代数多重网格算法研究及其在固体力学计算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机日新月异的发展,科学计算特别是大规模、高性能科学计算越来越成为推动技术革命的强劲动力,计算方法是科学计算的核心,因此,计算机与计算方法的发展程度已成为科学计算能力提高的决定性因素。在物理、力学等应用领域里,有很多问题常常归结于偏微分方程(组)的求解,但由于实际问题的复杂性,根本无法得到它们的解析解,有限元数值求解已成为求解这类问题最为有效的途径和方法。有限元方法通常包括三个过程,即网格生成及优化、有限元离散代数系统的形成以及离散系统的代数求解,其中第一个和第三个过程是影响有限元分析整体求解效率的主要因素。多重网格法是求解偏微分方程(组)大规模离散化方程最为有效的方法,它一般可分为几何多重网格法和代数多重网格法。由于实际应用问题的错综复杂性,以及数值商业软件对“即插即用”型求解器的要求,使得几何多重网格法的应用变得越来越困难,而代数多重网格(AMG)法的“高效性”和“鲁棒性(robustness)”,使之成为了当今多重网格法的研究热点。
     AMG方法的关键技术是建立生成各个粗网格层和相应的插值算子的代数方法。对大量的偏微分方程离散代数系统,其背景问题的许多重要特征仅仅通过总刚度矩阵是很难重构出来的。因此,借助于部分几何或分析信息,再通过代数途径来构造相应的高效AMG法是一种十分自然的想法,我们称这种AMG法为基于部分几何和分析信息的AMG法。目前,对标量椭圆型偏微分方程,AMG方法发展比较成熟,但对方程组情形,通常的AMG方法在求解效率上将变差,有时甚至失效。其主要原因是,对方程组情形,定义在每一个节点的自由度往往大于1,而且这些自由度又是相互耦合在一起的,总刚度矩阵所对应的代数网格图与相应的几何网格图根本不一致,利用通常的网格粗化技术,很难控制粗网格的规模及合理地设计插值(提升)算子,从而大大降低了其求解效率。特别是对三维情形,由于网格图的复杂度较二维情形有本质性的增加,相应的网格粗化技术在计算效率和鲁棒性等方面还不尽如人意。因此,我们需要发展新的网格粗化技术及插值算子的构造方法,以提高AMG方法的收敛速度,使其能应用于更多实际问题的快速求解。
     本文主要针对固体力学计算中的几类应用问题,对其相应的AMG算法进行了深入的研究和探讨,借助于部分几何或分析信息,提出了几种有效的AMG算法,并进行了大量的数值实验与结果比较,得到了一些有意义的数值结果。这些研究进一步丰富和充实了AMG算法,拓宽了AMG方法在一些应用领域中的研究,具有重要的理论和工程应用价值。主要内容和结果包括:
     (一) 针对一类(多尺度)离散应变原子模型的数值求解,将基于标量椭圆型偏微分方程的AMG方法推广应用于方程组情形,给出了相应的AMG算法,并详细介绍了其中的网格粗化算法及插值(提升)算子的构造。据我们所知,这是首次尝试设计快速方法求解离散应变原子模型。对二维问题作了大量的数值实验,并与工程计算中常用的数值方法进行了比较,结果表明,本文设计的AMG算法特别是AMG-CG方法对求解应变模型(包括多尺度耦合模型)是有效的,具有很好的“鲁棒性”。
     (二) 针对含间断系数弹性结构力学问题的数值求解,建立了一类界面保持粗化多重网格方法,这样,只需构造简单的插值算子及选取点块Gauss-Seidel作磨光迭代,就可得到一类相当有效的多重网格方法。数值结果表明,这种界面保持粗化多重网格方法
With the rapid development of computer, scientific computing, especially large-scale , high-performance computing has become more and more the impetus to the advancing of science and technology. And computational methods are the essence of scientific computing. Hence, the development of computer and computational methods decide the enhancement of scientific computing capability and capacity. In the fields of physics and mechanics, we need to solve a partial differential equations (PDEs) or a system of PDEs whose exact solutions are in general difficult to be obtained and the finite element method is the most effective way for solving such problems. The finite element solutions usually involve the mesh generation and optimization, the assembly of discrete algebraic systems using the finite element basis, and the solution of these systems by some algebraic solvers. It is well-known that the performance of finite element analysis depends critically on both the first and the third processes. Multigrid methods are by far the most efficient methods for solving large scale algebraic systems arising from discretizations of PDEs or a system of PDEs. Generally speaking, there are two types of multigrid methods: geometric-based approach and algebraic approach. Since the complexities for practical application problems and the requirements for the "plug and play" solvers in numerical business softwares, it is difficult to construct a sequence of nested discretizations or meshes needed for geometric multigrid method. The algebraic multigrid (AMG) method has become the hotspot due to the high performance and robustness.
    The key technique of AMG is to propose some algebraic ways for the coarse grid selection and the construction of prolongation operators. For many discrete systems arising from PDEs or a system of PDEs, it is difficult to reproduce the crucial properties of origin problems only by the global stiffness matrix. So it is a natural way to construct highly efficient AMG method such as AMGe and agglomeration methods, by using geometric and analytic information. This is a new direction in developing AMG algorithms currently. We call this method as geometric-based and analytic AMG method. AMG has been well developed for the scalar PDEs, namely for the case when d = 1, where d is the number of physical unknowns resides in each grid. However, the naive use of the scalar AMG does not lead to the robust and efficient solver, rather it deteriorates and oftentimes breaks down in the convergence for system cases in which d > 1 and those unknowns are coupled as well and the graph of global stiffness matrix is no longer the same as the corresponding graph of geometric meshes, especially for three dimensional problems. Therefore, it is a very significant work to develop new techniques and methodology for the coarse grid selection and the construction of prolongation operators to improve the AMG convergence rate, and so that the resulting AMG methods may be applied to more application problems.
    In this paper, we make some in-depth studies for AMG algorithms for some types of important application problems. We propose some types of AMG methods by using geometric-based and analytic information. A number of numerical experiments have been performed, and some crucial numerical conclusions are obtained. These researches will make the AMG algorithms richer and apply AMG methods to more researching fields. The main contents and results are listed as follows:
引文
[1] W.Hackbusch. Convergence of multi-grid iterations applied to difference equation[J], Math. Comp., 1980, 34:425-440.
    [2] W.Hackbusch. On the convergence of multi-grid iterations[J], Beitrage Nuimer.Muth., 1981,9:213-239.
    [3] W.Hackbusch, U.Trottenberg (eds.). Multigrid methods[C], Lecture Notes in Mathematics 960, Springer, Berlin, 1986.
    [4] W.Hackbusch. Multi-Grid Methods and Applications[M], Springer-Verlag, New York, 1985.
    [5] W.Hackbusch, U.Trottenberg (eds.). Multigrid methods II[C], Lecture Notes in Mathematics 1228, Springer, Berlin, 1982.
    [6] W.Hackbusch (ed.). Robust multigrid methods[M], Friedr. Vieweg 8 Sohn,1988.
    [7] W.Hackbusch, U.Trottenberg (eds.). Multigrid methos III[C], Proc. 3~(rd) Int. Conf. on Multigrid methods. Int. Series of Num. M,ath.98, Birkhauser, Basel 1991.
    [8] W.Hackbusch, GWittum (eds.). Multigrid methos V[C], Proc. 5~(rd) European Multigrid Conf. in Stuttgart Germany, Lecture Notes in Computational Science and Engineering 3 , Springer, Berlin, 1998.
    [9] J.H.Bramble, J.E.Pasciak, J.Wang and et al. Convergence estimates for multigrid algorithms without regularity assumptions[J]. Math. Comp., 1991,57(195):23-45.
    [10] U.Trottenberg, C.W.Oosterlee and A. Schuler. Multigrid[M], Academic Press,2001.
    [11] A.Brandt. Algebraic Multigrid theory:the symmetric case[J], Appl.Math.Comput., 1986,19:23-56.
    [12] A.Brandt. Multi-level adaptive solutions to boundary-value problems[J], Math. Comp., 1977,31:333-390.
    [13] A. Brandt, S. F. McCormick and J. W. Ruge. Algebraic multigrid (AMG ) for sparse matrix equations[C]. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University Press, Cambridge, 1984.
    [14] M. Brezina, A. J. Cleary, R. D. Falgout and et al. Algebraic multigrid based on element interpolation (AMGe )[J]. SIAM J. Sci. Comput, 2000,22(5): 1570-1592 (electronic).
    [15] Q.S.Chang,Y.S.wong and H.Fu. On the Algebraic Multigrid Methods[J], J.Comput. Phys.,1996,125:279-292.
    [16] T. F. Chan, J. Xu and L. Zikatanov. An agglomeration multigrid method for unstructured grids[C], in 10-th international conference on Domain Decomposition methods, vol. 218 of Contemporary Mathematics, AMS, 1998:67-81.
    [17] V.E.Henson and P.S.Vassilevski. Element-free AMGe: general algorithms for computing interpolation weights in AMG[J], SIAM J.Sci Comput., 2001,23:629 -650 (electronic).
    [18] J. Mandel, M.Brezina and P.Vanek. Energy optimization of algebraic multigrid bases[J], Computing, 1999,62(3):205-228.
    [19] J.Ruge and K. Stuben. Algebraic multigrid, in Multigrid Methods[M], S. McCormick, ed., SIAM, Philadelphia, PA, 1987.
    [20] P. Vanek, J.Mandel and M.Brezina. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[J]. Computing, 1996,56(3): 179-196.
    [21] V.E.Henson and P.S.Vassilevski. Element-free AMGe:General Algorithm for computing Interpolation Weights in AMG[J]. SIAM J. on science computing, 2000,23(2).
    [22] P. Vanek, M. Brezina and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation[J]. Numer. Math., 2001,88(3):559-579.
    [23] W. L. Wan, T. F. Chan and B. Smith. An energy-minimizing interpolation for robust multigrid methods[J]. SIAM J. Sci. Comput, 2000,21(3):559-579.
    [24] J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace corrections on Hilbert space[J]. J. of AMS, 2002,15:1429-1446.
    [25] M. Griebel, T. Neunhoeffer and H. Regler. Algebraic Multigrid Methods for the Solution of the Navier-Stokes Equations in Complicated Domains[J], Int. J. Numer. Methods for Heat and Fluid Flow, 1998,26:281-301.
    [26] J.W.,Ruge and K.Stuben. Algebraic Multigrid in Multigrid Methods[C], Frontiers Appl.Math.3, S.F.McCormick.ed., SIAM, Philadelphia, 1987:73-130.
    [27] K, Stuben. Algebraic Multigrid(AMG):An Introduction with Applications[R], GMD Report 70, Nov, (1999), also available as an appendix in the book "Multigrid" by U.Trottenberg, C.W.Oosterlee, A.Schuller, Academic Press, 2001:413-532.
    [28] 徐树方.矩阵计算的理论和方法[M].北京:北京大学出版社, 1995.
    [29] R.H.chan, Q.S.Chang, Y.S.wong and et al. Multigrid Method for ill-conditioned Symmetric Toeplitz[J], SIAM J.Sci.Comput.,1998,19(2):516-529.
    [30] Q.S.Chang, S.Q.Ma and GY.Lei. Algebraic Multigrid for Queuing Networks[J], Inter. J.of Computer Math., 1999,70:539-552.
    [31] Y.Sadd. Iterative methods for Sparse Linear Systems[M]. PWS Publishing Company, Boston, 1996.
    [32] M. Griebel, D. Oeltz and M. A. Schweitzer. An algebraic multigrid method for linear elasticity[J], SIAM J. Sci. Comput., 2003,25(2):385-407.
    [33] V.E.Henson. An Algebraic Multigrid Tutorial[M]. LLNL, CASC, Apirl, 1999.
    [34] J.E.Jones and P.S.Vassilevski. AMGe based on agglomeration[J], SIAM J.Sci.Comput., 2001,23 :109-133.
    [35] V.E. Henson and P.S.Vassilevski. Element-free AMGe: General algorithms for computing interpolation weights in AMG[J]. SIAM J.Sci.Comput.,2001,23:629-659.
    [36] T. Chartier, R.D.Falgout, V.E.Henson and et al. Spectral AMGe(ρ AMGe)[J]. Siam J. Sci. Comp., 2003,20(1): 1-20.
    [37] S.Sauter and G Wittum. A multigrid method for the computation of eigenmodes of closed water basins[J], IMPACT of Computing in Science and Engineering, 1992,4(2): 124-152.
    [38] J. Stewart, O. Pohland and J.M. Gibson. Elastic-displacement field of an isolated surface step[J]. Phys. Rev. B, 1994,49:13848-13858.
    [39] F.Liu, J.Tersoff and M.GLagally. Self-Organization of Steps in Growth of Strained Films on Vicinal Substrates[J]. Phys.Rev.Lett.,1998,80:1268.
    [40] R.V. Kukta and K. Bhattacharya. A micromechanical model of surface steps[J]. J. Mech.Phys. Solids, 2002,50: 615-649.
    [41] B.J.Spencer, P.W.Voorhees and J.Tersoff. Enhanceinstability of strained alloy films due to compositional stress[J]. Phys.Rev.Lett, 2000,84:2449-2452.
    [42] V.K Tewary. Green-function method for lattice statics[J]. Adv. Phys., 973,22:757-810. [43] M.Born and K.Huang. Dynamical theories of crystal lattices[M]. Oxford. Press, 1954.
    [44] B.J.Spencer, P.W.Voorhees and S.H.Davis. Morphological instability in epitaxially strained dislocation-free solid films[J]. Phys.Rev.Lett., 1991,67:3696.
    [45] R. E. Caflisch and C. Connell. Atomistic theory of elasticity for thin epitaxial films[J]. Submitted to J. Elasticity, 2001.
    [46] R. E. Caflisch and S. Lee. Discrete artificial boundary conditions[J]. Preprint, 2005.
    [47] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert and et al. A supernodal approach to sparse partial pivoting[M].
    [48] A. C. Schindler, M. F. Gyure, G. D. Simms and et al. Theory of strain relaxation in heteroepitaxial systems[J]. Phys. Rev. B, 2003,67.
    [49] S. Shu, J. Xu, Y. Xiao and L. Zikatanov. Algebraic multigrid methods for lattice block materials[C]. Recent Progress in Computional and Applied PDEs. Edited by Tony.F.chan, et,al.Boston/London, 2002,22:287-307.
    [50] C. Connell, R.E. Caflisch and G. Simms. A Discrete Elastic Model for Epitaxial Systems and the Force Field at a Step[J]. Preprint, 2003.
    [51] K.E.Khor and S.Das Sarma. Quantum dot self-assembly in growth of strained-layer thin films: a kinetic Monte Carlo study[J], Phys. Rev. B, 2000,62:62657-16664.
    [52] D. Kouris, A. Peralta and K. Sieradzki. Elastic interactions of defects on crystal surfaces[J]. J. Eng. Mater. Tech., 1999,121:129-135.
    [53] D. Kouris, A. Peralta and K. Sieradzki. Surface islands and their elastic interactions with adatoms[J]. Surf. Sci., 2000,445: 420-429.
    [54] Y.Bae and R. E. Caflisch. Strain in layered nanocrystals[J]. Submitted, 2005.
    [55] Y.J. Lee, J.B. Wu, J.C. Xu and et al. A sharp convergence estimate of the method of subspace corrections for singular system of equations[J], to appear in Math.Comp., 2005.
    [56] S.A. Chaparro, Y. Zhang and J. Drucker. Strain relief via trench formation in Ge/Si (100) islands[J]. Appl. Phys. Lett., 2000,76{24):3534-3536.
    [57] Y. W. Mo, D. E. Savage, B. S. Swartzentruber and et al. Kinetic pathway in stranski-krastanov growth of Ge on Si(001)[J]. Phys. Rev. Lett., 1990, 65(8): 1020-1026.
    [58] B, Budiansky. On the elastic moduli of heterogeneous materials[J], J. Mech. Phys. Solids, 1965, 13: 213-227.
    [59] R. Hill. A self-consistent mechanics of composite materials[J], J. Mech. Phys. Solids, 1965, 13: 227-240.
    [60] R. M. Christensen and K. H. Lo. Solutions for effective shear properties in the phase sphere and cylinder models[J]. J. Mech. Phys. Solids, 1979, 27: 315-330.
    [61] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy materials with misfitting inclusions[j]. Acta Metall., 21: 571-574.
    [62] M. Taya and T. W. Chou. On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite[J], Int. J. Solids Structures, 1981, 17: 553-563.
    [63] Y. Benveniste. A new approach to the application of Mori-Tanaka's theory in composite materials[J], Mech. Mater., 1987, 6: 147-157.
    [64] S. A. Meguid and A. L. Kalamkarov. Aaymptotie homogenization of elastic composite materials with a regular structure[J]. Int. J. Solids Structures, 1994, 31: 303-316.
    [65] F. Devries, H. Dumontet, G. Duvant and et al. Homogenization and damage composite structures[J]. Int. J. Num. Meth. Engng., 1989, 27: 285-298.
    [66] J. M. Guedes and N. Kikuchi. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Comp. Meth. Appl. Mech. Engng., 1991, 83: 143-198.
    [67] O. A. Oleinik, A. S. Shamaev and G. A. Yosifan. Mathematical Problems Elasticity and Homogenization[M]. North-Holland, Amsterdam, 1992.
    [68] Y. Benveniste. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mech. Mater., 1987, 6: 147-157.
    [69] 郑代华,杨庆生.多相复合材料的有效模量预测[J].铁道学报,2000,22(2):86-89.
    [70] 杨庆生.复合材料细观结构力学与设计[J].中国:中国铁道出版社,2000.
    [71] 杨庆生,陈浩然.夹杂问题中的自洽有限元法和复合材料的平均弹性性能[J].复合材料学报,1992,9(1):79-84.
    [72] 陈作荣,诸德超,陆萌.复合材料的等效弹性性能[J],复合材料学报,2000,17(3):73-77.
    [73] 陈作荣,诸德超,陆萌.基于理想界面的均匀化方法[J].北京航空航天大学学报,2000,26(5):543-546.
    [74] 杨庆生,杨卫,陈浩然等.复合材料的宏观性能与参数设计[J].力学与实践,1996,18(3):1-7.
    [75] Z. Hashin and S. Strikeman. A Variational Approach to the Theory of Elastic Behavior of Multiphase Materials[J]. J Mech Phys Solids, 1963: 127-140.
    [76] H. Chen, Q. Yang and F. W. Williams. A self-consistent finite elsement approach to the inclusion problem[J]. Computational Mater Sci., 1994, 2: 301-307.
    [77] 杨庆生,陈浩然.夹杂问题中的自洽有限元法和复合材料的平均弹性性能[J].复合材料学报,1992,9(1):79-84.
    [78] H Chen, Q Yang and F W Williams. A self-consistent finite elsement approach to the inclusion problem[J]. Computational Mater Sci., 1994, 2: 301-307.
    [79] 刘晓奇,曹礼群等.复合材料弹性结构的高精度多尺度算法与数值模拟[J].计算数学,2001,23(3):369-384.
    [80] 曹礼群,崔俊芝.整周期复合材料弹性结构的有限元计算[J].计算数学,1998,20(3):279-290.
    [81] W. L. Wan. Interface preserving coarsening multigrid for elliptic problems with highly discontinuous coefficients[J]. Numerical Linear Algebra with Application, 2000, 7 (7-8): 727-741.
    [82] 刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995.
    [83] Dag Lukkassen, Lars-Erik Persson and Peter Wall. Some Engineering and Mathematical Aspects On the Homogenization Method[J], Composites Engineering, 1995, 5(5): 519-531.
    [84] R. A. Adams. Sobolev空间[M]. 1975.
    [85] E. Morano, D. J. Maviplis and V. Venkatakrishnam. Coarsening strategies for unstructured multigrid techematics with application to anisotropic problems[J], SIAM J. Sci. Comput., 1999, 20: 393-415.
    [86] G.. Wittum. On the robustness of ILU smoothing[J]. SIAM. Sci. Statist. Comput., 1989, 10: 699-717.
    [87] W. P. Tang and W. L. Wan. Sparse approximation inverse smoother for multi-grid[J]. SIAM. Sci. Matrix. Anal. Appl., 1999.
    [88] Z. Hashin and S. Shtrikman. On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity[J]. J. Mech. Phys. Solid, 1962, 10: 335-342.
    [89] Z. Hashin and S. Shtrikman. A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials[J]. J. Mech. Phys. Solid, 1963, 11: 127-140.
    [90] W. Voigt. Uber die Beziehung zwischen den beiden Elastizitatskonstanten isotroper Korper[J], Wied. Ann., 1889, 38: 573-587.
    [91] A. Reuss. Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle[J]. Z. Angew. Math. Mech., 1929, 9: 49-58.
    [92] Jinchao Xu. Iterative methods by space decomposition and subspace correction[J]. SIAM Rev., 1992, 34: 581-613.
    [93] R. Bank and J. Xu. An algorithm for coarsing unstructured meshes[J]. Numer. Math., 1996, 73(1): 1-36.
    [94] 肖映雄,舒适,张平文等.求解二维三温能量方程的半粗化代数多重网格法[J],数值计算与计算机应用,2003,24 (4):293-303.
    [95] 程普新,韩德化.三维弹性问题的解析解,哈尔滨建筑大学学报[J],2000,33(4):117-120.
    [96] 彭惠明,崔志强等.三维弹性问题的有限分析法[J],武汉水利电力大学学报,1997,19(4):41-45.
    [97] 许南宁,彭惠明.FAM3D三维弹性程序[J],武汉水利电力大学学报,1997,19(3):46-51.
    [98] V. E. Henson and U. M. Yang. BoomerAMG: A parallel algebraic multigrid solver and preconditioner[J]. Applied Nemerical Mathematics, 2002, 41: 155-177.
    [99] 王勖成,邵敏编.有限单元法基本原理和数值方法tM].北京:清华大学出版社,1997.
    [100] 杨玉,翁帕西萨尔,贝图梅等.采用ROCK3D~(FE)程序实现矿山快速设计和计划[J],国外金属矿山,2000,25(2):10-12.
    [101] 谢学斌,冯涛,潘长良.大型深埋有岩爆倾向矿床采场结构的优化研究[J].矿冶工程,2001,21(1):10-13.
    [102] 谢学斌,潘长良,曹平.冬瓜山铜矿床合理开采工艺参数的优选[J].中国矿业,2001,10(4):46-49.
    [103] 肖专文.岩土开挖与填筑三维有限元程序的开发[J].中国矿业,1998,7(6):51-55.
    [104] 侯凌云,严传俊.复杂几何域中不可压流动的多重网格计算[J].航空动力学报,1998,13(3):245-248.
    [105] 莫则尧,李晓梅,徐庆新等.并行多重网格算法求解声速Euler方程[J].空气动力学报,1998,16(2):192-198.
    [106] 王建华,殷宗泽,赵维炳.多重网格法在岩石力学与工程中的应用[J].岩石力学与工程学报,1995,14(4):336-345.
    [107] 张玉军,王建华.自适应多重网格有限元法及其在洞室稳定分析中的应用尝试[J].岩土力学,1995,16(1):17-25.
    [108] 唐学军,王建华,寇新建等.自适应有限元方法与开挖过程模拟分析[J].矿冶工程,1999,19(4):1-5.
    [109] 赵阳什.有限元法及其在采矿工程中的应用[M].北京:煤炭工业出版社,1994.
    [110] 于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [111] 崔俊芝,梁俊.现代有限元软件方法[M].北京:国防工业出版社,1995.
    [112] R.E.古德曼.不连续岩体中的地质工程方法[M].北京:中国铁道出版社,1980.
    [113] 刘毅,李炜.平行层状岩体的自重应力场[J].岩土力学,2001,22(1):63-66.
    [114] 谢学斌,肖映雄,潘长良等.代数多重网格法在岩体力学有限元分析中的应用[J],工程力学,2005,22(5):165-170.
    [115] 肖映雄,张平,谢学斌.三维弹性力学问题中有限元方程的预处理方法[J].湖南大学自然科学学报,2004,31 (6):95-99.
    [116] J. H. Bramble and J. E. Pasciak. Iterative techniques for time dependent stocks problems[J], Comput. Math. with Appl., 1997, 33: 13-30.
    [117] L. Chen and J. Xu. On a schur complement operator arising from navier-stocks equations and its preconditioning[C], In Charles A. Micchelli Zhongying Chen, Yuesheng Li and Yuesheng Xu, editors, Advances in Computational Mathematics, Proceedings of the Guangzhou International Symposium, volumn 202. Marcel Dekker, INC., 1998.
    [118] Q. Chang and W. Sun. Multigrid methods for singular system[J]. Preprint, 1999.
    [119] J. Mandel, McCormick. S and J. Ruge. An algebraic theory for multigrid methods for variational problems[J]. SIAM J. Numer. Anal., 1988, 25: 91-110.
    [120] 肖映雄,张平,舒适.求解外延膜多尺度应变模型的代数多重网格法(英文)[J].湘潭大学自然科学学报,2003,25(4):75-82.
    [121] M. Geradin, D. Rixen and Mechanical Vibrations. Theory and Application to Structural Dynamics[M], second ed., Wiley, Chichester, 1997.
    [122] C. Farhat and F.-X. Roux. A method of finite element and interconnecting and its parallel solution algorithm[J]. Int. J. Numer. Mech. Engrg., 1991, 32: 1205-1227.
    [123] C. Farhat, P. S. Chen and J. Mandel. A scable Lagrange multiplier based on domain decomposition method for implicit time-dependent problems[J]. Int. J. Numer. Mech. Engrg., 1995, 38: 3831-3854.
    [124] S. Bitzarakis, M. Papadrakakis and A. Kotsopoulos. Parallel solution techniques in computational structural mechanics[J]. Comput. Methods Appl. Mech. Engrg., 1997, 148: 75-104.
    [125] M. Papadrakakis and Y. Tsopanakis. Domain decomposition methods for parallel solution of shape sensitivity analysis problems[J]. Int. J. Numer. Mech. Engrg., 1999, 44: 281-303
    [126] D. C. Haarbis and M. Papadrakakis. Approximate Dirichlet preconditioners for the FETI method[C], in: Fourth International Collaboration on Computation of Shell and Spatial Structures (IASS-IACN 2000), Book of abstract, 2000.
    [127] D. Rixen. Dual Schur complement method for semi-definite problems[J], Contemp. Math., 1998, 18: 341-348.
    [128] C. Farhat, K. Pierson and M. Lesoinne. The second generation FETI methods and their application to parallel solution of large-scale linear and geometrically non-linear analysis problems[J]. Comput. Methods Appl. Mech. Engrg., 2000, 184: 333-374.
    [129] J. Mandel. Balancing domain decomposition[j]. Commun. Appl. Numer. Mech., 1993, 9: 233-241.
    [130] C. A. Felippa and K. C. Park. A direct flexibility method[J]. Comput. Methods. Appl. Mech. Engrg., 1997, 149: 319-337.
    [131] C. A. Felippa, K. C. Park and M. R. Justino Filho. The construction of free-free flexibility matrices as generalized stiffness inverses[J], Comput. Struct., 1998, 68: 411-418.
    [132] M. Papadrakakis and Y. Fragakis. An integrated geometric-algebraic method for solving semi-definite problems in structural mechanics[J]. Comput. Methods. Appl. Mech. Engrg., 2001, 190: 6513-6532.
    [133] A. B. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences[J]. SIAM classics in Applied Mathematics, Philadelphia. SIAM, 1994.
    [134] H. B. Keller. On the solution of singular and semidefinite linear systems by iteration[J]. J. Soc. Indust. Appl. Math. B Numer. Anal., 1965, 2: 281-290.
    [135] L. Marek and D. B. Szyld. Algebraic schwarz methods for the numerical solution of markov chains[J], Preprint, 2003.
    [136] GH. Golub and C. F. Van Loan. Matrix Computations[D]. John Hopkins University Press, Baltimore, MD, 1990.
    [137] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics[M]. Cambridge University Press, 2001.
    [138] 王搏,董耀星,王宗敏.用边界单元法分析各向异性板的应力集中问题[J].郑州工学院学报,1996,17(1):43-51.
    [139] 徐明海,陶文铨.二维各向异性非结构化网格的自动生成与应用[J].西安交通大学学报,2002,36(3):221-225.
    [140] J. E. Dendy and J. M. Rutledge. A semi-coarsening multigrid algorithm for SIMD machines[J]. SIAM J. Sci. Statist. Comput., 1992, 13: 1460-1469.
    [141] J. E. Dendy Jr., S. F. McCormick and et al. Multigrid methods for three-dimensional petroleum reservoir simulation[C], 10th Symposium on Reservoir Simulation, Houston, Society of Petroleum Engineers(SPE), 1989, 6-8: 19-25.
    [142] R. A. Smith and A. Weiser. Semi-coarsening multigrid on a hypercube[J]. SIAM J. Sci. Statist. Comput., 1992, 13: 1314-1329.
    [143] M. Berzins. A solution-based triangular and tetrahedral mesh quality indicator[J]. SIAM J. Sci. Comput., 1998, 19: 2051-2069.
    [144] Qiang Du, Zhaohui Huang and Desheng Wang. Mesh and Solver Coadaptation in Finite Element Methods for Anisotropic Problems[J]. Numerical Methods for Differential Equations, 2005, 21: 859-874.
    [145] I. D. Parsons and J, F. Hall, The Multigrid Method in Solid Mechanics, Intl. J. for Numer. Meth. in Eng., 1990, 29: 719-754.
    [146] A. Brandt. Guide to Multigrid Development[J], in Hackbusch & Trottenberg, eds., Multigrid Methods, 1982: 220-312.
    [147] D. Mavriplis. Directional coarsening and smoothing for anisotropic Navier-Stokes problems[J]. Elect.Trans.Numer.Anal., 1997, 6:182-197.
    [148] D. Mavriplis. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes[R]. NASA/CR-1998-206910, ICASE Report No 98-6.
    [149] J.Li, S.Teng and A.Ungor. Biting ellipses to generate anisotropic mesh[C], 8~(th) intern.meshing roundtable (Lake Tahoe, CA), 1999,97-109.
    [150] D. Oeltz. Algebraische Mehrgittermethoden fur Systeme partieller Differential-gleichungen[D], Master Thesis, Institut fur Angewandte Mathematik, Universitat Bonn, 2001.
    [151] J. W. Ruge and K. Stuben. Efficient Solution of Finite Difference and Finite Element Equations by Algebraic Multigrid, in Multigrid Methods for Integral and Differntial Equations[C], D. J. Paddon and H. Holstein, eds., The Institute of Mathematics and its Applications Conference Series, Clarendon Press, 1985.
    [152] E.Graham and P,A.Forsyth. Preconditioning methods for very ill-conditioned three dimensional linear elasticity problems[J]. Int. J. for Numer. Meth. in Eng., 1999,44:77 -99.
    [153] E. Lutz, W.J.Ye and S.Mukherjee. Elimination of rigid body modes from discreted boundary integral equations[J]. lnt J. Solids Structures, 1998,35:4427-4436.
    [154] J. Xu, L.Zikatanov. On the energy minimizing base for algebraic multigrid methods[J], Comput. Visual Sci., 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700