2414.
    80. Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science,2005,10:22-29.
    81. Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America2004,101:6285-6290.
    82. Kloppholz S, Kuhn H and Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. CurrBiol,2011,21:1204-1209.
    83. Kouchi H, Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Molecular & General Genetics,1993,238:106-119.
    84. Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P. Mthal, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol,2002,4:754-761.
    85. Kuhn G, Hijiri M, Sanders I R. Evidence for the evolution of multiple genomesin arbuscular mycorrhizal fungi. Nature,2001,414:745-748.
    86. Kuster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, et al. Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JBiotechnol,2004, 108:95-113.
    87. Lanquar V, Loque'D, Hormann F, Yuan LX, Bohner A, Engelsberger R F, Lalonde S, Schulze W X, Wire'n N and Frommer W B. Feedback Inhibition of Ammonium Uptake by a Phospho-Dependent Allosteric Mechanism in Arabidopsis. The Plant Cell,2009,21:3610-3622.
    88. Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama K G, Liu D.Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol,2011,156:1116-1130.
    89. Lin W Y, Lin S I, Chiou T J. Molecular regulators of phosphate homeostasis in plants. JExp Bot,2009,60:1427-1438.
    90. Li Y, Zhou L, Chen D, Tan X, Lei L, Zhou J. A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytologist,2008,180: 185-192.
    91. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology,1998,116:91-99.
    92. Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant Journal,2010,62:508-517.
    93. Liu H, Trieu AT, Blaylock LA, Harrison MJ. Cloning and characterization of two phosphate transporters from Medicago truncatula roots:regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions1998,11:14-22.
    94. Liu J. et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J,2007,50:529-544.
    95. Liu J, Blaylock L, Endre G, Cho J, Town CD, et al. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell,2003,15:2106-2123.
    96. Liu J Q, Allan D L, Vance C P. Systemic signaling and local sensing of phosphate in common bean:cross-talk between photosynthate and microRNA399. Mol Plant,2010, 3:428-437.
    97. Liu Y-G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques,2007,43:649-656.
    98. Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F. Structure and expression profile of the phosphate Phtl transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology,2011, 156:2141-2154.
    99. Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology.,,2006,47:807-817.
    100. Maillet F, Poinsot V, Andre'O, Puech-Page's V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature,2011,469:58-63.
    101. Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, et al. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact,2004,17:1063-1077.
    102. Marschner H. Mineral Nutrition of Higher Plants. Plant Cell &Environment, 1995,11(2):147-148.
    103. MillerRM, ReinhardtDR and JastrowJD.External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia,1995,103:17-23.
    104. Moreno-Hagelsieb Gand LatimerK. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics,2008,24:319-324.
    105.Mortoton J B, Benny G L. Revised classification of arbusular mycorrhizal fungi (zygomycetes):a new order, Glomales, two new suborders, Glomineae and Gigasporineae,and two new families, Acaulosporaceae and Gigasporaceae, with an amendation of Glomaceae.Mycotaxon,1990, ⅩⅩⅩⅦ:471-491.
    106. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlege M, Julien B, Didier R, Bours R, Harro J, Bouwmeester & Martinoia E. A petunia ABC protein controls strigolactonedependent symbiotic signalling and branching. Nature,2012,483: 341-344.
    107. Munkvold L, Kjeller R, Vestberg M, Rosendahl S, Jakobsen I. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol,2004,164: 357-364.
    108. Nagahashi G, Douds D J. Appressorium formation by AM fungi on isolatedcell walls of carrot roots. New Phytol,1997,136:299-304.
    109. Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP.2011. Arabidopsis Phtl;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology,156:1149-1163.
    110. Nagy R, Drissner D, Amrhein N, Jakobsen I and Bucher M. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol,2009,181:950-959.
    111. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal,2005,42:236-250.
    112. Newman E I, Reddell P. The distribution of mycorrhizas among families of vascularplants. New Phytol 1987,106:745-751.
    113. Newsham K K, Fitter AH,Watkinson AR. Multi-functionality and biodiversity inarbuscular mycorrhizas. Trends Ecol. Evol,1995,10:407-411.
    114. Noarl S, Gomez, K, Zhang Q, Douglas R. Cook and Harrison M J.Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.Plant J,2011,68(6):954-965.
    115. Novero M, Faccio A, Genre A, Stougaard J,Webb J K, et al. Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol,2002,154:741-49.
    116. Olsson P A, Hansson M C and Burleigh S H. Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices highaffinity P transporter gene induction in arbuscular mycorrhiza. Appl. Env. Microbiol,2006,72:4115-4120.
    117. Ozcan S, Dover J, Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J,1998,17:2566-2573.
    118. Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiology and Molecular Biology Reviews,1998,62:1-34.
    119. Parniske, M. Cue for the branching connection. Nature,2005,435:750-751.
    120. Parniske M. Intracellular accommodation of microbes by plants:a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol,2000,3: 320-28.
    121. Paszkowski U, Kroken S, Roux C, Briggs SP. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences,2002,99: 13324-13329.
    122. Pawlowska T E, Taylor J W. Organization of genetic variation in individuals ofarbuscular mycorrhizal fungi. Nature,2004,427:733-737.
    123. Pirozynski K A, MallochD W. The origin of land plants:a matter of mycotroyhism.Biosystems,1975,6:153-164.
    124. Plett J M, Kemppainen M, Kale S D, Kohler A, Legue'V, Brun A, Tyler B M, Pardo A G and Martin F.A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol,2011,21:1197-1203.
    125. Popova Y, Thayumanavan P, Lonati E, Agrochao M and Johan M, Theveleina. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. PNAS,2010,107(7):2890-2895.
    126. Rae AL, Cybinski DH, Jarmey JM, Smith FW. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Phtl family. Plant Molecular Biology,2003,53:27-36.
    127. Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants.Planta,2002,216:23-37.
    128. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature2001,414:462-470.
    129.Ransch C, Daram P,Brunner S, jANSA J, Laloi M, Leggewie G,Amrhein N, Bucher M. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature2001,414:462-470.
    130. Redeker D, Kodner R, Graham L. Glomalean fungi from the Ordovician. Science, 2000,289:1920-1921.
    131. Reinders A, Schulze W, Kiihn C, Barker L, Schulz A, Ward JM, Frommer WB. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. The Plant Cell,2002,14:1567-1577.
    132. Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa'-Correia I, Duque P. The Phtl;9 and Phtl;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytologist,2012,195: 356-371.
    133. Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA,1994,91:11841-11843.
    134. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM.Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol,2001,67:495-498.
    135. Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length,glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil BiolBiochem,2003,35:1257-1260.
    136. Rouached H, Arpat A B, Poirier Y. Regulation of phosphate starvation responses in plants:signaling players and cross-talks. Mol Plant,2010,3:288-299.
    137. Rubio V, Bustos R, Irigoyen M L, Cardona-Lo'pez X, Rojas-Triana M, Paz-Ares J Plant hormones and nutrient signaling. Plant Mol Biol,2009,69:361-373.
    138. Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A and Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev,2001,15:2122-2133.
    139. Ruyter-Spira C, Kohlen W, Charnikhova T, Zeijl A, Bezouwen L, Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol,2011,155:721-734.
    140. Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants:from soil to cell. Plant Physiol,1998,116:447-453.
    141. Schaffer G, Peterson L. Modifications to clearing methods used in combination with vital staining of roots colonized with vesiculararbuscular mycorrhizal fungi. Mycorrhiza,1993,4:29-35.
    142. Schnepf A, Leitner D, Klepsch S, Pellerin S, Mollier A. Modelling phosphorus dynamics in the soil-plant sy stem.Modelingplant and soil systems,1991,323-339.
    143. Schuper A, Schwarzott D,Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res,2001,105:1414-1421.
    144. Schwoppe C, Winkler H H, Neuhaus H E. Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem,2003,270:1450-1457.
    145. Scotto-Lavino E, Du GW, Frohman MA.5' end cDNA amplification using classic RACE. Nature Protocols,2006a,1:2555-2562.
    146. Scotto-Lavino E, Du G, Frohman MA.3' end cDNA amplification using classic RACE. NatureProtocols,2006b,1:2742-2745.
    147. Shin H, Shin HS, Chen R, Harrison MJ. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant Journal,2006,45:712-726.
    148. Shin H, Shin HS, Dewbre GR, Harrison MJ. Phosphate transport in Arabidopsis: Phtl;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant Journal,2004,39:629-642.
    149. Simon L, Bousquet J, L'evesque RC, Lalonde M.Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature,1993, 363:67-69.
    150. Smith F A, Grace E J, Smith S E. More than a carbon economy:nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol,2009,182:347-358.
    151. Smith F A, Smith S E. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol,1997,137:373-388.
    152. Smith S E, Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant MolBiol,1988,39:221-244.
    153. Smith SE, Jakobsen I, Groenlund M, Smith FA. Roles of arbuscular mycorrbizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology,2011,156:1050-1057.
    154. Smith S E, Read D J. Myycorrhizal Symbiosis,Ed 3. Academic Press,2008,New York.
    155. Smith SE, Read DJ. Mycorrhizal Symbiosis.2008 (San Diego, CA:Academic Press).
    156. Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol, 2011,63:227-250.
    157. Smith SE, Smith FA, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology,2003,133: 16-20.
    158. Smith S E, Smith F A, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol,2004, 162:511-524.
    159. Smith F A, Smith S E. Membrane transport at the biotrophic interface:an overviewAust JPlant Physiol,1989,16:33-43.
    160. Strittmatter G, Gheysen G, Gianinazzi-Pearson V, Hahn K, Niebel A, et al. Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gstl gene. Mol Plant-Microbe Interact,1996,9: 68-73.
    161. Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G A constitutive expressed phosphate transporter, OsPhtl;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology,2012,159:1571-1581.
    162. Surpin M, Zheng H, Morita M T, et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell,2003,15:2885-2899.
    163. Tamura Y, Kobae Y, Mizuno T, Hata S. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Bioscience, Biotechnology, and Biochemistry,2012,76:309-313.
    164. Tatsuhiro E, Sally ES. Differentiation of polyphosphate metabolism between the extra-and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2001,149:555-563.
    165. Thevelein JM, Voordeckers K. Functioning and evolutionary significance of nutrient transceptors. Molecular Biology and Evolution,2009,26:2407-2414.
    166. Tisserant E, Kohler A, Dozolme-Seddas P, et al. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist,2012,193:755-769.
    167. Trouvelot A. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ay ant une significantion fonctionnelle. Mycorrhizae:Physiology and Genetics,1986,217-221.
    168. Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variabilityand productivity. Nature,1998,396:69-72.
    169. Walch-Liu P, Forde B G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J2008,54(5):820-828.
    170. Wu B, Ottow K, Poulsen P, Gaber R F, Albers E, Kielland-Brandt M C. Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssylp. J Cell Biol,2006,173:327-331.
    171. Wulf A, Manthey K, Doll J, Perlick AM, Linke B, et al. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant-Microbe Interact,2003,16:306-314.
    172. Wu Z, Zhao J, Gao R, Hu G, Gai J, Xu GH, Xing H. Molecular cloning, characterization and expression analysis of two members of the Phtl family of phosphate transporters in Glycine max. PLoS ONE,2011,6:e19752.
    173. Xu G, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A. Functional characterization of LePT4:a phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany,2001, 58:2491-2501.
    174. Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol,2004,136(2):3159-3176.
    175. Yang S, Gre(?)nlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochik H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, and Paszkowskia U. Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the PHOSPHATE TRANSPORTER1 Gene Family.The Plant Cell Online,2012,24:4236-4251.
    176. Yang S, Gr(?)nund M, Jakobsen I, Grotemeyer Ms,Rentsch D, Miyao A, Hirochik H, Kumar CS, Sundaresan V, Salamin N et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell,2012,24:4236-4251.
    177. Young N D, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature,2011,480:520-524.
    178. Zhang Q, Blaylock LA, Harrison MJ. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. The Plant Cell Online,2010,22:1483-1497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700