太赫兹滤波器的仿真设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波(Terahertz,简称THz,1THz=1012Hz)是指在微波和红外光谱之间,频率范围为0.1-10THz的电磁波,在电磁波谱上是从电子学过渡到光学的特殊区域,也是由宏观经典理论过渡到微观量子理论的交叉区域,具有很高的科学研究和应用价值。由于长时间的研究空白,THz一直以来是电磁波研究中的盲区,被称作太赫兹空白。但是,由于电磁资源的有限性并伴随着通信事业的发展,目前的低频电磁资源已经分割完毕,才使得人们将研究方向转向更高频率;而个人电子产品等朝着轻便化、微小化的发展趋势,进一步推动了THz器件的研究和发展,这些也正是本文研究的重要现实基础。文章从引用THz SRRs (Split-ring resonators,开环谐振器,本文简称谐振器)的概念以及在CST模拟环境下的仿真设计为出发点。接着由单结构的谐振器提出了多结构谐振器的设想并佐以理论计算,并在CST软件下进行设计结构的模拟验证。继而进一步对由多结构谐振器构造THz滤波器的设想进行理论研究和参数讨论,接着进行了结构计算、设计,并完成了滤波器结构的CST仿真和微加工样品的制备。将制备好的样品在TDS (Terahertz time-domain spectroscopy,太赫兹时域光谱系统)系统下进行了测量。最后对实际测量结果和仿真结果进行了比较和分析,给出造成实验结果误差的工艺原因和系统原因,对以后的研究工作提供了参考和改进的方向。
Being situated between infrared and microwave, terahertz wave is usually defined as the frequency from 0.1 THz to 10THz.With a great importance in scientific research and applications, terahertz is regarded as not only the transitional region between electronics and optics in the domain of spectroscopy, but also the cross area from the classical theory of macrophysics to microcosmic quantum mechanics. In a long time, terahertz is always a gap in the research of electromagnetism, so be called "the terahertz gap". But some research has to turn to higher frequency, because of the limitation of the electromagnetic resource and accompanying with the speedy development of the communications simultaneously. Furthermore, the resource of low frequency being occupied in current is the other reason. Otherwise, THz apparatus is also promoted by the trend of personal multimedia becoming smaller and more portable. In a word, all these factors quicken the research and developments of THz theory, and also be the essential meaning of this thesis. This thesis starts with the concept-THz SRRs (split-ring resonators), and simulates the structure with CST software. In next step, we make a research in multi-structures with theoretical calculations and CST simulations. On the basic of all the research mentioned ahead, we push out the research of THz filter, and also with theoretical analysis of the stimulation's results. Finally, we pick up some structures, and make them laboratory samples with both general metallic and superconductive film by micro-fabricated experiments. When the samples are done, we measure them in TDS (Terahertz time-domain spectroscopy) system, and analyze reasons which bring forth the difference between measurements and simulation's results. Hoping these analyses could improve the following researches.
引文
[1]E. F. Nichols, J. D. Tear. Joining the infra-red and electric-wave spectra. Astrophysical Journal 61(1):17-37,1952.
    [2]D. Dragoman, M. Dragoman. Terahertz fields and applications. Progress in Quantum Electronics 28:1-66,2004.
    [3]Yao-Chun Shen and Philip F. Taday. Development and Application of Terahertz Pulsed Imaging for Nondestructive Inspection of Pharmaceutical Tablet. IEEE Journal of Selected Topics in Quantum Electronics 14(2):1-9,2008.
    [4]张兴宁,陈稷,周泽魁.太赫兹时域光谱技术.激光与光电子学进展.42(7):35-38,2005.
    [5]张存林等.太赫兹感测与成像.北京:国防工业出版社,2008.
    [6]Xu Jingzhou, Zhang Cunlin and Zhang Xicheng. Recent progress in terahertz science and technology. Progress in Natural Science 12(10):729-736,2002.
    [7]贾刚,汪力,张希成.太赫兹波(Terahertz)科学与技术.中国科学基金4:200-203,2002.
    [8]Michael Shur. Terahertz technology:devices and applications. Proceedings of ESSDERC, Grenoble, France,2005.
    [9]Eric R. Mueller. Terahertz Radiation:Applications and Sources. The Industrial Physicist:27-29,2003.
    [10]Jun-ichi Nishizawa, Tetsuo Sasaki, Ken Suto. THz imaging of nucleobases and cancerous tissue using Gap THz-wave generator. Optics communications 244(7): 469-474,2005.
    [11]Timothy D. Dorney, Richard G. Baraniuk, Daniel M. Mittleman. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 18(7):1562-1571,2001.
    [12]周济.“超材料(netamaterials)"设计思想、材料体系与应用.功能材料35(增刊):125-128,2004.
    [13]张世鸿,陈良,徐彬彬,邓龙江.左手材料研究进展及应用前景.功能材料37(1):1-5,2006.
    [14]周济.“超材料(metamaterials)"及其在信息元器件设计与工艺研究.中国电子学会第十三届电子元件学术年会论文集:2004-06-01.
    [15]M. Lapine and S. Tretyakov. Contemporary notes on metamaterials. IET Microw. Antennas Propag.1(1):3-11,2007.
    [16]V. G. Veselago. The Electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics USPEKHI 10(4):509-514,1968.
    [17]Costas M. Soukoulis. Bending Back Light-The Science of Negative Index Materials. OPN June:16-21,2006.
    [18]D. R. Smith and Schultz. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, Vol.65:65-68,2002.
    [19]T. Koschny and M. Kafesaki. Effective Medium Theory of Left-Handed Materials. Physical Review Letters 93(10):1-4,2004.
    [20]M Kafesaki, Th Koschny, R S Penciu. Left-handed metamaterials:detailed numerical studied of the transmission properties. J. Opt. A:Pure Appl. Opt.7: S12-S22,2005.
    [21]J. B. Pendry, A.J. Holden and W.J. Stewart. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters 7(25):4773-4776,1996.
    [22]T. Koschny, P. Markos, D. R. Smith. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Physical Review E 68, 065602(R):6871,2003.
    [23]Abul K. Azad, Jianming Dai, Weili Zhang. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters 31(5): 634-636,2006.
    [24]J. S. Hong, M. J. Lancaster. Microstrip Bandpass Filter Using Degenerate Modes of a Novel Meander Loop Resonator. IEEE Microwave and Guided Wave Letters 5(11):371-372,1995.
    [25]F. Magnus, B. Wood, J. Moore. A d.c. magnetic metamaterials. Nature Publishing Group:295-297,2008.
    [26]N. Katsarakis, T. Koschny, M. Kafesaki. Electric Coupling to the magnetic resonance of split ring resonators. Applied Physics Letters 84(15):2943-2945,2004.
    [27]李超.微波异型媒介CSRR的分析及应用.南京理工大学硕士论文:2008-06-01.
    [28]Hu Tao, Willie J. Padilla, Xin Zhang, Richard D. Averitt. Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications. IEEE Journal of Selected Topics in Quantum Electronics (Invited Paper):1-7,2010.
    [29]F. Miyamaru, Y. Saito, M.W. Takeda. Terahertz electric response of fractal metamaterial structures. Physical Review B 77,045124:1-6,2008.
    [30]Nian-Hai Shen, Maria Kafesaki, Thomas Koschny. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B 79,161102(R):1-4,2009.
    [31]Hou-Tong Chen, John F. O'Hara, Abul K. Azad. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics:2(5),295-298,2008.
    [32]X. G. Peralta, M.C. Wanke, C.L. Arrington. Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies. Applied Physics Letters 161113:94-96,2009.
    [33]崔铮.微纳米加工技术及其应用.北京:高等教育出版社.Page 4-7,21-23,29-32.
    [34]王中旭.GaN微波及THz功率器件设计与工艺研究.西安电子科技大学硕士论文:2010-01-01.
    [35]Michael C. Ricci, Hua Xu, Ruslan Prozorov. Tunability of Superconducting Metamaterials. IEEE. Transactions on Applied Superconductivity 17(2):918-921, 2007.
    [36]P. Fabbricatore, S. Farinon, S. Innocenti. Magnetic flux shielding in superconducting strip arrays. Physical Review B 61(9):6413-6421,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700