β-环糊精与几种芳香族客体的包结物结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-环糊精特有的疏水空腔结构能够选择性包结各种客体分子,形成稳定的包结物,从而达到改善客体分子的水溶性、稳定性的目的,近年来,被广泛的应用于医药、分析、食品、环境等多个领域。主体与客体小分子形成的包结物的结构研究,是我们认识这种分子包结和分子组装现象的理论基础,有关这方面的研究一直受到普遍关注。
     本文采用β-环糊精作为主体分子,选取邻氨基苯甲酸、间氨基苯甲酸、对氨基苯甲酸以及萘普生作为客体。通过X-射线粉末衍射、傅立叶红外光谱、1H核磁共振谱、圆二色谱、单晶X-射线衍射以及分子模拟的方法对所形成的包结物结构进行了研究。
     本文将主客体物质按照不同的比例溶解到水溶液,或者乙醇-水的混合溶液中,在70℃下搅拌混合2h,缓慢降至室温,用微孔滤膜过滤反应产物,取过滤后的清液室温下缓慢挥发溶剂,得到所需要的包结物。将包结物取出,置于真空干燥箱内干燥至恒重,然后对其进行结构表征,同时利用分子模拟的方法探讨主客体的包结方式。
     结果表明,邻氨基苯甲酸与β-环糊精形成了1:1的包结物,苯环被包结进了环糊精空腔,氨基与羧基都朝向环糊精的大口端,分子动力学模拟显示,主客体分子的质心距离在2 ?左右波动;间氨基苯甲酸与β-环糊精形成了1:1的包结物,苯环被包结进了环糊精空腔,氨基朝向环糊精的大口端,羧基朝向环糊精的小口端,分子动力学模拟显示,主客体分子的质心距离在1.2 ?左右波动;对氨基苯甲酸与β-环糊精形成了2:2的包结物,苯环被包结进了环糊精空腔,氨基朝向环糊精的大口端,羧基朝向环糊精的小口端,分子动力学模拟显示,主客体分子的质心距离在0.6 ?左右波动,分子模拟的结果与晶体数据相符;萘普生与β-环糊精形成了1:1的包结物,萘环被包结进了环糊精空腔,分子力学模拟数据表明羧基朝向环糊精的大口端是包结物的稳定构象,分子动力学模拟显示,主客体分子的质心距离在4.5 ?左右波动;氨基苯甲酸的三种异构体与β-环糊精形成的包结物中,分子模拟的结果都表明,氨基和羧基都与β-环糊精的羟基形成了氢键,分子动力学模拟结果说明,在三种异构体中,对氨基苯甲酸进入环糊精空腔的深度最大,最小的是邻氨基苯甲酸。
Due to the unique structure with hydrophobic central cavity,β-cyclodextrin can selectively bind different guest molecules to form inclusion complexes in order to improve solubility, stability of guest molecules. Thus,β-cyclodextrin has been widely used in many different fields, such as pharmaceutics, analytics, food and environment, etc. The structure research of host-guest inclusion complex is the basic problem of molecular inclusion phenomena and supramolecular assembling, the study about this area is focused on all the time.
     In this paper,β-cyclodextrin was used as the host molecule and the o-aminobenzoic acid, m-aminobenzoic acid and p-aminobenzoic acid were used as the guest molecules. X-ray powder diffractometry, Fourier transform infrared, 1H nuclear magnetic resonance, circular dichroism, x-ray single crystal diffractometer and molecular simulation method were used to study the inclusion complex structure. The host and guest molecules with different molar ratio were dissolved in water or ethanol-water solvent, and agitated for 2 hours under 70℃, then cooled to room temperature, filtered with membrane filter. The products were stored under room temperature to volatilize the solvent, the solid inclusion complexes were gained. The products were put into vacuum dryer, dried till constant weight. The structures of inclusion complexes were studied, and the inclusion modes of the host-guest complexes were discussed by molecular simulation method.
     The results showed that: the inclusion complex of o-aminobenzoic acid andβ-cyclodextrin was made with the molar ratio of 1:1, the benzene ring was included into the cyclodextrin cavity, the amido and carboxyl pointed to the big end of cyclodextrin both, molecular dynamic simulation result indicated that the host-guest centroid distance was about 2 ?; the inclusion complex of m-aminobenzoic acid andβ-cyclodextrin was made with the molar ratio of 1:1, the benzene ring was included into the cyclodextrin cavity, the amido pointed to the big end of cyclodextrin and the carboxyl pointed to the small end, molecular dynamic simulation result indicated that the host-guest centroid distance was about 1.2 ?; the inclusion complex of p-aminobenzoic acid andβ-cyclodextrin was made with the molar ratio of 2:2, the benzene ring was included into the cyclodextrin cavity, the amido pointed to the big end of cyclodextrin and the carboxyl pointed to the small end, molecular dynamic simulation result indicated that the host-guest centroid distance was about 0.6 ?, the molecular simulation result was in accordance with the crystalline data; naproxen and β-cyclodextrin inclusion complex were synthesized with the molar ratio of 1:1, naphthaline ring was included into the cyclodextrin cavity, molecular simulation result indicated that the state which carboxyl pointed to the big end was the stable structure, molecular dynamic simulation showed that the host-guest centroid distance was about 4.5 ?; the hydrogen bond was observed by molecular silulation in the inclusion complexes of three isomers of aminobenzoic acid withβ-cyclodextrin, and the p-aminobenzoic acid was buried into cyclodextrin cavity deeply, the o-aminobenzoic acid was opposite.
引文
[1] 刘育,尤长城,张衡益著,超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2001
    [2] 童林荟,环糊精化学-基础与应用,北京:科学出版社,2001
    [3] Mine Y., Fukunaga K., Itoh K., et al. Enhanced enzyme activity and enantioselectivity of lipases in organic solvents by crown ethers and cyclodextrins, Journal of Bioscience and Bioengineering, 2003, 95(5): 441~447
    [4] Rizzarelli E., Vecchio G. Metal complexes of functionalized cyclodextrins as enzyme models and chiral receptors, Coordination Chemistry Reviews, 1999, 188(1):343~364
    [5] Yuan D. Q., Dong S. D., Breslow R. Cyclodextrin-based class I aldolase enzyme mimics to catalyze crossed aldol condensations, Tetrahedron Letters, 1998, 39(42): 7673~7676
    [6] 王光辉,吴峰没,邓南圣,β-环糊精促进双酚 A 光催化降解,水处理技术,2006,32(9):23-26
    [7] 任维衡,罗冬冬,用 β-环糊精衍生物催化还原顺丁烯二酸酐的研究,湖北化工,1998,15(4):19-20
    [8] 丁国华,张光宇,β-环糊精催化合成 4-羟基苯甲醛,桂林工学院学报,2001,21(4):392~393
    [9] Montassier P., Duchene D., Poelman M. C. Inclusion complexes of tretinoin with cyclodextrins, International Journal of Pharmaceutics, 1997, 153(2): 199~209
    [10] Szejtli J., Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins, European Journal of Pharmaceutics and Biopharmaceutics, 2005, 61 (3): 115~125
    [11] Davis M.E., Brewster M.E. Cyclodextrin-based pharmaceutics: past, present and future, Nature Reviews Drug Discovery, 2004, 3 (12): 1023~1035
    [12] Mura P., Zerrouk N., Faucci M.T., et al. Comparative study of ibuproxam complexation with amorphous β-cyclodextrin derivatives in solution and in the solid state, European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54 (2): 181~191
    [13] Guo X., Shuang S., Wang X., et al. Comparative study on the inclusion behaviour of cyclodextrin derivatives with venoruton and rutin by thin layer chromatography, Biomedical Chromatography, 2004, 18 (8): 559~563
    [14] Loftsson T., Masson M. Cyclodextrins in topical drug formulations: Theory and practice, International Journal of Pharmaceutics, 2001, 225 (1-2): 15~30
    [15] Peter L. I., Gregory K., Kevin B. Polymerized cyclomaltoheptaose (β-cyclodextrin, β-CDn) inclusion complex formation with chlorogenic acid: solvent effects on thermochemistry and enthalpy-entropy compensation, Carbohydrate Research. 1996, 282(1): 65~79
    [16] Hirayama F., Yamanaka M., Horikawa T. et al. Characterization of Peracylatedβ-Cyclodextrins with Different Chain Lengths as a Novel Sustained Release Carrier for Water-soluble Drugs, Chemical & Pharmaceutical Bulletin, 1995, 43, 130~136
    [17] Krenn M., Gamcsik M.P., Vogelsang G.B., et al. Improvements in solubility and stability of thalidomide upon complexation with hydroxypropyl-β-cyclodextrin, Journal of Pharmaceutical Sciences, 1992, 81(7): 685~689
    [18] Church W.H., Lee C.S., Dranchak K.M. Capillary electrophoresis of glutamate and aspartate in rat brain dialysate- improvements in detection and analysis time using cyclodextrins, Journal of Chromatography B: Biomedical Applications, 1997, 700 (1-2): 67~75
    [19] Zhu X., Lin B., Epperlein U., et al. Enantiomeric resolution of some nonsteroidal antiinflammatory and anticoagulant drugs using β-cyclodextrins by capillary electrophoresis, Chirality, 1999, 11 (1): 56~62
    [20] Abushoffa A.M., Fillet M., Servais A.C., et al. Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using mixtures of oppositely charged cyclodextrins in capillary electrophoresis, Electrophoresis, 2003, 24 (3): 343~350
    [21] 何炳林,赵晓斌,新型 β-环糊精固载化高分子对内,外源性毒物的包络吸附研究,高等学校化学学报,1992,13(7):1006~1007
    [22] 李培之,毛敏缓,循环伏安法研究硝基药物的 β-环糊精包含络合物,分析化学,1994,22(1):58~60
    [23] 王学功,几种环糊精衍生物的合成及对药物分子包结过程研究,[硕士学位论文],天津:天津大学,2005
    [24] 张克从,张乐惠, 晶体生长科学与技术,北京:科学出版社,1997
    [25] 马世坤,王瑾玲,李爱秀等,β-环糊精与对苯二酚包合物的合成与晶体结构,科学通报,2000,45(13):1383~1386
    [26] Liu Y., Han B.H., Zhang H.Y. Spectroscopic studies on molecular recognition of modified cyclodextrins, Current Organic Chemistry, 2004, 8 (1): 35~46
    [27] Junquera E., Aicart E. A fluorimetric, potentiometric and conductimetric study of the aqueous solutions of naproxen and its association with hydroxypropyl-β- cyclodextrin, International Journal of Pharmaceutics, 1999, 176 (2): 169~178
    [28] Trapani G., Latrofa A., Franco M., et al. Inclusion complexation of propofol with 2-hydroxypropyl-β-cyclodextrin, physicochemical, nuclear magnetic resonance spectroscopic studies, and anesthetic properties in rat, Journal of Pharmaceutical Sciences, 1998, 87 (4): 514~518
    [29] Shimizu H., Kaito A., Hatano M. Induced circular dichroism of β-cyclodextrin complexes with sustituted benzenes, Bulletin of the Chemical Society of Japan, 1979, 52(9): 2678~2684
    [30] 宋占军,张洪北,应用光谱分析技术研究碘与 β-环糊精结合物的结构特征,光谱学与光谱分析,2001, 21(5): 603~606
    [31] Mikhail V. R., Yoshihisa I. Complexation thermodynamics of cyclodextrins,Chemical Reviews, 1998, 98(5): 1875~1917
    [32] 雍国平,李光水,β-环糊精包合物的结构研究,高等学校化学学报,2000, 21(7): 1124~1126
    [33] Liu Y., Zhang H.Y., Sun S. X. Molecular recognition study of a supramolecular system. Part 4. Molecular recognition thermodynamics of amino acids by modified β-cyclodextrins, Journal of chemical society, Perkin Trans., 1997, 2: 1609~1613
    [34] Schneider H. J., Hacket F., Rudiger V., et al. NMR Studies of Cyclodextrins and Cyclodextrin Complexes, Chemical Review, 1998, 98(5): 1755~1786
    [35] Bergeron R, Channing M. A., Mcgovern K. A. Dependence of cycloamylose substrates binding on charge. Journal of the American Chemical Society, 1978,100(9): 2878~2883
    [36] Bergeron R., Channing M. A., Gibeily G. J., et al. Disposition requirements for binding in aqueous solution of polar substrates in the cyclohexaamylose cavity. Journal of the American Chemical Society, 1977, 99(15):5146~5151
    [37] Inoue Y., Okuda T., Miyata T., Chujo R. NMR studies of cycloamylose inclusion complexes with p-substituted phenols. Carbohydrate Research,1984, 125: 65~76
    [38] Rekharsky M. V., Goldberg R. N., Schwarz F. P., et al. Thermodynamic and Nuclear Magnetic Resonance Study of the Interactions of .alpha.- and .beta.-Cyclodextrin with Model Substances: Phenethylamine, Ephedrines, and Related Substances, Jounal of American Chemical society, 1995; 117(34): 8830~8840
    [39] Rekharsky M. V., Schwarz F. P., Tewari Y. B., et al. A Thermodynamic Study of the Reactions of Cyclodextrins with Primary and Secondary Aliphatic Alcohols, with D- and L-Phenylalanine, and with L-Phenylalanineamide, Journal of Physical Chemistry, 1994, 98(40): 10282~10288
    [40] Mura P., Bettinetti G. P., Manderioli A., et al. Interactions of ketoprofen and ibuprofen with β-cyclodextrins in solution and in solid state. International Journal of pharmaceutics, 1998, 166: 189~203
    [41] Inoue Y., Hoshi H., Sakurai M., et al. Geometry of Cyclohexaamylose Inclusion Complexes with Some Substituted Benzenes in Aqueous Solution Based on Carbon-13 NMR Chemical Shifts, Journal of the American Chemical Society, 1985, 107: 2319~2323
    [42] Gao P. Determination of the composition of delavirdine mesylate polymorph and pseudopolymorph mixtures using 13C CP/MAS NMR, Pharmaceutical Research, 1996, 13(7): 1095~1104
    [43] Qin X. R., Abe H., Nakanishi H. NMR and CD studies on the interaction of Alzheimer β-amyloid peptide (12–28) with β-cyclodextrin, Biochemical and Biophysical Research Communications, 2002, 297(4): 1011~1015
    [44] Trapani G., Latrofa A., Franco M. et al. Inclusion complexation of propofol with 2-hydroxypropyl-β-cyclodextrin, physicochemical, nuclear magnetic resonancespectroscopic studies, and anesthetic properties in rat, Journal of Pharmaceutical Sciences, 1998, 87 (4): 514~518
    [45] Harata K. Complex formation of hexakis(2,6-di-O-methyl)-α-cyclodextrin with substituted benzenes in aqueous solution, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1992, 13(1): 77~86
    [46] Kajtar M., Horvath-Toro C., Kuthi E., et al. A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes, Acta Chimica Academiae Scientiarum Hungaricae, 1982, 110(3): 327~355
    [47] Zhdanov Y. A., Alekseer Y. E., Kompantseva E. V., et al. Induced optical activity in cyclodextrin complexes, Russian Chemical Reviews, 1992, 61(6): 563~575
    [48] Harata K. Induced circular dichroism of cycloamylosecomplexes with meta- and para-disubstituted benzenes, Bioorganic Chemistry, 1981, 10(3): 255~265
    [49] Wang J., Wei M., Rao G. Y., et al. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide, Journal of Solid State Chemistry, 2004, 177(1): 366~371
    [50] 吕万良,屠锡德,酮洛芬 β-CD 包合物的结构研究,中国药科大学学报,1998,29(3):176~178
    [51] Harata K. Structural Aspects of Stereodifferentiation in the Solid State, Chemiacal Review, 1998,98: 1803~1827
    [52] Sun H. Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, 28: 701~712
    [53] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds, Journal of Physical Chemistry B, 1998, 102: 7338~7364
    [54] Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, 159: 98~103
    [55] Lipkowitz K. B. Applications of Computational Chemistry to the Study of Cyclodextrins, Chemical Reviews, 1998, 98(5): 1829~1873
    [56] Tabushi T., Mizutani T. Nature of force-field operating in molecular recognition by cyclodextrins-contribution of nonpolar and polar interactions, Tetrahedron, 1987,43(7): 1439~1447
    [57] Eliseev A. V., Schneider H. J. Molecular Recognition of Nuclosides, Nucleotides and Sugars by Aminocyclodextrins, Journal of the American Chemical Society, 1994, 116: 6081~6088
    [58] Armstrong R. D., Ward T. J., Pattabiraman N., et al. Separation of tamoxifen geometric isomers and metabolites by bonded-phase beta-cyclodextrin chromatography, Journal of Chromatography, 1987, 414(1): 192~196
    [59] Arnold E. N., Lillie T., Beesley T. E. Molecular modeling of cyclodextrin-guest molecule interactions, Journal of liquid chromatography, 1989, 12(33): 337~343
    [60] Ueoka R., Matsumoto Y., Harada K., et al. Cyclodextrin-Mediated Deacylation ofPeptide Esters. with Marked Stereoselectivity, Journal of the American Chemical Society, 1992, 114: 8339~8340
    [61] Fathallah M., Fotiadu F., Jaime C. Cyclodextrin Inclusion Complexes. MM2 Calculations Reproducing Bimodal Inclusions, The Journal of Organic Chemistry, 1994, 59:1288~1293
    [62] Dodziuk H., Sitkowski. J., Stefaniak. L., et al. 13CNMR differentiation of diastereoisomeric complexes of cis-decalin with β-cyclodextrin, Journal of the Chemical Society, Chemical Communications, 1992, 3: 207~208
    [63] Amato M. E., Lombardo G. M., Pappatardo G. C., et al. High field NMR techniques, molecular modelling and molecular dynamics simulations in the study of the inclusion complex of the cognition activator (±)-1-(4-methoxybenzoyl)-5-oxo-2-pyrrolidinepropanoic acid (CI-933) with β-cyclodextrin, Journal of Molecular Structure, 1995, 350(1): 71~82
    [64] Lipkowitz K. B., Green K. M., Yang J. A., et al. Theoretical study of enantiodifferentiation in solid state cyclodextrins, Chirality 1993, 5: 51~57
    [65] 殷开梁,徐端钧,陈正隆,真空条件下 β-环糊精和对甲基苯酚包结物动态结构的分子动力学模拟 无机化学学报 2003,19(5):480~484
    [66] 殷开梁,夏庆,徐端钧,陈正隆,纳米水滴及真空中 β-环糊精与对甲基苯酚 1:1 包结物的约束动力学模拟研究 化学物理学报 2004, 17(6):711~716
    [67] Linert W., Margl P., Renz F. Solute-solvent interactions between cyclodextrin and water: a molecular mechanical study, Chemical Physics, 1992, 161(3): 327~338
    [68] Naidoo K. J., Chen J. Y. J., Jansson J. L. M., et al. Molecular properties related to the anomalous solubility of β-cyclodextrin, Journal of Physical Chemistry B, 2004,108: 4236~4238
    [69] Kiss A. I. Szoke J., π-Electron SCF MO calculations for disubstituted benzene derivatives containing two donor groups, Chemical Physics Letters, 1973, 18(2): 195~198
    [70] Kiss A. I. Szoke J., Pi-electron SCF MO calculations for disubstituted benzene derivatives containing two acceptor groups, Journal of Molecular Structure, 1973, 18(3): 457~461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700