Galectin-9在病毒性心肌炎发病中的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性心肌炎(viral myocarditis, VMC)是一临床常见心血管系统疾病。早在1899年Fiedler KL就曾报道过3例现代概念的VMC,此后,欧美各国VMC的临床及尸检报道日益增多。20世纪70年代后,中国及日本等亚洲国家相继报道了VMC的发生,近年来尤其在我国,VMC的发病逐年上升,VMC已成为青少年不明原因猝死的主要原因之一。不仅如此,慢性VMC常可导致扩张性心脏病的发生,在美国每年新增扩张性心脏病病人多达100,000人,已成为心脏移植手术的重要原因之一。VMC严重危害生命健康,然而迄今为止,VMC的治疗尚无有效的办法,其根本原因在于VMC的发病机制还不完全清楚,因此,阐明VMC的发病机制具有重要的理论和实践意义。
     目前认为,VMC的发生是一个多因素参与的复杂的过程,病毒感染是VMC重要的病因之一。肠道病毒、巨细胞病毒、腺病毒、流感病毒、肝炎病毒等病毒感染都可以诱发VMC。其中肠道病毒尤其是柯萨奇病毒感染是最常见病因。B3型柯萨奇病毒(coxsackievirus group B type 3, CVB3),微小无衣壳正链RNA病毒,属于小核糖核酸病毒科。早在20世纪50年代,B3型柯萨奇病毒已被发现能累及心肌,导致VMC。流行病学调查中发现,CVB3感染在不同性别人群中发病率和严重程度明显不同,VMC在男性人群中多发,症状也较为严重,并易发展为慢性心肌炎和扩张性心肌病。与人类相似,CVB3感染的雌性和雄性BALB/c小鼠也显示不同严重程度的心肌炎。尽管CVB3感染的发病机制已经研究了很多年,但直到近来才发现多种机制参与了CVB3诱导的VMC的发生、发展和进程。
     CD4+T细胞的免疫偏移可以影响VMC严重性。一方面,Thl型免疫应答被认为是引起心肌组织损伤的主要原因:有研究发现,CD4基因敲除小鼠中CVB3诱导的VMC可以得到有效的缓解,证实了CD4+T细胞在VMC中的作用;Huber等也发现CD4+Thl细胞应答对于CVB3诱导的VMC是必需的。另一方面,CD4+调节性T细胞(regulatory T cells, Tregs)可以降低心肌炎症,缓解心肌炎的发病:Ono等发现,高表达GITR的Foxp3+ Tregs可以控制自身免疫性心肌炎;Huber等证实CVB3病毒突变体可以通过诱导和维持Tregs的数量,有效的缓解心肌炎。
     炎性细胞因子在VMC的发病过程中也发挥重要作用。在易感小鼠中,心肌组织中IL-1β和IL-18水平的增加直接与疾病的严重性呈正相关;在非易感小鼠中,IL-1或TNF-α却能促进心肌炎的发病。本室前期研究发现,外源性注射IL-4可以显著改善CVB3感染小鼠的心肌炎症和心肌炎的严重程度。因此,治疗CVB3诱导的VMC理想的方法就是促进细胞因子向抗炎因子转化,同时诱导或扩增抑制性细胞(?)CD4+ Tregs。
     Galectin-9,β半乳糖苷结合凝集素家族成员,可诱导嗜酸性粒细胞、肿瘤细胞和T细胞凋亡。通过Ca2+ -caspasel信号途径,galectin-9(?)(?)优先诱导活化CD4+T细胞发生凋亡。T细胞免疫球蛋白域和粘蛋白域蛋白-3(T-cell immunoglobulin domain and mucin domain protein-3, Tim-3), galectin-9的受体,选择性表达于终末分化Th1细胞,在Th17、Tregs表面也有一定的表达。Galectin-9在体内外均可以诱导Tim-3表达的细胞发生凋亡。有研究发现,galectin-9治疗可以有效的缓解实验性变态反应性脑炎,一种中枢神经系统脑炎。而且,在胶原诱导的关节炎动物模型以及HSV诱导的损伤模型中,galectin-9通过调节T细胞应答,如抑制Th17的产生,同时促进Tregs的分化和扩增,从而达到治疗疾病的目的。
     在本研究中,我们用CVB3感染的雄性BALB/c小鼠,观察CVB3感染后心肌中galectin-9的表达变化,结果显示CVB3感染后雄性BALB/c小鼠心肌galectin-9的表达显著升高。进一步研究发现galectin-9可以促进Tregs的富集,并有效的缓解CVB3诱导的VMC。那么galectin-9是通过什么机制缓解VMC的发作?是影响病毒复制还是通过调节细胞免疫应答?Galectin-9促进Tregs富集的机制又是什么?因此,在本研究中我们利用CVB3感染的VMC模型,探讨了galectin-9在VMC发病中的作用及相关机制。
     第一部分Galectin-9在病毒性心肌炎发病中的作用
     一、CVB3感染前后galectin-9的表达变化
     Galectins属于β半乳糖苷结合凝集素家族。现有的研究表明,galectins在各种生理或病理过程中发挥重要作用,如免疫炎症反应、肿瘤、动脉粥样硬化和糖尿病等。其中galectin-1,-3,-9在调节免疫应答和炎症反应中发挥重要作用。
     为了研究galectins在CVB3诱导的VMC中的作用,我们首先观察了CVB3感染前后小鼠心肌中galectin-1,-3,-9的表达变化,结果发现CVB3感染可以显著上调小鼠心肌galectin-1,-9 mRNA的表达。由于galectin-1在病毒感染中研究较为清楚,我们进一步关注了CVB3感染前后galectin-9在不同组织中的表达变化,发现CVB3感染后,小鼠心肌、脾脏和肠系膜淋巴结中galectin-9 mRNA的表达显著升高。免疫组化结果也显示CVB3感染增加了小鼠心肌中galectin-9蛋白的表达。
     上述结果提示,galectin-9可能参与了CVB3诱导的VMC的发病。
     二、Galectin-9治疗前后BALB/c小鼠病毒性心肌炎严重程度的差异
     VMC以心肌间质炎性细胞浸润为特征,导致心肌细胞灶性坏死,纤维化,最终导致心脏功能丧失。以CVB3感染小鼠建立心肌炎动物模型,很好地模拟了临床上VMC疾病过程。VMC的判断指标主要有体重减轻、血清学、病理学以及死亡率等。用galectin-9蛋白腹腔注射治疗CVB3感染雄性BALB/c小鼠,结果发现两组小鼠在感染后第3天体重都开始下降,其中未治疗组(PBS组)小鼠体重持续下降,至第7天体重减轻率达15%,而galectin-9治疗组BALB/c小鼠感染后第5天体重开始恢复,随后体重逐渐增加。从血清学指标来看,在感染后第7天,未治疗组BALB/c小鼠血清CK、CK-MB的活性显著升高,cTnI水平也明显升高;而galectin-9治疗组小鼠血清CK、CK-MB的活性和cTnI水平显著低于未治疗组小鼠。心脏组织HE染色显示未治疗组BALB/c小鼠心脏显示片状的炎性细胞浸润和心肌细胞坏死,而galectin-9治疗组小鼠心脏仅有少量炎性细胞浸润;治疗组小鼠心肌炎的炎症面积远小于未治疗组,而且治疗组小鼠心脏浸润CD45+单个核细胞比例显著降低。最后,从死亡率来看,至感染第10天,未治疗组BALB/c小鼠的死亡率高达70%,而galectin-9治疗组小鼠的死亡率仅为15%。综合上述各项指标可以看出,galectin-9治疗可以显著缓解CVB3诱导的VMC。
     三、Galectin-9治疗对CVB3感染小鼠炎症性细胞因子分泌的影响
     炎症性细胞因子如TNF-α、IFN-γ、IL-4和IL-10等在心肌炎的发病过程中发挥重要作用。因此,我们检测了galectin-9治疗对小鼠心脏局部和血清中炎性细胞因子TNF-α、IFN-γ、IL-4和IL-10分泌的影响,发现galectin-9治疗可以显著下调促炎性细胞因子TNF-a和IFN-y的分泌,同时促进抗炎性细胞因子IL-4和IL-10的分泌。
     以上结果显示,galectin-9可以有效的缓解CVB3诱导的VMC,并促进细胞因子微环境向抗炎性转化,证实galectin-9的确参与了VMC的发病。
     第二部分Galectin-9在病毒性心肌炎中的作用机制探讨
     一、Galectin-9对病毒复制的影响
     CVB3感染心肌细胞是诱发VMC的前提条件。由此我们必须排除一个可能即galectin-9缓解CVB3诱导的VMC是由于降低心肌病毒复制造成的。因此我们首先检测了galectin-9治疗前后CVB3感染的BALB/c小鼠心脏组织中CVB3病毒RNA数量和病毒滴度的变化,结果发现galectin-9并没有引起心脏组织中CVB3病毒RNA数量和病毒滴度的改变。
     二、Galectin-9对细胞免疫应答的影响
     由于galectin-9缓解VMC并没有降低心肌病毒复制,我们进一步探讨了galectin-9治疗对细胞免疫应答的影响。结果显示CVB3感染过程中,galectin-9可以显著降低小鼠心脏和脾脏中CD4+T细胞的比例,同时增加Tregs、CD11b+及Gr-1+细胞的数量。由于Tim-3 (galectin-9特异性受体)和TLR4的相互作用在VMC的发病过程中发挥重要作用,我们还检测了galectin-9对Tim-3和TLR4在免疫细胞表面表达的影响,发现galectin-9降低了CD4+T细胞Tim-3的表达,但其在巨噬细胞表面的表达显著升高;同时galectin-9显著降低了TLR4在CDllb+细胞及巨噬细胞表面的表达。
     上述结果提示,galectin-9缓解CVB3诱导的VMC并不是直接降低病毒复制,而是通过调节细胞免疫应答参与心肌炎的发病,Tregs和CD11b+细胞可能参与其中。
     前面的实验结果显示,galectin-9可以有效的缓解CVB3诱导的VMC,我们进一步探讨了其可能的细胞学机制以及是否这种作用依赖于效应T细胞数量的降低和Tregs数量的升高。
     三、Galectin-9对于CD4+T细胞凋亡和增殖的影响
     现有的研究表明,galectin-9可以优先诱导效应CD4+T细胞的凋亡,而在CVB3诱导的VMC模型中,分泌IFN-γ的CD4+T cells是影响疾病严重性的重要因素。因此,我们首先检测了galectin-9对CD4+T细胞凋亡的影响,发现galectin-9可以显著促进CD4+T细胞发生凋亡。进一步研究发现,galectin-9主要诱导CD4+CD2low/int效应T细胞凋亡(>90%),而对于CD4+CD25high Tregs的促凋亡作用甚微(<10%)。我们同时也检测了galectin-9对CD4+ T细胞增殖的影响,发现galectin-9能抑制CD4+T细胞增殖,并主要抑制CD4+CD25low/int效应T细胞的增殖,而并不影响CD4+CD25high Tregs的增殖。Galectin-9差异调节Tregs和效应T细胞凋亡和增殖可能是由于其受体Tim-3的表达差异造成的,相关机制仍需进一步研究。
     四、Galectin-9在诱导调节性T细胞分化中的作用
     Tregs在CVB3诱导的VMC的发病过程中发挥重要作用。为了探讨galectin-9是否影响Tregs应答,我们检测了galectin-9对Tregs分化的影响,发现galectin-9能促进CVB3感染的裸鼠心脏和脾脏中CD4+CD25-T细胞向Tregs转化。
     五、Galectin-9在扩增CDllb+ Gr-1+细胞中的作用
     前面的实验结果发现,galectin-9能显著增加CD11b+和Gr-1+细胞的比例,而CD11b和Gr-1是髓系来源抑制细胞(myeloid suppressor cells,MSCs)的特有表型,于是我们检测了galectin-9在调节CDl lb+Gr-1+细胞扩增中的作用,结果显示galectin-9能显著扩增CD11b+Gr-1+细胞。通过分析这群细胞的表型和细胞因子分泌情况,我们发现其具有髓系来源抑制细胞的表型。
     许多研究表明,髓系来源抑制细胞可以促进Tregs的扩增。因此,我们接着研究了CD11b+Gr-1+细胞在扩增Tregs中的作用,结果显示,CD11b+Gr-1+细胞可以促进CD4+T细胞中Tregs的扩增,这种作用部分依赖于IL-10,而不依赖于TGF-β。
     综上所述,本研究首次阐明了galectin-9在CVB3诱发的VMC发病中的作用;证实了galectin-9是通过调节细胞免疫应答参与了VMC的发病,并未影响病毒复制;多种机制参与了galectin-9对VMC的调节:Galectin-9差异调节效应T细胞和Tregs增殖和凋亡;CD11b+Gr-1+细胞的积累和Tregs的分化。本研究在一定程度上阐明VMC的发病机制,同时也为临床提供了一个有效的治疗靶点和理论支持。
The incidence and severity of heart disease, including myocarditis, is higher among men than women. Viral myocarditis (VMC), or inflammation of the heart, is a principal cause of heart failure in young adults often leading to chronic heart disease and dilated cardiomyopathy (DCM). Viral infection is one of the important reasons for VMC. Among the viruses, Coxsackievirus group B type 3 (CVB3) infection accounts for more than half of VMC cases. CVB3 is a member of the picomavirus family of small, non-enveloped, positive sense, RNA viruses, and are major etiological agents in clinical viral myocarditis. A murine model of CVB3 induced myocarditis has been established which mimicks many of the characteristics of the clinical disease. Although the pathogenesis of CVB3 infection has been studied for decades, it is only recently recognized that many variables, including viral genome structure, host genetic background, the age, and the immune status of the host, interact with each other to determine the initiation, occurrence and progression of viral myocarditis.
     The bias of CD4+ Th immune response appears to influence the severity of myocarditis. On the one hand, the Thl immune response, rather than the Th2 immune response, is considered to be detrimental to heart tissue. Opavsky et al. found that the severity of disease is attenuated in CD4 knockout mice, confirming the role of CD4+ T cells in CVB3 induced myocarditis. Huber et al. found CD4+Thl cell responses are essential to CVB3 induced myocarditis susceptibility. On the other hand, regulatory T cells play a major role in protection against inflammation in the heart, and their alteration by viral infection may contribute substantially to the outcome of myocarditis. Recent studies have shown that autoimmune myocarditis and multiorgan inflammation are controlled by Foxp3+ T cells highly expressing the glucocorticoid-induced TNF receptor familyrelated protein (GITR). Depletion of the GITR+ T regulatory cells allowed activation of autoimmune heart disease. Huber and colleagues described myocarditis could be overcome by a coxsackievirus variant which maintained and induced regulatory T cells function.
     Furthermore, cytokines play a key role in CVB3 induced myocarditis. In susceptible mice IL-1βand IL-18 play a significant role in the pathogenesis of CVB3 induced myocarditis. IL-1 or TNF-a can promote myocarditis in resistant B10.A mice. Our previous study indicated that exogenous administration of IL-4 is found to improve myocardial inflammation and the severity of myocarditis in mice infected with CVB3. Thus, therapeutic strategies of CVB3 induced myocarditis should consider regulation of regulatory T cells (Tregs) differentiation as well as inhibition of pro-inflammatory cells and Thl cytokines.
     To shift the cytokine balance to anti-inflammatory cytokines and to delete pro-inflammatory Thl cells that closely associate with etiology of CVB3 induced myocarditis, it is necessary to discover novel biological substances that can selectively suppress the function or delete activated Thl cells, at the same time expanding Tregs. Galectin-9, one of the (3-galactoside binding animal lectins belonging to the galectin family, induces apoptosis of eosinophils, cancer cells, and T cells. Galectin-9 preferentially induces apoptosis of activated CD4+ T cells through Ca+ influx-calpain-caspasel pathway. Zhu et al. have recently demonstrated that galectin-9 is a ligand of T cell immunoglobulin- and mucin domain-containing molecule3 (TIM-3) that was expressed selectively on terminally differentiated Thl cells, Th17, Tregs, and that galectin-9 induces apoptosis of TIM-3-expressing cells in vitro and in vivo. Furthermore, exogenous administration of galectin-9 ameliorates experimental allergic encephalitis, an autoimmune disease of the central nervous system. More recently it has been shown that galectin-9 ameliorates a mouse collagen-induced arthritis (CIA) model and HSV induced lesions by suppressing the generation of Th17, promoting the induction of regulatory T cells.
     In this study, we compared galectin-9 expression in different organs of males before and after CVB3 infection. Then we examined the effects of in vivo treatment with recombinant galectin-9 on the development of myocardial inflammation in male mice infected with CVB3. Meanwhile, we analyzed the modulation of immune cells in the heart and spleen of CVB3 infected male mice in vivo with or without recombinant galectin-9 treatment and explored the mechanisms involved.
     The purpose of the present study was to clarify the role of galectin-9 in the development of murine acute myocarditis induced by CVB3 and its possible mechanisms involved.
     1. Change of galectin-9 expression before and after CVB3 infection
     Galectins are a family of animal lectins that bindβ-galactosides. Current research indicates that galectins play important roles in diverse physiological and pathological processes, including immune and inflammatory responses, tumour development and progression, neural degeneration, atherosclerosis, diabetes. Among these, galectin-1,-3,-9 are the key regulators of immune response and inflammation. To better understand the mechanisms responsible for increased heart disease in male mice, we first compared galectins expression in the heart from male BALB/c mice before and after CVB3 infection. We found galectin-9 mRNA expression as well as galectin-1 in the heart from males was up-regulated after CVB3 infection. Then we further focused on galectin-9 mRNA expression in different organs, and found it was significantly higher in the heart as well as spleen and mesenteric lymph node (MLN) after CVB3 infection by RT-PCR assessment. Subsequently we confirmed the higher expression of galectin-9 protein in the heart by immunohistochemistry after CVB3 infection.
     2. Differential severity of CVB3 induced myocarditis before and after galectin-9 treatment
     Viral myocarditis is characterized by inflammatory cells infiltration in the interstitial tissue of myocardium with the result of myocyte focal necrosis or fibrosis and finally the loss of heart function. It well mimics the characteristics of clinical viral myocarditis using CVB3 infected myocarditis murine model with the indices of serology, pathology and body weight reduced rate as well as mortality. From day 3 post-infection, the body weight of PBS treated mice decreased obviously. On day 7 post-infection, the body weight decreased 15%. While in galectin-9 treated mice, on day 3 post-infection, the body weight also reduced but then recovered on day 5. The activity of serum Creatine Kinase (CK) and MB isoenzyme of Creatine Kinase (CK-MB) was significantly down-regulated and the level of Cardiac Troponin I (cTnl) was also decreased in galectin-9 treated BALB/c mice on day 7 post-infection. The pathological studies, the most direct and important diagnosis criteria revealed that in PBS treated mice, on day 7 post-infection, H.E showed the focal infiltration of inflammatory cells and the massive necrosis of myocytes. While in galectin-9 treated mice, there was no obvious inflammatory cells infiltration and no myocyte necrosis. Moreover, lower frequency of CD45+ immune cells in the heart of galectin-9 treated mice than PBS treated mice confirmed the above histological findings. As far as mortality was concerned, the mortality in CVB3 infected male mice was 70%, which was much higher than that in galectin-9 treated mice with the mortality of 15%. From the above results, the conclusion could be drawn that galectin-9 alleviated the severity of viral myocarditis after CVB3 infection.
     3. Effects of galectin-9 treatment on inflammatory cytokines production
     Inflammatory cytokines, such as TNF-α, IFN-γ, IL-4 and IL-10 play a role in the initiation of inflammatory cell infiltration in the lesions. To clarify whether galectin-9 treatment regulates cytokines production, levels of inflammatory cytokines (TNF-α, IFN-γ, IL-4, IL-10) in myocardial tissue and serum from CVB3 infected mice were assessed with or without galectin-9 administration. CVB3 infection resulted in the increased levels of TNF-αand IFN-γin the mice. Galectin-9 treatment led to significant decreased levels of TNF-αand IFN-γin both myocardial tissue and serum of the infected mice, whereas galectin-9 increased the levels of IL-4 and IL-10. PartⅡPossible mechanisms underlies galectin-9 functions
     1. Effects of galectin-9 treatment on CVB3 replication
     CVB3 can infect myocytes and replicate in cells, which is the prerequisite to induce VMC. To exclude the possibility that galectin-9 could effectively rescue mice from lethal myocarditis was due to decreased CVB3 replication, the viral load in heart tissues was also assessed by real-time PCR and plaque assay, and it was found that galectin-9 treatment does not significantly change myocardial viral burden, suggesting that the alleviation of viral myocarditis by galectin-9 is not due to the direct down-regulation of viral replication.
     2. Effects of galectin-9 treatment on immune response
     Since alleviated inflammation in galectin-9 treated mice was not due to decreased viral replication in the heart, we next performed experiments to clarify whether galectin-9 modulates the balance of T immune response and influences the number of Tregs. Results showed that galectin-9 administration had significantly decreased percentage of CD4+ T cells, whereas it had remarkably increased percentage of Tregs as well as CDllb+ or Gr-1+ cells in heart and spleen from CVB3 infected mice. We further compared the level of Tim-3 (T cell Ig and mucin-3, the receptor of galectin-9) and TLR4 on immune cells isolated from the heart of males with or without galectin-9 treatment. Tim-3 expression was significantly reduced on CD4+ T cells but increased on macrophages from heart of males on day 7 p.i., while TLR4 expression was significantly reduced on CDllb+ cells and macrophages.
     Since administration of galectin-9 alleviated CVB3 induced myocarditis, we addressed to analyze cellular mechanisms and whether the effects are entirely due to loss of pathogenic T cells and increased Tregs.
     3. Influence of galectin-9 treatment on the apoptosis and proliferation of CD4+ T cells
     Prior in vitro studies have indicated that galectin-9 triggering of pro-inflammatory CD4+ T cells causes them to undergo apoptosis. In the model of CVB3 induced myocarditis, since inflammation appeared to be mainly orchestrated by IFN-y producing CD4+ T cells, so we detected the effects of galectin-9 on the induction of apoptosis of CD4+ T cells. As shown in results, about 50% CD4+ T cells underwent apoptosis after galectin-9 treatment, perhaps accounting in part for the anti-inflammatory effect of galectin-9. Furthermore, while about 90% of CD4+CD25low/int effector T cells underwent apoptosis,10% of CD4+CD25high regulatory T cells were annexin V+
     We further explored whether in vivo galectin-9 treatment would influence the proliferation of CD4+ T cells. As shown, BrdU+ proliferating CD4+ T cells increased in heart on day 7 after CVB3 infection, whereas it significantly decreased in mice receiving galectin-9 treatment. The decreased proliferative response mainly existed in the CD4+CD25low/int effector T cells.
     These results indicated that in vivo galectin-9 administration efficiently down-regulated CD4+ T cell responses. The differential regulation of apoptosis and proliferation of effctor and regulatory T cells by galectin-9 maybe due to the differential expression of Tim-3.
     4. Effects of galectin-9 treatment on the differentiation of regulatory T cells
     In prior experiments have established that the severity of CVB3 induced myocarditis can be modulated by regulatory T cells. To determine whether galectin-9 administration to CVB3 infected mice had any influence on the Tregs response, experiments were done to clarify whether galectin-9 is involved in the differentiation of CD4+CD25+Foxp3+ Tregs. Thus, we transferred naive CD4+CD25-T cells into CVB3 infected nude mice on day 3 post-infection and galectin-9 was i.p. injected everyday till day 7. These mice were sacrificed on day 7 post-infection and heart infiltrated cells and splenocytes were separated, then the percentage of CD4+CD25+ Foxp3+ Tregs was determined by FACS. Results showed that there was a significant increase of CD4+ CD25+ Foxp3+ Tregs in the heart from galectin-9 treated mice compared to non-treated mice. In addition, the percentage of CD4+CD25+Foxp3+ Tregs in spleen from galectin-9 treated mice was significantly higher than non-treated mice. From the data described above, we clarified that galectin-9 promoted the induction of Tregs during CVB3 induced myocarditis in vivo.
     5. Influence of galectin-9 treatment on expansion of myeloid suppressor cells
     Galectin-9 treated animals, as compared with control animals, showed significantly expanded populations of CDllb+ and Gr-1+ cells, which phenotypes possessed by myeloid suppressor cells. So we detected the influence of galectin-9 treatment on expansion of CDllb+Gr-l+ cells. We found that galectin-9 promoted the expansion of CDllb+Gr-1+ cells, which expressed low level of F4/80, CD80,CD86 and IAd, a phenotypes possessed by myeloid suppressor cells. They also could secret IL-10 and TGF-β. Moreover, CDllb+Gr-1+ cells increased the number of regulatory T cells by expansion of previously existed cells, which partly depended on IL-10 production.
     In conclusion, the present study demonstrated that galectin-9 may play a crucial role in CVB3 induced myocarditis and it may be one of the novel therapeutic candidates that can suppress autoimmune inflammation by regulating the T cell differentiation and the balance of pathogenic and regulatory T cells, such that pro-inflammatory cytokines production are inhibited and anti-inflammatory cytokines are enhanced.
引文
1. Jarcho. Fiedler on acute interstitial myocarditis (1899) [J]. Am J Cardiol.1973; 32:221-223.
    2. Schoub B.D., Johnson S., McAnerney J.M., et al. Epidemic coxsackie B virus infection in Johannesburg [J]. South Africa. J Hyg.1985; 95:447-455.
    3. Dechkum N., Pangsawan Y., Jayavasu C., et al. Coxsackie B virus infection and myopericarditis in Thailand,1987-1989 [J]. Southeast Asian J Trop Med Public Health.1998; 29:273-276.
    4. Khetsuriani N., LaMonte-Fowlkes A., Oberste M.S., et al. Enterovirus surveillance-United States,1970-2005 [J]. MMWR Surveill Summ.2006; 55(SS08):1-20.
    5. Mendelsohn M. E., Karas R.H. The protective effects of estrogen on the cardiovascular system [J]. N Engl J Med.1999; 340:1801-1811.
    6. Caforio A.L., Tona F., Bottaro S., et al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy [J]. Autoimmunity. 2008; 41:35-45.
    7. Towbin J.A., Lowe A.M., Colan S.D., et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children [J]. JAMA.2006; 296:1867-1876.
    8. Curnen E.C. Human disease associated with the Coxsackie viruses [J]. Bull N Y Acad Med.1950; 26:335-342.
    9. Easton A.J., Eglin R.P. The detection of coxsackievirus RNA in cardiac tissue by in situ hybridization [J]. J Gen Virol.1988; 69:285-291.
    10. Blumohr T., Klocking R., Sprossig M., et al. The coxsackievirus-infected mouse: an animal model for the study of virus myocarditis [J]. Acta Biol Med Ger.1976; 35:103-109.
    11. Badorff C., Fichtlscherer B., Rhoads R.E., et al. Nitric oxide inhibits dystrophin proteolysis by coxsackieviral protease-A through S-nitrosylation:A protective mechanism against enteroviral cardiomyopathy [J]. Circulation.2000; 102: 2276-2281.
    12. Henke A., Nestler M., Strunze S., et al. The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology.2001; 289:15-22.
    13. Feldman A.M., McNamara D. Myocarditis [J]. N Engl J Med.2000; 343: 1388-1398.
    14. Huber S.A., Sartini D., Exley M. Vgamma4+ T cells promote autoimmune CD8+ cytolytic T-lymphocyte activation in coxsackievirus B3-induced myocarditis in mice:role for CD4+Thl cells [J]. J Virol.2002; 76:10785-10790.
    15. Opavsky M.A., Penninger J., Aitken K., et al. Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection [J].Circ Res.1999; 85:551-558.
    16. Huber S., Shi, C., Budd, R.C. Gammadelta T cells promote a Thl response during coxsackievirus B3 infection in vivo:role of Fas and Fas ligand [J]. J Virol.2002; 76 (13):6487-6494.
    17. Huber S., Budd R.C., Rossner K., et al. Apoptosis in coxsackievirus B3-induced myocarditis and dilated cardiomyopathy [J]. Ann N Y Acad Sci.1999; 887: 181-90.
    18. Ono M, Shimizu J., Miyachi Y., et al. Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein(high), Foxp3-expressing CD25+ and CD25- regulatory T cells [J]. J Immunol.2006; 176:4748-4756.
    19. Shevach E.M., Stephens G.L. The GITR-GITRL interaction:co-stimulation or contrasuppression of regulatory activity [J]? Nat Rev Immunol.2006; 6:613-618.
    20. Huber S., Feldman A.M., Sartini D. Coxsackievirus B3 induces T regulatorycells which inhibit cardiomyopathy in TNF-a transgenic mice [J]. Circ Res.2006; 99: 1109-1116.
    21. Fairweather D., Yusung S., Frisancho S., et al. IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta and IL-18-associated myocarditis and coxsackievirus replication [J]. J Immunol.2003; 170:4731-4737.
    22. Lane J.R., Neumann D.A., Lafond-Walker A., et al. Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B1 mice[J]. J Exp Med.1992; 175:1123-1129.
    23. Jiang Z., Xu W., Li K., et al. Remission of CVB3-induced viral myocarditis by in vivo Th2 polarization via hydrodynamics-based interleukin-4 gene transfer [J]. J Gene Med.2008; 10:918-929.
    24. Saita N., Goto E., Yamamoto T., et al. Association of galectin-9 with eosinophil apoptosis [J]. Int Arch Allergy Immunol.2002; 128:42-50.
    25. Ageshita T., Kashio Y., Yamauchi A., et al. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance [J]. Int J Cancer.2002; 99:809-816.
    26. Ada J., Ota K., Kumar A., et al. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin [J]. J Clin Invest 1997; 99:2452-2461.
    27. Matsumoto R., Matsumoto H., Seki M., et al. a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes [J]. J Biol Chem. 1998; 273:16976-16984.
    28. Kashio Y., Nakamura K., Abedin M.J., et al. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway [J]. J Immunol.2003; 170: 3631-3636.
    29. Zhu C., Anderson A.C., Schubart A., et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity [J]. Nat Immunol.2005; 6: 1245-1252.
    30. Suboi T., Abe H., Nakagawa R., et al. Galectin-9 protects mice from the Shwartzman reaction by attracting prostaglandin E2-producing polymorphonuclear leukocytes [J]. Clin Immunol.2007; 124(2):221-33.
    31. Fukushima A., Tamaki S., Ken F. Roles of Galectin-9 in the Development of Experimental Allergic Conjunctivitis in Mice [J]. Int Arch Allergy Immunol 2008; 146:36-43
    32. Seki M., Oomizu S., Sakata K., et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis [J]. Clin Immunol.2008; 127:78-88.
    33. Sharvan S., Amol S., Hirashima M., et al. Role of Tim-3/Galectin-9 Inhibitory Interaction in Viral-Induced Immunopathology:Shifting the Balance toward Regulators [J]. J Immunol.2009,182:3191-3201.
    34. Pober J.S. Endothelial activation:intracellular signaling pathways [J]. Arthritis Res.2002; 4:S109-116.
    35. Huber S.A., Sartini D. Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis [J]. J Virol.2005; 79:2659-2665.
    36. Huber S.A., Feldman A.M., Sartini D. Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice [J]. Circ Res.2006; 99:1109-1116.
    37. Gay R.T., Belisle S., Beck M.A., et al. An aged host promotes the evolution of avirulent coxsackievirus into a virulent strain [J]. Proc Natl Acad Sci. USA.2006; 103:13825-13830.
    38. Fairweather D., Rose N. R. Coxsackievirus-induced myocarditis in mice:a model of autoimmune disease for studying immunotoxicity [J]. Methods.2007; 41: 118-122.
    39. Fairweather D., Rose N.R. Coxsackievirus-induced myocarditis in mice:a model of autoimmune disease for studying immunotoxicity [J]. Methods.2007; 41: 118-122.
    40. Afanasyeva M., Georgakopoulos D., Belardi D.F., et al. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function [J]. Am J Pathol.2004; 164:807-815.
    41. Huber S.A., Mortensen A., Moulton G. Modulation of cytokine expression by CD4+T cells during coxsackievirus B3 infections of BALB/c mice initiated by cells expressing the gamma delta T-cell receptor [J]. J Virol.1996; 70: 3039-3044.
    42. Allan J.J., Feld R.D., Russell A.A., et al. Cardiac troponin I levels are normal or minimally elevated after transthoracic cardioversion [J]. J Am Coll Cardiol.1997; 30:1052-1056.
    43. Cohn R.D., Durbeej M., Moore S.A., et al. Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex [J]. J Clin Invest.2001; 107:R1-7.
    44. Bobin A.N., Parkhommenko I. Pathomorphology and morphogenesis of myocarditis in typhoid fever [J]. Arkh Patol.2005; 67:38-40.
    45. Lyden D., Olszewski J., Huber S. Variation in susceptibility of Balb/c mice to coxsackievirus group B type 3-induced myocarditis with age [J]. Cell Immunol. 1987; 105:332-339.
    46. Huber S.A., Pfaeffle B. Differential Thl and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3 [J]. J Virol. 1994; 68:5126-5132.
    47. Elola M.T., Wolfenstein-Todel C., Troncoso M.F., et al. Galectins:matricellular glycan-binding proteins linking cell adhesion, migration, and survival [J]. Cell Mol Life Sci.2007; 64:1679-1700.
    48. Liu, F.T., Patterson, R.J. and Wang, J.L. Intracellular functions of galectins [J]. Biochim Biophys Acta.2002; 1572:263-273.
    49. Rabinovich G.A., Liu F.T., Hirashima M., et al. An emerging role for galectins in tuning the immune response:lessonsfrom experimental models of inflammatory disease, autoimmunity and cancer [J]. Scand J Immunol.2007; 66:143-158.
    50. Hahn H.P., Pang M., He J., et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase-and cytochrome c-independent T cell death [J]. Cell Death Differ.2004; 11:1277-1286.
    51. Matarrese P., Tinari A., Mormone E., et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission [J]. J Biol Chem.2005; 280:6969-6985.
    52. Stowell S.R., Karmakar S., Stowell C. J., et al. Human galectin-1,-2, and-4 induce surface exposure of phosphatidylserine in activated human neutrophils but not inactivated T cells [J]. Blood.2007; 109:219-227.
    53. Toscano M.A., Bianco G.A., Ilarregui J.M., et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death [J]. Nat Immunol.2007; 8:825-834.
    54. Garin M.I., Chu C.C., Golshayan D., et al. Galectin-1:a key effector of regulation mediated by CD4+CD25+T cells [J]. Blood.2007; 109:2058-2065.
    55. Mina-Osorio P., Soto-Cruz I. and Ortega E. A role for galectin-3 in CD13-mediated homotypic aggregation of monocytes [J]. Biochem Biophys Res Commun.2007; 353:605-610.
    56. Sano H., Hsu D.K., Apgar J.R., et al. Critical role of galectin-3 in phagocytosis by macrophages [J]. J Clin Invest.2003; 112:389-397.
    57. Zuberi R.I., Hsu D. K, Kalayci O., et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma [J]. Am J Pathol.2004; 165:2045-2053.
    58. Lopez E., Pozo V., Miguel T., et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model [J]. J Immunol. 2006; 176:1943-1950.
    59. Kandolf R., Ameis D., Kirschner P., et al. In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization:an approach to the diagnosis of viral heart disease [J]. Proc Natl Acad Sci. USA.1987; 84:6272-6276.
    60. Easton A.J., Eglin R.P. The detection of coxsackievirus RNA in cardiac tissue by in situ hybridization [J]. J Gen Virol.1988; 69:285-291.
    61. Loria R.M., Kibrick S., Broitman S.A. Peroral infection with group B coxsackievirus in the newborn mouse:a model for human infection [J]. J Infect Dis.1974; 130:225-230.
    62. Blumohr T., Klocking R., Sprossig M., et al. The coxsackievirus-infected mouse: an animal model for the study of virus myocarditis [J]. Acta Biol Med Ger.1976; 35:103-109.
    63. Lenzo J.C., Manfield J.P., Sivamoorthy S., et al. Cytokine expression in murine cytomegalovirus-induced myocarditis:modulation with interferon-a therapy. Cellular Immunol.2003; 223:77-86.
    64. Eriksson U., Kurrer M.O., Schmitz N., et al. Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3 [J]. Circulation.2003; 107:320-325.
    65. Tanaka T., Kanda T., McManus B.M., et al. Overexpression of interleukin-6 aggravates viral myocarditis:impaired increase in tumor necrosis factor-a. J Mol Cell Cardiol [J].2001; 33:1627-1635.
    66. Henke A., Mohr C., Sprenger H., et al. Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL-1 beta, and IL-6 in human monocytes [J]. J Immunol.1992; 148:2270-2277.
    67. Hober D., Andreoletti L., Shen L. et al. Coxsackievirus B3-induced chronic myocarditis in mouse:use of whole blood culture to study the activation of TNF alpha-producing cells [J]. Microbiol Immunol.1996; 40:837-845.
    68. Gluck B., Schmidtke M., Merkle I., et al. Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice [J]. J Mol Cell Cardiol.2001; 33:1615-1626.
    69. Kim J.M., Lim B.K., Ho S.H., et al. TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis [J]. Biochem Biophys Res Commun.2006; 344: 765-771.
    70. Wang J., Takeuchi H., Sonobe Y., et al. Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population [J]. Proc Natl Acad Sci. USA.2008; 105:3915-3920.
    71. Aricha R., Feferman T., Fuchs S., et al. Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis [J]. J Immunol.2008; 180: 2132-2139.
    72. Lan R.Y., Mackay I.R., Gershwin M.E. Regulatory T cells in the prevention of mucosal inflammatory diseases:patrolling the border [J]. J Autoimmun.2007; 29: 272-280.
    73. Sacks D., Anderson C. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice [J]. Immunol Rev.2004; 201: 225-238.
    74. Sempere J.M., Soriano V., Benito J.M. T regulatory cells and HIV infection [J]. AIDS Rev.2007; 9:54-60.
    75. Kinter A.L., Horak R., Sion M., et al. CD25+ regulatory T cells isolated from HIV-infected individuals suppress the cytolytic and nonlytic antiviral activity of HIV-specific CD8+ T cells in vitro [J]. AIDS Res Hum Retro viruses.2007; 23: 438-450.
    76. Yang J.H., Zhang Y.X., Yu R.B., et al. CD4+CD25+regulatory T cells suppress CD4+ T cell responses in patients with persistent hepatitis C virus infection [J]. Zhonghua Nei Ke Za Zhi.2006; 45:29-33.
    77. Manigold T., Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections:facts and controversies [J]. Lancet Infect Dis. 2007; 7:804-813.
    78. Fernandez M.A., Puttur F.K., Wang Y.M., et al. T regulatory cells contribute to the attenuated primary CD8+ and CD4+ T cell responses to herpes simplex virus type 2 in neonatal mice [J]. J Immunol.2008; 180:1556-1564.
    79. Fukaura H., Kent S.C., Pietrusewicz M.J., et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-betal-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients [J]. J Clin Invest.1996; 98:70-77.
    80. Groux H., O'Garra A., Bigler M., et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.Nature.1997; 389:737-742.
    81. Asseman C., Powrie F. Interleukin 10 is a growth factor for a population of regulatory T cells [J]. Gut.1998; 42:157-158.
    82. Yuan J., Cheung P.K., Zhang H., et al. Phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts [J]. Lab Invest.2004.84:703-714
    83. Fukata M., Breglio K., Chen A., et al. The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease [J]. J Immunol.2008; 180:1886-1894.
    84. Lim B.K., Nam J.H., Gil C.O., et al. Coxsackievirus B3 replication is related to activation of the late extracellular signal-regulated kinase (ERK) signal [J].Virus Res.2005; 113:153-157.
    85. Opavsky M.A., Martino T., Rabinovitch M., et al. Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis [J]. J Clin Invest.2002; 109:1561-1569.
    86. Woodruff J.F., Woodruff J.J. Involvement of T lymphocytes in the pathogenesis of coxsackievirus B3 heart disease. J Immunol.1974; 113:1726-1734.
    87. Frisancho-Kiss S., Davis S. E., Nyland J. F, et al. Cutting edge:cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease [J]. J Immunol.2007; 178(11):6710-6714.
    88. Dittmer U., He H., Messer R.J., et al. Functional impairment of CD8+T cells by regulatory T cells during persistent retroviral infection [J]. Immunity.2004; 20: 293-303.
    89. Cabrera R., Tu Z., Xu Y, et al. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection [J]. Hepatology.2004; 40: 1062-1071.
    90. Kinter A.L., Hennessey M., Bell A., et al. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+and CD8+HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status [J]. J Exp Med.2004; 200:331-343.
    91. Suvas S., Kumaraguru U., Pack C.D., et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses [J]. J Exp Med.2003; 198:889-901.
    92. Suvas S., Azkur A.K., Kim B.S., et al. CD4+CD25+ regulatory T cells control the severity of viral immuno-inflammatory lesions [J]. J Immunol.2004; 172: 4123-4132.
    93. Long S.A. and Buckner J.H. Combination of rapamycin and IL-2 increases de novo induction of human CD4+CD25+FOXP3+ T cells [J]. J Autoimmun.2008; 30(4):293-302.
    94. Granelli-Piperno A., Golebiowska A., Trumpfheller C., et al. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation [J]. Proc Natl Acad Sci. USA.2004; 101: 7669-7674.
    95. Fantini M.C., Becker C., Tubbe I., et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Thl mediated experimental colitis [J]. Gut. 2006; 55:671-680.
    96. Huber S., Schramm C., Lehr H.A., et al. Cutting edge:TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells [J]. J Immunol.2004; 173:6526-6531.
    97. Bronte V., Apolloni E., Cabrelle A., et al. Identification of a CD11b+/Gr-1+ /CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells [J]. Blood.2000; 96:3838-3846.
    98. Rodriguez P.C., Hemandez C.P., Quieeno D., et al. Arginase I in myeloid suppressor cells is induced by cox-2 in lung carcinoma [J]. J Exp Med.2005; 202: 931-939.
    99. Valeriya P., Makaren P., Vishal B., et al. CDllb+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress [J]. J Immunol.2006; 176: 2085-2094.
    100.Ambrosino E., Michela S., Manuela I., et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance [J]. Cancer Res.2006; 66:7734-7740.
    101.Huang B., Pan P.Y., Li Q., et al. Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host [J]. Cancer Res.2006; 66:1123-1131.
    102.MacDonald Kelli P.A., Vanessa R., Clouston Andrew D., et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells [J]. J Immunol. 2005; 174:1841-1850.
    103. Hoechst B., Ormandy L.A., Matthais B., et al. A New population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T Cells [J]. Gastroenterology.2008;135:234-243
    104. Paolo S., Stephanie M., Kimberly N., et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells [J]. Cancer Res.2008; 68(13):5439-49
    105. Valerie D., Ana A., Jozsef K., et al. Tim-3:Galectin-9 pathway expands myeloid suppressor cells [J]. Clin Immunol.2008; 127(S1):S12
    1. Cooper D.N. Galectinomics:finding themes in complexity. Biochim Biophys Acta 2002, 1572:209-231
    2. Cho M. and Cummings R.D. Galectin-1:oligomeric structure and interactions with polylactosamine. Trends Glycosci Glycotech 1997,9:47
    3. Hirabayashi J. et al. () Oligosaccharide specificity of galectins:a search by frontal affinity chromatography. Biochim Biophys Acta 2002,1572:232-254
    4. Fred Brewer C. Binding and cross-linking properties of galectins. Biochim Biophys Acta 2002,1572:255-262
    5. Sacchettini J.C., Baum L.G. and Brewer C.F. Multivalent protein-carbohydrate interactions. A new paradigm for super molecular assembly and signal transduction. Biochemistry 2001,40:3009-3015
    6. Elola M.T. et al. Galectins:matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 2007,64:1679-1700
    7. Ochieng J., Furtak V. and Lukyanov P. Extracellular functions of galectin-3. Glycoconj J2004,19:527-535
    8. Liu F.T., Patterson R.J. and Wang J.L. Intracellular functions of galectins. Biochim Biophys Acta 2002,1572:263-273
    9. Liao D.I. et al. Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci USA 1994,91:1428-1432
    10. Hsu D.K. and Liu F.T. Regulation of cellular homeostasis by galectins. Glycoconj J 2004,19:507-515
    11. He J. and Baum L.G. Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 2004,279:4705-4712
    12. Rabinovich G.A. et al. Galectins and their ligands:amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 2002,23:313-320
    13. Rubinstein N. et al. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens 2004,64:1-12
    14. Seelenmeyer C. et al. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J Cell Biol 2005,171:373-381
    15. Vyakarnam A. et al. Evidence for a role for galectin-1 in pre-mRNA splicing. Mol Cell Biol 1997,17:4730-4737
    16. Gauthier L. et al. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 2002,99:13014-13019
    17. Rossi B. et al. Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J Immunol 2006,177:796-803
    18. Yu X., Siegel R. and Roeder R.G. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation. J Biol Chem 2006,281:15505-15516
    19. Perillo N.L. et al. Apoptosis of T cells mediated by galectin-1. Nature 1995,378: 736-739
    20. Rabinovich G.A. et al. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 2007,66:143-158
    21. Hernandez J.D. and Baum L.G. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 2002,12:127R-136R
    22. Hahn H.P. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase-and cytochrome c-independent T cell death. Cell Death Differ 2004,11:1277-1286
    23. Matarrese P. et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem 2005,280:6969-6985
    24. Stowell S.R. et al. Human galectin-1,-2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 2007,109:219-227
    25. Toscano M.A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 2007,8:825-834
    26. Garin M.I. et al. Galectin-1:a key effector of regulation mediated by CD4+CD25+ T cells.Blood 2007,109:2058-2065
    27. Barrionuevo P. et al. A novel function for galectin-1 at the crossroad of innate and adaptive immunity:galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J Immunol 2007,178:436-445
    28. Correa S.G. et al. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology 2003, 13:119-128
    29. Fulcher J.A. et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J Immunol 2006,177:216-226
    30. Perone M.J. et al. Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells. J Immunol 2006,176:7207-7220
    31. Pacienza N. et al. The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. FASEB J 2008,22:1113-1123
    32. Blois S.M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 2007, 13:1450-1457
    33. Levi G., Tarrab-Hazdai R. and Teichberg V.I. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol 1983,13: 500-507
    34. Offner H. et al. Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 1990,28:177-184
    35. Rabinovich G.A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 1999,190:385-398
    36. Santucci L. et al. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 2000,31:399-406
    37. Santucci L. et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003,124:1381-1394
    38. Baum L.G. et al. Amelioration of graft versus host disease by galectin-1. Clin Immunol 2003,109:295-307
    39. Toscano M.A. et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2-and T regulatory-mediated anti-inflammatory responses. J Immunol 2006,176:6323-6332
    40. Perone M.J. et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J Immunol 2006,177:5278-5289
    41. Bianco G.A. et al. Impact of protein-glycan interactions in the regulation of autoimmunity and chronic inflammation. Autoimmun Rev 2006,5:349-356
    42. Camby I. et al. Galectin-1:a small protein with major functions. Glycobiology 2006,16: 137R-157R
    43. Liu F.T. and Rabinovich G.A. Galectins as modulators of tumour progression. Nat Rev Cancer 2005,5:29-41
    44. Paz A. et al. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 2001,20:7486-7493
    45. Elad-Sfadia G. et al. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 2002,277: 37169-37175
    46. Camby I. et al. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol 2002,61:585-596
    47. Mathieu V. et al. Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol 2007,127:2399-2410
    48. Rubinstein N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 2004,5:241-251
    49. Gandhi M.K. et al. Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 2007,110:1326-1329
    50. Juszczynski P. et al. The API-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 2007,104:13134-13139
    51. Thijssen V.L. et al. Galectin-1 is essential in tumor angiogenesis and is a target for anti-angiogenesis therapy. Proc Natl Acad Sci USA 2006,103:15975-15980
    52. Jung E.J. et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 2007,120:2331-2338
    53. He J. and Baum L.G. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest 2006,86:578-590
    54. Lobsanov Y.D. et al. Crystallization and preliminary X-ray diffraction analysis of the human dimeric S-Lac lectin (L-14-Ⅱ). J Mol Biol 1993,233:553-555
    55. Lobsanov Y.D. et al. X-ray crystal structure of the human dimeric S-Lac lectin, L-14-11, in complex with lactose at 2.9-A resolution. J Biol Chem 1993,268:27034-27038
    56. Sturm A. et al. Human galectin-2:novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 2004,173:3825-3837
    57. Paclik D. et al. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med 2007,55: 457-461
    58. Ozaki K. et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature 2004,429:72-75
    59. Gorski J.P. et al. New alternatively spliced form of galectin-3, a member of the betagalactoside-binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif. J Biol Chem 2002,277: 18840-18848
    60. Seetharaman J. et al. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem1998,273:13047-13052
    61. Birdsall B. et al. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes:evidence for interactions between the Nand C-terminal domains. Biochemistry 2001,40:4859-4866
    62. Mehul B. and Hughes R.C. Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci 1997, 110:1169-1178
    63. Almkvist J. and Karlsson A. Galectins as inflammatory mediators. Glycoconj J 2004,19: 575-581
    64. Ochieng J. et al. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta 1998,1379:97-106
    65. Dagher S.F., Wang J.L. and Patterson R.J. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci USA 1995,92:1213-1217
    66. Huflejt M.E. et al. L-29, a soluble lactose binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem1993,268:26712-26718
    67. Hsu D.K., Yang R.Y. and Liu F.T. Galectins in apoptosis. Methods Enzymol 2006,417: 256-273
    68. Yoshii T. et al. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 2002,277:6852-6857
    69. Takenaka Y. et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 2004,24: 4395-4406
    70. Hughes R.C. Galectins as modulators of cell adhesion. Biochimie 2001,83:667-676
    71. Demetriou M. et al. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 2001,409:733-739
    72. Partridge E.A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 2004,306:120-124
    73. Nakahara S. and Raz A. Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev 2007, 26,605-610
    74. Chen H.Y. et al. Role of galectin-3 in mast cell functions:galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol 2006,177: 4991-4997
    75. Liu F.T. Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 2005,136,385-400
    76. Cortegano I. et al. Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol 1998,161:385-389
    77. Kuwabara I. and Liu F.T. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 1996,156:3939-3944
    78. Sato S. et al. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 2002,168:1813-1822
    79. Silva-Monteiro E. et al. Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection. Am J Pathol 2007,170:546-556
    80. Swarte V.V. et al. Lymphocyte triggering via L-selectin leads to enhanced galectin-3-mediated binding to dendritic cells. Eur J Immunol 1998,28:2864-2871
    81. Mina-Osorio P., Soto-Cruz I. and Ortega E. A role for galectin-3 in CD13-mediated homotypic aggregation of monocytes. Biochem Biophys Res Commun 2007,353, 605-610
    82. Sano H. et al. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 2003,112:389-397
    83. Zuberi R.I. et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 2004,165:2045-2053
    84. Lopez E. et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 2006,176:1943-1950
    85. Danguy A., Camby I. and Kiss R. Galectins and cancer. Biochim Biophys Acta 2002, 1572:285-293
    86. Ashery U. et al. Spatiotemporal organization of Ras signaling:rasosomes and the galectin switch. Cell Mol Neurobiol 2006,26:471-495
    87. Nakahara S., Oka N. and Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis 2005,10:267-275
    88. Cecchinelli B. et al. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 2006,26:4746-4757
    89. Paron I. et al. Nuclear localization of Galectin-3 in transformed thyroid cells:a role in transcriptional regulation. Biochem Biophys Res Commun 2003,302:545-553
    90. Shimura T. et al. Galectin-3, a novel binding partner of beta-catenin. Cancer Res 2004, 64:6363-6367
    91. Shimura T. et al. Implication of galectin-3 in Wnt signaling. Cancer Res 2005,65: 3535-3537
    92. Le Marer N. and Hughes R.C. Effects of the carbohydrate-binding protein galectin-3 on the invasiveness of human breast carcinoma cells. J Cell Physiol 1996,168:51-58
    93. Moisa A. et al. Growth/adhesion regulatory tissue lectin galectin-3:stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer. Anticancer Res 2007,27:2131-2139
    94. Matarrese P. et al. Galectin-3 over expression protects from apoptosis by improving cell adhesion properties. Int J Cancer 2000,85:545-554
    95. O'Driscoll L. et al. Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res 2002,22:3117-3125
    96. Nangia-Makker P. et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 2000,156:899-909
    97. Henderson, N.C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 2006,103:5060-5065
    98. John C.M. et al. Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin Cancer Res 2003,9:2374-2383
    99. Nachtigal M. et al. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol 1998,152:1199-1208
    100.Nachtigal M., Ghaffar A. and Mayer E.P. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in apoE deficient mice. Am J Pathol 2008,172:247-255
    101.Iacobini C. et al. Role of galectin-3 in diabetic nephropathy. J Am Soc Nephrol 2003,14: S264-270
    102.Pugliese G. et al. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J2001,15:2471-2479
    103.Stitt A.W. et al. Impaired retinal angiogenesis in diabetes:role of advanced glycation end products and galectin-3. Diabetes 2005,54:785-794
    104.Cao Z. et al. Galectins-3 and-7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 2002,277:42299-42305
    105.Chiu M.L. et al. An adherens junction protein is a member of the family of lactose-binding lectins. J Biol Chem 1994,269:31770-31776
    106.Danielsen E.M. and van Deurs B. Galectin-4 and small intestinal brush border enzymes form clusters. Mol Biol Cell 1997,8:2241-2251
    107.Delacour D. et al. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J Cell Biol 2005,169:491-501
    108.Hokama A. et al. Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 2004, 20:681-693
    109.Huflejt M.E. and Leffler H. Galectin-4 in normal tissues and cancer. Glycoconj J 2004, 20:247-255
    110.Leonidas D.D. et al. Structural basis for the recognition of carbohydrates by human galectin-7. Biochemistry 1998,37:13930-13940
    111.Polyak K. et al. A model for p53-induced apoptosis. Nature 1997,389:300-305
    112.Bernerd F., Sarasin A. and Magnaldo T. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc Natl Acad Sci USA 1999,96:11329-11334
    113.Kuwabara I. et al. Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 2002,277:3487-3497
    114.Rorive S. et al. Changes in galectin-7 and cytokeratin-19 expression during the progression of malignancy in thyroid tumors:diagnostic and biological implications.ModPathol 2002,15:1294-1301
    115.Ueda S., Kuwabara I. and Liu F.T. Suppression of tumor growth by galectin-7 gene transfer. Cancer Res 2004,64:5672-5676
    116.Moisan S. et al. Upregulation of galectin-7 in murine lymphoma cells is associated with progression toward an aggressive phenotype. Leukemia 2003,17:751-759
    117.Demers M., Magnaldo T. and St-Pierre Y. A novel function for galectin-7:promoting tumorigenesis by up-regulating MMP-9 gene expression. Cancer Res 2005,65: 5205-5210
    118.Demers M. et al. Galectin-7 in lymphoma:elevated expression in human lymphoid malignancies and decreased lymphoma dissemination by antisense strategies in experimental model. Cancer Res 2007,67:2824-2829
    119.Cao Z. et al. Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays. Invest Ophthalmol Vis Sci 2002,43:2897-2904
    120.Cao Z. et al. Galectin-7 as a potential mediator of corneal epithelial cell migration. Arch Ophthalmol 2003,121:82-86
    121.Bidon N. et al. Two messenger RNAs and five isoforms for Po66-CBP, a galectin-8 homolog in a human lung carcinoma cell line. Gene 2001,274:253-262
    122.Bidon-Wagner N. and Le Pennec J.P. Human galectin-8 isoforms and cancer. Glycoconj J 2004,19:557-563
    123.Hadari Y.R. et al. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 2000,113:2385-2397
    124.Levy Y. et al. Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem 2003,278:14533-14542
    125.Zick Y. et al. Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconj J 2004,19:517-526
    126.Nishi N. et al. Galectin-8 modulates neutrophil function via interaction with integrin alpha M. Glycobiology 2003,13:755-763
    127.Nagy N. et al. Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut 2002,50:392-401
    128.Boura-Halfon S. et al. Extracellular matrix proteins modulate endocytosis of the insulin receptor. J Biol Chem 2003,278:16397-16404
    129.Eshkar Sebban L. et al. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J Immunol 2007,179:1225-1235
    130.Nagae M. et al. Crystal structure of the galectin-9 N-terminal carbohydrate recognition domain from Mus musculus reveals the basic mechanism of carbohydrate recognition. J Biol Chem 2006,281:35884-35893
    131.Miyanishi N. et al. Carbohydrate recognition domains of galectin-9 are involved in intermolecular interaction with galectin-9 itself and other members of the galectin family. Glycobiology 2007,17:423-432
    132.Spitzenberger F., Graessler J. and Schroeder H.E. Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 2001,83:851-862
    133.Chabot S. et al. Regulation of galectin-9 expression and release in Jurkat T cell line cells. Glycobiology 2002,12:111-118
    134.Sato M. et al. Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity. Glycobiology 2002,12: 191-197
    135.Pioche-Durieu C. et al. In nasopharyngeal carcinoma cells, Epstein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin. J Virol 2005, 79:13326-13337
    136.Leal-Pinto E. et al. Molecular cloning and functional reconstitution of a urate transporter/channel. J Biol Chem 1997,272:617-625
    137.Lipkowitz M.S. et al. Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 2001,107: 1103-1115
    138.Graessler J. et al. Genomic structure of galectin-9 gene. Mutation analysis of a putative human urate channel/transporter. Adv Exp Med Biol 2000,486:179-183
    139.Wada J. et al. Developmental regulation, expression, and apoptotic potential of galectin-9, a b-galactoside binding lectin. J Clin Invest 1997,99:2452-2461
    140.Van deWeyer P.S. et al. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 2006,351:571-576
    141.Zhu C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005,6:1245-1252
    142.Dai S.Y. et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J Immunol 2005,175:2974-2981
    143.Anderson A.C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 2007,318:1141-1143
    144.Seki M. et al. Beneficial effect of galectin 9 on rheumatoid arthritis by induction of apoptosis of synovial fibroblasts. Arthritis Rheum 2007,56:3968-3976
    145.Seki M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 2008, 127:78-88
    146.Ohtsubo K. et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 2005,123:1307-1321
    147.Swaminathan G.J. et al. Selective recognition of mannose by the human eosinophil Charcot-Leyden crystal protein (galectin-10):a crystallographic study at 1.8A resolution. Biochemistry 1999,38:13837-13843
    148.Leonidas D.D. et al. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure 1995,3:1379-1393
    149.Kubach J. et al. Human CD4+CD25+ regulatory T cells:proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007,110:1550-1558
    150.Yang R.Y. et al. Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem 2001,276:20252-20260
    151.Hotta K. et al. Galectin-12, an adipose expressed galectin-like molecule possessing apoptosis-inducing activity. J Biol Chem 2001,276:34089-34097
    152.Kouadjo K.E. et al. Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 2007,8:127
    153.Yang R.Y. et al. Galectin-12 is required for adipogenic signaling and adipocyte differentiation. J Biol Chem 2004,279:29761-29766
    154.Dunphy J.L. et al. Isolation and characterization of a novel inducible mammalian galectin. J Biol Chem 2000,275:32106-32113
    155.Gray C.A. et al. Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci USA 2004, 101:7982-7987
    156.Farmer J.L. et al. Galectin 15 (LGALS15)functions in trophectoderm migration and attachment. FASEB J 2008,22:548-560
    1. Gray CA, Dunlap KA, Burghardt RC, et al. galectin-15 in ovineuterop lacental tissues [J]. Reproduction,2005,130 (2):231-240.
    2. Wada J, Kan war YS. Identification and characterization of galectin-9, a Novel (3-galactoside-binding mammalian lectin [J]. J Biol Chem,1997,272 (9):6078-6086.
    3. Tureci O, Schmitt H, Fadle N. et al. Molecular definition of a novel human galectin which is immunogenic in patients with hodgkinps disease[J]. J Biol Chem,1997,272 (10):6416-6422.
    4. Lipkowitz MS, Leal Pinto E, Cohen BE, et al. galectin 9 is the sugar-regulated urate transporter/channel UAT [J]. Glycoconj J,2004,19 (7-9):491-498.
    5. Spitzenberger F. Graessler J. Schroeder HE, et al. Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues [J]. Biochimie,2001,83 (9):851-862.
    6. Sato M, Nishi N, Shoji H, et al. Functional analysis of the carbohydrate recognition domains and a linker pep tide of galectin-9 as to eosinophil chemoattractant activity [J]. Glycobiology,2002,3 (12):191-197.
    7. Matsushita N, Nishi N, Seki M, et al. Requirement of divalent galactoside2binding activity of ecalectin/galectin-9 for eosinophil chemoattraction[J]. J Biol Chem,2000,275 (12):8355-8360.
    8. Suk K, Hwang DY, Lee MS, et al. Natural autoantibody to galectin-9 in normal human sera [J]. J Clin Immunol,1999,19 (3):158-165.
    9. Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endo-plasmic reticulum-Golgi complex [J]. Eur J Biochem,1999,264(2):569-576.
    10. Tashiro K, Sakata K, HirashimaM, et al. The regulation of tissue eosinophilia. III. In vitro production of eosinophil-directed chemotactic inhibitory factor by T lymphocytes of Freund's complete adjuvant-treated guinea-pigs [J]. Immunology, 1985,55(1):115-124.
    11. Chabot S, Kashio Y, SekiM, et al. Regulation of galectin-9 expression and release in Jurkat T cell line cells [J]. Glycobiology,2002,2 (12):111-118.
    12. Asakura H, Kashio Y, Nakamura K, et al. Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9 [J]. J Immunol,2002,169 (10): 5912-5918.
    13. Imaizumi T, Kumagai M, Sasaki N, et al. Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells [J]. J Leukoc Biol, 2002,72 (3):486-491.
    14. Yoshida H, Imaizumi T, Kumagai M, et al. Interleukin-lbeta stimulates galectin-9 expression in human astrocytes [J]. Neuroreport,2001,12 (17):3755-3758.
    15. Ishikawa A, Imaizumi T, Yoshida H, et al. Double2stranded RNA enhances the expression of galectin-9 in vascular endothelial cells [J]. Immunol Cell Biol,2004, 82 (4):410-414.
    16. Abedin MJ, Kashio Y, Seki M, et al. Potential roles of galectins in myeloid differentiation into three different liniages [J]. J Leukoc Biol,2003,73 (5): 650-656.
    17. Dai SY, Nakagawa R, Itoh A, et al. galectin-9 induces maturation of human monocyte-derived dendritic cells [J]. J Immunol,2005,175 (5):2974-298
    18. Hirashima M, Kashio Y, Nishi N, et al. galectin-9 in physiologicaland pathological conditions [J]. Glycoconj J,2004,19 (7-9):593-600.
    19. Kageshita T, Kashio Y, Yamauchi A, et al. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance [J]. Int J Cancer,2002,99 (6):809-816.
    20. Wada J, Ota K, Kumar A, et al. Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin [J]. J Clin Invest,1997,99 (10):2452-2461.
    21. Matsumoto R, Hirashima M, Kita H, et al. Biological activities of ecalectin:a novel eosinophil-activating factor [J]. J Immunol,2002,168 (4):1961-1967.
    22. Saita N, Goto E, Yamamoto T, et al. Association of galectin-9 with eosinophil apop tosis [J]. Int Arch Allergy Immunol,2002,128(1):42-50.
    23. Kashio Y, Nakamura K, Abedin MJ, et al. galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway [J]. J Immunol,2003,170 (7):3631 3636.
    24. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity [J]. Nat Immunol,2005,6 (12):1245-1252.
    25. Nishi N, Itoh A, Fujiyama A, et al. Development of highly stable galectins: truncation of the linker pep tide confers p rotease2resistance on tandem2repeat type galectins [J]. FEBS Lett,2005,579 (10):2058-2064.
    26. Irie A, Yamauchi A, Kontani K, et al. galectin-9 as a prognostic factor with anti-metastatic potential in breast cancer [J]. Clin Cancer Res,2005,11(8):2962-2968.
    27. Kasamatsu A, Uzawa K, Nakashima D, et al. galectin-9 as a regulator of cellular adhesion in human oral squamous cell carcinoma cell lines [J]. Int J MolMed, 2005,16(2):269-273.
    28. Pioche-Durieu C, Keryer C, Souquere S, et al. In nasopharyngeal carcinoma cells, Ep stein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin [J]. J Virol,2005,79 (21):13326-13337.
    29. Tsuboi, H Abe, R Nakagawa, S Oomizu, Galectin-9 protects mice from the Shwartzman reaction by attracting prostaglandin E2-producing polymorphonuclear leukocytes [J]. Clin Immunol,2007; 124(2):221-33.
    30. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity [J]. Nat Immunol,2005; 6:1245-1252.
    31. Atsuki Fukushima a Tamaki Sumi a Ken Fukuda. Roles of Galectin-9 in the Development of Experimental Allergic Conjunctivitis in Mice [J]. Int Arch Allergy Immunol,2008; 146:36-43
    32. Seki M, Oomizu S, Sakata K, Sakata A, Arikawa T, Watanabe K, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis [J]. Clin Immunol,2008; 127:78-88.
    33. Sharvan S, Amol S, Mitsuomi H and Barry T. Rouse. Role of Tim-3/Galectin-9 Inhibitory Interaction in Viral-Induced Immunopathology:Shifting the Balance toward Regulators [J]. J Immunol,2009,182:3191-3201.
    34. Popovici RM, Krause MS, Germeyer A, et al. galectin-9:a new endometrial epithelial marker for the mid and late secretory and decidual phases in humans [J]. J Clin Endocr Metab,2005,90(11):6170-6176.
    35. Baba M, Wada J, Eguchi J, et al. galectin-9 inhibits glomerularhypertrophy in db/db diabetic mice via cell-cycle-dependent mechanisms [J]. J Am Soc Nephrol, 2005,16 (11):3222-3234.
    36. Kasamatsu A, Uzawa K, Shimada K, et al. Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphylomonas gingivalis lipopolysaccharide in vitro and in vivo [J]. Int J Biochem Cell B,2005,37 (2):397-408.
    37. Pelletier I, Hashidate T, Urashima T, et al. Specific recognition of Leishmania major poly β-galactosyl epitopes by galectin-9 [J]. J Biol Chem,2003,278 (25): 22223-22230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700