土著根瘤菌、丛枝菌根真菌与大豆双共生体系的分析和调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以黑钙土为供试土壤,采用盆栽、田间试验,进行了土著根瘤菌、丛枝菌根真菌与大豆双共生体系及相关指标的调查。主要试验结果如下:
     1、在盆栽条件下,乙草胺、赛克、氟磺胺草醚、2,4-D丁酯四种除草剂与对照相比,根段AMF侵染率和根瘤数都有一定程度的下降,菌根形成受除草剂影响比根瘤形成所受影响发生更早、程度更大、持续时间更长。在V3期土壤细菌数量下降,根瘤数普遍下降,另一方面由其降低土壤真菌数量而导致侵染率下降,进而间接引起。赛克和乙草胺对大豆根系发育的抑制也影响到根瘤和菌根形成。乙草胺、氟磺胺草醚、2, 4-D丁酯三种除草剂对V2期大豆结瘤的促进作用,而对大豆地上部全氮积累有显著促进作用,但磷含量没有明显的规律性变化。
     2、在盆栽条件下,垦农4号、垦农18号、黑农35号、抗线2号、垦农21号、垦农5号、垦鉴43号七个品种不同大豆品种在苗期与土著根瘤菌、AMF形成双共生体系有较大差异。垦鉴43号在V2、V4期与土著根瘤菌、AMF能较好地形成双共生体,根瘤与AM形成相互影响较小,而黑农35号AM对根瘤形成有较大的抑制作用。V4期,AMF侵染率较大幅度的增加对根瘤形成产生一定抑制作用。大豆V2到V4期,除抗线2号细菌数略有增加,根瘤数增多外,其它品种细菌数都有下降,导致根瘤数增加不明显或略有减少。所有品种真菌数与根段AMF侵染率有一定的正相关性;根际土壤中放线菌数量似乎对菌根形成没有太大的影响。
     3、根据盆栽试验结果选取侵染率和根瘤表现较好的4个品种进行田间试验。根际土壤AMF孢子数垦农5号在R1期,垦鉴43号、垦农21号、抗线2号均在R3期达到高峰;根段AMF侵染率垦鉴43号、垦农21号、垦农5号、抗线2号分别在V5、R3、R3和R6期达到高峰;单株瘤数、单株瘤干重垦鉴43号、垦农21号、垦农5号和抗线2号分别在R1、R3、R4和R6达到高峰,除抗线2号其它3个品种变化趋势较接近。菌根形成盛期与根瘤形成盛期4个品种的出现的时期不一致,垦鉴43号根瘤形成高峰比菌根形成高峰先到来,垦农21号、垦农5号、抗线2号根瘤形成高峰比菌根形成高峰晚到来。4个品种的细菌、真菌、放线菌数量都呈现出先升高后降低的规律;根瘤数、瘤重、大豆根段AMF的侵染率高峰期总是在根际土壤细菌数量达到高峰之后的某个时期出现。大豆生物量、植株氮磷钾含量、产量等指标未见与土著根瘤菌、丛枝菌根真菌有明显的相似性变化规律。
     4、采用水扬酸、多效唑、马铃薯皮醇提物、大豆子粒浸出液、5-氨基乙酰丙酸(δ-ALA)、含脂几丁质寡糖培养液6种调控物质进行2个大豆品种的种子浸种,对双共生及相关指标进行了调查。含脂几丁质寡糖培养液和大豆子粒浸出液2个处理根瘤数与侵染率间表现出有一定的正相关性,但是马铃薯皮醇提物处理虽然根瘤数较多但是侵染率较低,δ-ALA虽然侵染率较高但是根瘤数较少。在V5时期,马铃薯皮醇提物与对照相比,根际土壤细菌数量明显增多,而多效唑与对照相比,细菌数明显减少,在这一时期,两者根瘤与对照相比,都有所下降。在V5、R3期,6个处理与对照相比,对根际真菌数量都有抑制作用,到R6期,所有处理抑制性消失,侵染率也提高,表现出有一定的正相关性。在R3、R6时期,含脂几丁质寡糖培养液与对照相比根际土壤细菌数量、根瘤数有所增加,而地上氮含量增加并不明显,地下氮含量明显增多,这可能与含脂几丁质寡糖培养液促进根瘤形成有关。
Chernozem for this experiment, we had investigated indigenous rhizobium-arbuscular mycorrhizal fungi-soybean symbiosis and indicators related by pot experiments, field trials. The main conclusions are as follows:
     1.In pot experiment, compared with the control, the roots AMF colonization and nodule number of the four herbicides of acetochlor, metribuzin, fomesafen and 2,4-D butylate, havd declined at a certain degree. Compared with nodule formation, mycorrhiza formation impacted by the herbicide much earlier, greater, longer. In V3 period, nodule number decline because bacteria number decline by herbicides, also associated with mycorrhiza formation impacted by fungi number reduce . Soybean root development inhibited by acetochlor, metribuzin had also affected the nodules and mycorrhiza formation. In V2 period, three herbicides of Acetochlor, fomesafen and 2,4-D butylate, promoted the soybean nodulation, and increased the number of nitrogen fixation, then increased the amount of total N accumulation of soybean shoot significant, but the phosphorus content had no regularity changing.
     2.In pot experiment, we investigated the seven soybean varieties: Kennong 4、Kennong 18、Heinong 35、Kangxian 2、Kennong 21、Kennong 5、Kenjian 43. In the seedling stage, different soybean varieties-Indigenous rhizobium-arbuscular mycorrhizal fungi symbiosis formed a larger difference. In V2, V4 period, Kenjian 43 can form a better symbiosis with indigenous rhizobium-arbuscular mycorrhizal fungi, module and AM formation have a little interaction, but AM of Heinong 35 had a greater inhibition on nodules formation. In V4 period, increaseing AMF infection rate rapid inbibited nodule formation. V2 to V4 period, excepte a slight increased in the bacteria number and nodules of Kangxian 2, the bacterial number of other varieties had declined, resulting in little increase in the number of nodules or a slight decrease. The fungi number and root AMF infection rate of all varieties had a certain positive correlation; rhizosphere soil actinomycete number seemed to form a little impact on mycorrhiza formation.
     3.According to the results of pot experiment, we selected four varieties of high infection rate and better nodule formation to carry out field trials. Rhizosphere AMF spores number of Kennong 5 achieve maximum in R1, Kenjian 43, Kennong 21, Kangxian 2 in R3. Root AMF infection rate of Kenjian 43, Kennong 21, Kennong 5, Kangxian 2 chieved maximum in V5, R3, R3 and R6 respectively. Nodule number per plant and nodule dry weight per plant of Kenjian 43, Kennong 21, Kennong 5 and Kangxian 2 chieved maximum in R1, R3, R4 and R6. The other three varieties had the similar changing trend, except Kangxian 2. The peak of mycorrhizal formation and nodule formation was inconsistency of four varieties. The peak of nodule formation arrivalled before the peak of mycorrhizal formation by Kenjian 43, the others in contrary. Bacteria, fungi, actinomycetes number of four varieties all increased first decrease then. The peak of nodule number, nodule dry weight, soybean root AMF infection rate was always after the peak of rhizosphere soil bacteria number. Soybean biomass, content of plant nitrogen, phosphorus and potassium, production and other indicators did not have a significant similarity change regularity with indigenous rhizobia and arbuscular mycorrhizal fungi.
     4.We soaked two varieties seeds by six regulated substances of salicylic acid, paclobutrazol, the ethanol extract of potato skin, the extract soybean seed, 5 aminolevulinic acid (δ-ALA), culture medium containing chitin oligosaccharide lipid culture medium control, and then investigated related indicators of dual symbiosis. The nodule number showed a degree positive correlation with infection rates of culture medium containing chitin oligosaccharide lipid and the extract soybean seed, but nodule number of the ethanol extract of potato skin was high infection rate low; infection rates ofδ-ALA treat was high nodules fewer. In V5 period, the ethanol extract of potato skin compared with the control, the rhizosphere soil bacteria number of the ethanol extract of potato skin increased significantly; while compared with the control, the bacteria number of paclobutrazol reduced significantly, in this period, compared with the control both nodules number declined. In V5, R3 period, compared with the control, 6 treats inhibited rhizosphere fungi number, to R6 period, inhibition of all treats disappearanced, then infection rate also increased, that showed a certain positive correlation. In R3, R6 period, compared with the control, the rhizosphere soil bacteria number and nodules number of culture medium containing chitin oligosaccharide lipid increased, shoots nitrogen content did not apparent increased, roots nitrogen content increased, which may be related to chitin oligosaccharide lipid culture medium promoting the nodules formation.
引文
[1]王利平.几种除草剂对紫花苜蓿-根瘤菌共生固氮的影响. [硕士学位论文].山东:山东农业大学,2006
    [2] Kormanik PP. The influence of VAM on the growth and development of eight hardwood tree species[J]. Forest Sci, 1982, 28(3): 531~539
    [3] Rhodes LH, Gerdemann JW. Hyphal translocation and uptake of sulfur by VAM of onion[J]. Soil Biology and Biochemistry, 1978, 10(5): 355~360
    [4]王幼珊,张美庆. VA菌根对植物耐旱性研究及菌株筛选[J].北京:北京农业大学出版社,1992,366~369
    [5] Bowen GD. Zinc uptake by mycorrhizal and uninfected roots of Pinus radiata and Araucaria cunning-hamii[J]. Soil Biol, Biochem, 1974, 6: 141~144
    [6] Lindemann RG. Biocontrol and mediation of soil microbial activity[J]. In: Allen MF, et al, eds. Abstracts of 8th NACOM ,1990, 186~187
    [7]李晓林,曹一平. VA菌根菌丝对土壤磷和铜的吸收及其相关性[J].中国农业科学,1992,25(5):65~72
    [8]汪洪钢,吴观以,李慧荃. VA菌根与根瘤菌的相互关系及对花生生长的影响[J].微生物学通报,1985,12(2):49~51
    [9] Estaun V, Save R. Salt stress and VAM interactions on pistacia vera water relations[J]. In: Allen MF, eds. Abstracts of 8th NACOM, 1990, 96
    [10] Furlan V. Large scale application of endomycorrhizal fungi and technology transfer to the farmer[J]. In: Pe-terson L, eds. Abstracts of the 9th NACOM, 1993, 77
    [11]李新民,窦新田.黑龙江省土著大豆根瘤菌数量分布及接种菌在土壤中生存定殖能力的研究[J].黑农业科学,1997,5
    [12] Hirsch AM, Lum MR, Downie JA. What makes the rhizorbiar legume symbiosis so special? [J]. Plant Physiol, 2001, 127:1484~1492
    [13] Lum MR, Hirsch AM. Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment[J]. Plant Growth Regul, 2003, 21: 368~382
    [14] Zablotowicz, Robert. Effects of Glyphosate on symbiotic nitrogen fixation, assimilation and soybean yield in Glyphosate resistant soybean[J]. Southern Weed Science Research. 2004, 23(1): 120~123
    [15] Zimdahl RL, Clark SK. Degradation of three acetanilide herbicides in soil[J]. Weed Sciences. 1989, 30, 545548
    [16] Bethlenfalvay GJ, Norris RF, Phillips DA. Effect of bentazon, a Hill reaction inhibitor, on symbiotic nitrogen-fixing capability and apparent photosynthesis[J]. Plant physiology, 1979, 63, 213~215
    [17] Rennie RJ, Dubetz S. Effect of fungicides and herbicides on nodulation and N2 fixation in soybean fields lacking indigenous Rhizobium japonicum[J]. Agronomy Journal .1984, 76, 451~454
    [18] Mallik MA B, Tesfai K. Pesticidal effect on soybean-rhizobia symbiosis[J]. Plant and Soil.1985, 85, 33~41.
    [19]洪国藩,宋鸿遇.固氮之光[M].长沙:湖南科学科学技术出版社,1997,42
    [20] Javed Musarrat, Akhtar Haseeb.Agrichemical as antagonist of lectin-mediated Rhizobium-legume symbiosis: paradigms and prospects[J]. Current Science Bangalore. 2000, 78(7): 793~797
    [21]吴奇峰,何桂红,董志新,等.植物生长调节剂在我国大豆种植上的研究与应用[J].作物杂志,2005,(1):12~13
    [22]章迪,郑均娥.多效唑对大豆矮化及增产效应[J].南京农业大学学报,1989,12(4):23~27
    [23]刘桂菊,江延朝,齐丽.大豆应用新型植物生长调节剂效果分析[J].大豆通报,1999,(6):12
    [24]张明才,何钟佩,段留生.北农化控Ⅱ号对大豆根瘤和叶片蛋白含量的影响[J].西北植物学报,2000,21(6):1225~1228
    [25] James EK. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community[J]. New Phytology, 1995, 130: 159~263
    [26] [0]魏世清,张磊,张学军,等.低pH对葛藤根瘤菌生长的影响[J].中国农学通报,2007,23(12):139~243
    [27] Feng Z, Lynch DH, Smith DL. Impact of low root zone temperature in soybean [Glycine max L. Merr.] on nodulation and nitrogen fixation[J]. Environmental and Experimental Botany, 1995, 35(3): 279~285
    [28]范洁群,冯固,李晓林等.有机磷杀虫剂——灭克磷对丛枝菌跟真菌glomus mosseae生长的效应[J].菌物学报,2006,25(1):125~130
    [29] Thingstup I, Rosendahl S. Quantification of external hyphae of vesicular arbuscular mycorrhizal symbiosis by polyacrylamide electrophoresis and densitometry of malate dehydrogenase[J]. Soil Biology and Biochemistry, 1994, 26: 1483~1489
    [30] Larsen J, Thingstrup I, Jakobsen I, et al. Benomyl inhibs phosphorus transport but not fungal alkaline phosphatase activity in a Glomus—cucumber symbiosis[J]. New Phytologist, 1996, 132: 127~133
    [31]王利平,王金信,孙艾蕊,等. 5种土壤处理除草剂对紫花苜蓿—根瘤菌共生固氮的影响[J].山东农业大学学报,2007,38(1): 39~40
    [32] Schweiger PF, Spliid NH, Jakobsen I. Fungicide aplication and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas[J]. Soil Biology&Biochemistry, 2001, 33: 1231~1237
    [33] Gianinazzi-Pearson V, Gianinazzi S. Morphological integration and functional compatibility between symbionts in vesicular-arbuscular endomycorrhizal associations[J]. In Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. 1988, 12: 73~84
    [34]董昌金,赵盈,赵斌.类黄酮对AM真菌及宿主植物的影响研究[J].菌根学报,2004,23(2):294~300
    [35] Powell CL, Bagyaraj DJ. VA mycorrhiza[M]. Boca Raton, FL: CRC Press, 1984, 131~154
    [36] Crush JR. Plant growth responses to vesicular-arbuscular mycorrhizae VII. Growth and nodulation of some herbage legumes[J]. New phytol, 1974, 73:745
    [37] Galleguillos C, Aguirre C, Barea JM, et al. Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi[J]. Plant Sci. 2000, 159, 57~63
    [38] Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review[J]. Environmental Pollution. 1997, 98, 29~36
    [39] Fiffer AH, Garbaye J. Interactions between mycorrhizal fungi and other soil organisms[J]. Plant and Soil, 1994, 159(1): 123~132
    [40]李晓鸣.黑土接种VA菌根真菌对大豆植株吸磷及固氮的影响[J].土壤肥料,1994,(3):43~45
    [41] Salzer P, Corbière H, Boller T. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices[J]. Planta , 1999, 208: 319~325
    [42] Boglárka Oláh, Christian Brière, Guillaume Bécard, et al. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling path way[J]. The Plant Journal, 2005, 44: 195~207
    [43] Souleimanov A, Prithiviraj B, Smith DL. The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn[J]. Journal of Experimental Botany, 2002, 53: 1929~1934
    [44] Allen MF. The ecology of mycorrhizae[M]. New York: Cambridge University Press, 1991, 113~118
    [45]李淑敏,李隆,张福锁.真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报,2004,9(1):11~15
    [46] Bagyaraj DJ. Biological interactions with VA mycorrhizal fungi. VA Mcorrhizae[M]. Boca Raton Florida: CRC Press, 1984, 131~153
    [47]汪洪钢,吴观以,李慧荃. VA菌根真菌与根瘤菌对离体绿豆根器官的侵染[J].研究报告,193~195
    [48] Bettina Hause, Thomas Fester. Molecular and cell biology of arbuscular mycorrhizal symbiosis[J]. Planta, 2005, 221: 184~196
    [49] Endre G, Kereszt A, Kevei Z, et al. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962~966
    [50] Stracke S, Kistner C, Yoshida S, et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis[J]. Nature, 2002, 417: 959~962
    [51] Catoira R, Galera C, de Billy F, et al. Four genes of Med-icago truncatula controlling components of a nod factor transduction pathway[J]. Plant Cell, 2000, 12: 1647~1666
    [52] Ane′J-M, Kiss GB, Riely BK, et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes[J]. Science, 2004, 303: 1364~1367
    [53] Galleguillos C, Aguirre C, Barea JM, et al. Growth promoting effect of two Sinorhizobium meliloti strains (a wildtype and itsgenetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhiza fungi[J]. PlantSci, 2000, 159: 57~63
    [54] Mosse B. in Exploiting the Legume-Rhizobium symbiosis in tropical Agriculture Tropical. Agriculture Miscellaneous Publication, 1977, 145: 275-292.
    [55] Mathesius U. Conservation and divergence of signalling pathways between roots and soil microbes-the Rhizobium-legume symbiosis compared to the development of lateral roots,mycorrhizal interactions and nematoder induced galls[J]. PlantSoil, 2003, 255:105~119
    [56] Parniske M. Intracellular accommodation of microbes by plants:a common development al program for symbiosis and disease?.Curr.Opin[J]. Plant Biol., 2000, 3: 320~328
    [57] Riely BK, Ane JM, Penmetsa RV, et al. Genetic and geNomic analysis in model legumes bring Nod-factor signaling to center stage. CurrOpin[J]. Plant Biol., 2004, 7: 408~413
    [58] [0]van Brussel AAN, Tak T, Boot KJM, et al. Autoregulation of root nodule formation: signals of both symbiotic partners studied in a split root system of Vicia sativa subsp. nigra. Molecular Plant–Microbe Interactions[J]. 2002, 15: 341~349
    [59] [0]Catford JG, Staehelin C, Lerat S, et al. Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors[J]. Journal of Experimental Botany,2003, 54: 1481~1487
    [60] Smith RS, Ellis MA, Smith RE. Effect of Rhizobium japonicum inoculant rates on soybean nodulation in a tropical soil[J]. Agron.J, 1981, 73: 505508
    [61] Caldwell BE, Grant Vest. Effect of Rhizobium japonicum strains on soybean yields[J]. Crop Sci, 1970, 10: 19~21
    [62] Ham E, Cardwell VB, Johnson HW. Evaluation of Rhizonbium japonicum inoculants in soils containing naturalized populations of rhizobia[J]. Agron.J, 1971, 63: 301~303
    [63] Weaver RW, Frederick LR. Effect of inoculum rate on competitive nodulation of Glycine max L.Merrill, I: Greenhouse studies[J]. Agron.J, 1974, 66: 229~232
    [64] Weaver RW, Frederick LR. Effect of inoculum rate on competitive nodulation of Glycine max L.Merrill,Ⅱ:Picld studies[J]. Agron.J., 1974, 66: 233~235
    [65]赵宇华,Tonge M,李为群.菌根菌和根瘤菌接种对豇豆的效应[J].浙江农业大学学报,1997, 23(4): 414~418
    [66] Bllis WR, Ham GE, alld Schmidt E Ll. Persistence and recovery of Rhlzoblum japontaum inoculm in a field soil[J]. Agrond, 1984, 76: 573~576
    [67] Wcaver RW, Frederick LR. Effeer of inoculum size on nod ulation of Clycine max L Merrill, variety ford[J]. AgronJ, 1972, 64: 597~599
    [68]王福生,李阜棣,陈华癸.土壤中大豆根瘤菌之间竞争结瘤的研究III.接种菌量对大豆生长的影响[J].土壤学报,1989,26(4):15~20
    [69]沈萍,陈向东.微生物实验[M].北京:高等教育出版社,2004,69~81
    [70]宋大新,范长胜,徐德强.微生物学实验技术教程[M].上海:复旦大学出版社,1992,30~41
    [71]李阜棣,喻子牛.农业微生物实验技术[M].北京:中国农业出版社,1996:34~36
    [72]董昌金,姚发兴,赵斌.类黄酮对AM真菌侵染菌丝生长及酶活性的影响[J].土壤学报,2006,43(3):473~477
    [73]董昌金,赵斌.几种玉米大田除草剂对AM真菌侵染及其酶活性的影响[J].土壤学报,2004,41(5):750~755
    [74]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002,213~214
    [75]董昌金.从枝菌根真菌孢子萌发及类黄酮对丛枝菌根形成影响的研究. [博士学位论文].武汉:华中农业大学,2004
    [76] Tisserant B, Gianinazzi S, Gianinazzi-pearson V. Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia[J]. Can J Bot. 1996, 74: 1947~1955
    [77] Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil[M]. St.Paul: The American Phytopathology Society Press, 1982, 29~35
    [78]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004,100~120
    [79]郝建军,康宗利,于洋.植物生理与实验技术[M].北京:化学工业出版社,2007,69~72
    [80]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999,39~101
    [81]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2002,124~126
    [82] Zawoznik MS, Tomaro ML. Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean[J]. Pest Manag Sci, 2005, 61: 1003~1008
    [83] Vieira RF, Silva MS, Silveira APD. Soil microbial biomass C and symbiotic processes associated with soybean after sulfentrazone herbicide application[J]. Plant Soil, 2007, 300: 95~103
    [84]陈立杰,刘惕若,李海燕,等.除草剂对大豆幼苗根腐病及其土壤微生物的影响[J].大豆科学,1999,18(2):115~119
    [85]王利平,王金信,孙艾蕊,等. 5种土壤处理用除草剂对紫花苜蓿-根瘤菌共生固氮的影响[J].山东农业大学学报,2007,38(1):39~42
    [86]张学贤,农广,张忠明,等.根瘤菌与豆科植物之间的“分子对话”[J].生物技术通报,1995,3:7~9
    [87] Eberbach PC, Douglas LA. Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L[J]. Plant and Soil, 1989, 119: 15~23
    [88]董昌金,赵斌.大豆除草剂对2种丛枝菌根的影响[J].植物病理学报,2004,34(6):518~524
    [89] Hirsch AM, Kapulnik Y. Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis[J]. Fungal Genetics and Biology, 1998, 23(3): 205~212
    [90] Oldroyd GED. Nodules and Hormones[J]. Plant science, 2007, 315: 52~53
    [91] Eberbach PC, Douglas LA. Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C2H2/C2H4) of Trifolium subterraneum[J]. Plant and Soil, 1991, 131: 67~76
    [92] Date RA. Microbiological problems in the inoculation and nodulation of legumes[J]. Plant and Soil, 1970, 32: 703~725
    [93] Pate JS, Sutcliffe JF. The Physiology of the Garden Pea[M]. London: Academic Press, 1977, 349~384
    [94] Salzer P, Corbière H, Boller T. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices[J]. Planta , 1999, 208: 319~325
    [95] Boglárka Oláh, Christian Brière, Guillaume Bécard, et al. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling path way[J]. The Plant Journal, 2005, 44: 195~207
    [96] Mallik MAB, Tesfai K. Pesticidal effect on soybean rhizobia symbiosis[J]. Plant and Soil, 1985, 85: 33~41
    [97]王贤波.丛枝菌根(AM)的研究进展及展望[J].杭州农业科技,2007,2:19~21
    [98] George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil[J]. Crit Rev Biotechnol, 1995, 15: 257~270
    [99] Antunes PM, de Varennes A, Rajcan I, et al. Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan[J]. Soil Biol Biochem, 2006, 38: 1234~1242
    [100] Krishna KR, Balakrishna AN, Bagyaraj DJ. Interaction between VA mycorrhiza and Streptomyces cinnamomeus and their effect on finger millet[J]. New Phytologist, 1982, 92: 401
    [101] Fox JA, Spasoff D. Interaction of Heterodera solanacearum and Endogone gigantia on tabacco[J]. Nematology, 1972 , 4: 224~225
    [102] Hussey RS, Roncadori RW. Vesicular2arbuscular mycorrhizal may limit nematode activity and improve plant growth[J ].Plant Disease , 1982, 66: 9~14.
    [103] Jothi G, Rajeshwari2Sundarababu R. Interaction of vesicular2arbuscular mycorrhizal with reniform nematode, Rotylenchulusrenif ormis on ragi[J]. Indian Journal of Nematology, 1998 , 28(2) : 145~149.
    [104]李泽禹.根瘤与菌根[J].生物学通报,1998,33(1):11~12
    [105]李六林,杨佩芳,田彩芳.新红星苹果不同枝类叶片中叶绿素含量的变化[J].果树科学,1999,16(1):78~80
    [106]王继安,宁海龙,罗秋香,等.大豆品种间叶绿素含量、RUBP活性、希尔反映活力及其与产量系[J].东北农业大学学报,2004,35(2):129~134
    [107]董钻.叶绿素含量及比叶重与大豆单株生物产量的相关性[J].沈阳农学院学报,1979,2:7~9
    [108] Bazzaz FA, Fajer ED. Plant life in a CO2-Rich World[J]. Scientific American, 1992, 266(1), 68~74
    [109] Morgan JA, Hunt HW, Monz CA, et al. (1994)Consequences of growth at carbon dioxide concentrations and two temperatures for leaf gas exchange in pascopyrum smithii (C3) and bouteloua gracilis (C4) [J]. Plant Cell and Environment, 1994, 17(9): 1023~1033
    [110] Smith SE, read DJ. Mycorrhizal symbiosis[M]. San Diego, CA: Academic, 1997,67
    [111] Akiyama K. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis[J]. Bioscience, Biotechnology and biochemistry. 2007, 71(6): 1405~1414
    [112]王永锐,李小林.水稻免耕栽培的生理基础[J].中山大学学报论丛,1989,8(4):96~98
    [113]赵士杰,李树林. VA菌根促进青椒生长的生理研究[J].华北农学报,1994,9(1):81~86
    [114]陈宁,王幼珊,杨延杰,等.宿主植物对真菌生长发育的影响[J].华北农学报,2006,21(6):103~106
    [115]吴强盛,夏仁学,胡利明.土壤未灭菌条件下丛枝菌根对枳实生苗生长和抗旱性的影响[J].果树学报,2004,21(4):315~318
    [116]刘润进.丛枝菌根及其应用[M].北京:科学出版社,2001,61
    [117] Requena, Breuninger. The old arbuscular mycorrhizal symbiosis in the light of the molecular era[J]. Progress in Botany. 2004, 3: 323~356
    [118]张翅.番茄与丛枝菌根真菌共生效应的研究. [硕士学位论文].武汉:华中农业大学,2006
    [119]谭娟.接种俄罗斯大豆根瘤菌对大豆生长和产量的影响[J].作物杂志,2007,4:36~37
    [120]孙彦浩,陈殿绪,张礼凤.花生施氮肥效果与根瘤菌固N的关系[J].中国油料作物学报,1998,20(3):69~72
    [121]王金陵.大豆[M].哈尔滨:黑龙江科学技术出版社,1982,64~104
    [122]郭海龙,马春梅,董守坤,等.春大豆生长中对不同氮源的吸收利用[J].核农学报,2008,22(3):338~342
    [123]李伟群,王爽,王英,等.杨思平不同施肥处理对大豆生育期内土壤微生物的影响[J].大豆科学,2007,26(6):922~925
    [124]赵淑清,田春杰,何兴元.固氮植物的菌根研究[J].应用生态学报,2000,11(2):306~310
    [125] Bethlenfalvay GJ. Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing legumes: problemsand prospects. Methods Microbiol[J]. 1992, 24, 375~389
    [126]阎秀峰,王琴.辽东栋幼苗的外生菌根合成[J].植物生态学报,2002,26(I):64~68
    [127]王立刚,刘景辉,刘克礼,等.大豆氮素积累、分配与转移规律的研究[J].作物杂志,2004,5:20~22
    [128]曹宗巽,周阮宝,赵毓桔,等.植物生理与分子生物学[M].北京:科学出版社,1998,528
    [129]姜中珠,陈祥伟.水杨酸对三种灌木幼苗抗旱性的影响[J].水土保持学报,2004,18(2):166~169,185
    [130] Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance[J]. Science, 1993, 261: 754~756
    [131]许峰.银杏GbPAL和GbANS基因的克隆与表达及ALA对类黄酮含量的影响. [博士学位论文].山东:山东农业大学,2008
    [132]肖昌珍.多效唑对大豆的生理效应[J].中国油料,1990,(4):51~53
    [133]洪庆慈.几类天然植物中搞氧化物的研究[J].粮食与饲料工业,2000,2:45
    [134] Redmond JW, Batley M. Flavones induce expression of nodulation genes in Rhizobium[J]. Nature. 1986, 323: 632~635
    [135] Cooper J E. Multiple responses of rhizobia to flavonoids during legume root infection[J]. Adv Bot Res. 2004, 41: 1~62
    [136] Vierheilig H, PichéY. Signalling in arbuscular mycorrhiza: factors and hypotheses[J]. Kluwer Academic /Plenum Publishers. 2002, 21: 23~39
    [137]李培庆,涂玉琴,陈善坤.多效唑对大豆根瘤、伤流及内源细胞分裂素类的影响[J].江西农业学报,1992,4(2):157~160
    [138]师尚礼,曹致中,赵桂琴.苜蓿根瘤菌有效性及其影响因子分析[J].草地学报,2007,3(15):221~226
    [139] Tsai SM, Pillips DA. Flavonoids released naturally from all alfalfa promote development of symbiotic Glomus spores in vitro[J]. Appl Environ Microbiol, 1991, 57: 1485~1488
    [140]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993,64
    [141]刘爱荣,张远兵,王桂芹,等.水杨酸对盐胁迫下大豆生长和渗透调节能力的影响[J].中国林副特产,2006,84(5):27~29
    [142] Ocampo JA. Effect of crop rotations involving host and non-host plants on vesicular arbuscular mycorrhizal infectin of host plants[J]. Soil Boil. Biochem. 1986, 18(6): 607~610
    [143] Yanok. Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus[J]. Mycorrhiza. 1996, 6: 409~415
    [144]李慧荃,吴观以,汪洪钢. VA菌根对四种国产磷矿粉的利用研究[J].土壤肥料,1991,4:20~23
    [145]王耀林.花生、玉米、椰花、西瓜地膜覆盖高产早熟栽培技术[M].北京:金盾出版杜,1988,57
    [146]孙耀冉,陈涛,吕连营,等.新型绿色农药:5-氨基乙酰丙酸[J].农药,2008,4(1):70~72
    [147] Philippe R, Fabienne M, Patrice L. Molecular basis of symbiotic host specificity in rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals[J]. Cell. 1991, 67: 1131~1143
    [148] TruchetG, RocheP. Sulphated lipo-oligosaccharide sign als of Rhizobium meliloti elicit root nodule organogenesis in alfalfa[J], Nature, 1991, 351: 670~673
    [149] Mylona Pet al. Symbiotic nitrogen fixation[J]. The Plant Cell, 1995, 7: 869~885

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700